Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.266
Filtrar
1.
J Environ Sci (China) ; 148: 529-540, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095186

RESUMEN

Monolithic catalysts with excellent O3 catalytic decomposition performance were prepared by in situ loading of Co-doped KMn8O16 on the surface of nickel foam. The triple-layer structure with Co-doped KMn8O16/Ni6MnO8/Ni foam was grown spontaneously on the surface of nickel foam by tuning the molar ratio of KMnO4 to Co(NO3)2·6H2O precursors. Importantly, the formed Ni6MnO8 structure between KMn8O16 and nickel foam during in situ synthesis process effectively protected nickel foam from further etching, which significantly enhanced the reaction stability of catalyst. The optimum amount of Co doping in KMn8O16 was available when the molar ratio of Mn to Co species in the precursor solution was 2:1. And the Mn2Co1 catalyst had abundant oxygen vacancies and excellent hydrophobicity, thus creating outstanding O3 decomposition activity. The O3 conversion under dry conditions and relative humidity of 65%, 90% over a period of 5 hr was 100%, 94% and 80% with the space velocity of 28,000 hr-1, respectively. The in situ constructed Co-doped KMn8O16/Ni foam catalyst showed the advantages of low price and gradual applicability of the preparation process, which provided an opportunity for the design of monolithic catalyst for O3 catalytic decomposition.


Asunto(s)
Compuestos de Manganeso , Níquel , Óxidos , Ozono , Óxidos/química , Níquel/química , Compuestos de Manganeso/química , Ozono/química , Catálisis , Humedad , Cobalto/química , Modelos Químicos , Contaminantes Atmosféricos/química
2.
J Environ Sci (China) ; 148: 602-613, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095193

RESUMEN

Airborne microplastics (MPs) are important pollutants that have been present in the environment for many years and are characterized by their universality, persistence, and potential toxicity. This study investigated the effects of terrestrial and marine transport of MPs in the atmosphere of a coastal city and compared the difference between daytime and nighttime. Laser direct infrared imaging (LDIR) and polarized light microscopy were used to characterize the physical and chemical properties of MPs, including number concentration, chemical types, shape, and size. Backward trajectories were used to distinguish the air masses from marine and terrestrial transport. Twenty chemical types were detected by LDIR, with rubber (16.7%) and phenol-formaldehyde resin (PFR; 14.8%) being major components. Three main morphological types of MPs were identified, and fragments (78.1%) are the dominant type. MPs in the atmosphere were concentrated in the small particle size segment (20-50 µm). The concentration of MPs in the air mass from marine transport was 14.7 items/m3 - lower than that from terrestrial transport (32.0 items/m3). The number concentration of airborne MPs was negatively correlated with relative humidity. MPs from terrestrial transport were mainly rubber (20.2%), while those from marine transport were mainly PFR (18%). MPs in the marine transport air mass were more aged and had a lower number concentration than those in the terrestrial transport air mass. The number concentration of airborne MPs is higher during the day than at night. These findings could contribute to the development of targeted control measures and methods to reduce MP pollution.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Microplásticos , China , Microplásticos/análisis , Contaminantes Atmosféricos/análisis , Ciudades , Atmósfera/química , Tamaño de la Partícula
3.
Heliyon ; 10(16): e35463, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39220955

RESUMEN

Worldwide, approximately one fifth of all cases of diarrhea are associated with norovirus, mainly in children, with a defined seasonality in temperate climates, but seasonal dynamics are less known in tropical climates. The objective was to investigate the impact of external clinical, epidemiological, and climatic factors on norovirus detection rates in samples from children under 5 years of age from Roraima, the Amazon region of Brazil. A total of 941 samples were included. According to climatic factors, we observed correlations between external climatic factors and weekly positivity rates, where temperature (P = 0.002), relative humidity (P = 0.0005), absolute humidity (P < 0.0001) and wind speed had the strongest effect (P = 0.0006). The Brazilian Amazon region presents a typical and favorable scenario for the persistence, expansion, and distribution of viral gastroenteritis. Importance: This study is important as it will serve as a basis for studies carried out in Brazil and Latin American countries on the epidemiological importance, seasonality, climate change, antigenic diversity, among other factors in the circulation of gastroenteric virus.

4.
Clin Ophthalmol ; 18: 2427-2438, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224176

RESUMEN

Objective: This cross-sectional study aimed to investigate the associations between environmental and occupational factors and the prevalence of dry eye symptoms among participants from the Ahsa region of Saudi Arabia. Methods: Participants from urban, rural, and suburban areas seeking medical care at primary health centers were recruited through systematic random sampling. Data on demographics, exposures, and ocular health were captured using a structured questionnaire. Dry eye symptoms were evaluated using the Ocular Surface Disease Index (OSDI), Impact of Dry Eye on Everyday Life (IDEEL), and Symptom Assessment in Dry Eye (SANDE) questionnaires. Logistic regression analysis examined the relationships between environmental/occupational factors and the prevalence of dry eye symptoms. Results: Key exposures included particulate matter (PM) (60%), low humidity (55%), wind/dust (50%), prolonged computer use (65%), and chemical irritants (45%). These factors were significantly associated with an increased prevalence of dry eye symptoms, with the following odds ratios (ORs): PM (1.85, 95% CI: 1.35-2.52), low humidity (1.45, 95% CI: 1.05-2.00), wind and dust (1.60, 95% CI: 1.20-2.14), prolonged computer use (2.10, 95% CI: 1.55-2.85), and chemical irritants (1.75, 95% CI: 1.30-2.35). All associations were statistically significant (p < 0.05). The use of protective equipment was associated with reduced odds of dry eye symptoms (OR 0.60, 95% CI: 0.42-0.85, p = 0.03). Conclusion: This study identifies significant associations between specific environmental and occupational exposures and the prevalence of dry eye symptoms. Reducing modifiable exposures through policy, workplace enhancements, and clinical preventative strategies is essential to mitigate the burden of dry eye symptoms related to modern lifestyles and technology.

5.
Sci Total Environ ; 951: 175804, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39209176

RESUMEN

The Yangtze River Delta (YRD) experienced record-breaking heat in the summer of 2022. However, the urban heat pattern and the role of urban expansion over the last two decades in this hot summer have not been explored. Using the advanced mesoscale Weather Research and Forecasting (WRF) model, we reproduced the fine spatial features and investigated the urban heat island (UHI) and dry island (UDI) effects during the two identified heatwaves in 2022. We further replace the current (2020) land use with the historical (2001) land use in WRF to evaluate the impacts of urban expansion from 2001 to 2020 on air temperature and moisture. Our finding revealed that the conversion of land use resulted in near-surface warming and drying, with pronounced diurnal variations, especially during the July heatwave. The analysis of surface energy balance demonstrated that the substantial decrease in evapotranspiration (ET) was the primary driver of daytime warming, elevating temperatures by 7 °C (July heatwave) and 2 °C (August heatwave). This ET reduction also led to the strong daytime coupling of warming and drying effects over new urban areas. At night, the release of stored heat resulted in the temperature increase of 2 °C (1 °C) during July (August) heatwave, highlighting the nighttime as a critical period for heightened thermal risk. Additionally, urban expansion at the periphery contributed modestly to the warming of urban cores, exacerbating conditions in an already hot environment. This study enhances understanding of the impacts of urban expansion on air temperature and humidity during extreme heatwaves, thereby supporting targeted adaptation and mitigation for extreme events within large cities.

6.
Int J Biometeorol ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158719

RESUMEN

The present study investigates the susceptibility of two imported dairy cattle breeds to Algerian local climatic conditions, with a primary focus on heat stress (HS) and its repercussions on fertility traits. The dataset comprises 20,926 artificial insemination records involving 6,191 Prim'Holstein and 5,279 Montbéliarde cows. The animals originated from three distinct agro-ecological regions: littoral (L), semi-arid (SA), and arid (Ar), characterized by average annual Temperature-Humidity Index (THI) values of 75.2, 69.53, and 74.75, respectively. Logistic and linear regression models were performed to analyze the relationship between the THI on the AI day, season, and agro-ecological origin of the animals with the Conception Rate at 1st Artificial Insemination (CR 1stAI), Conception Risk (CR), Services per Conception (SPC), and reproductive period (RP). The results demonstrated a significant negative impact (P < 0.001) of THI > 72 compared to THI ≤ 72 on CR1st AI and CR for both cattle breeds (Prim'Holstein: -49.7% and - 17%, respectively; Montbéliarde: -20.7% and - 15%, respectively). Seasonal effects revealed a notably higher CR1stAI in winter and spring (≈ 25%) for Prim'Holstein and Montbéliarde cows compared to summer (19.41%) and autumn (19.12%), respectively. Furthermore, a reduced likelihood of conception at 1stAI and subsequent AI was observed during summer (0.839) and autumn (0.818) compared to winter for the Montbéliarde cows. Taking into account the littoral region as a reference, the likelihood of 1stAI success increased for both breeds in the SA region and decreased for the Ar region (P < 0.001). SPC increased for both breeds in THI > 72 categories (Prim'Holstein: 6.3%, Montbéliarde: 7.1%, P < 0.01), in the Ar region (Prim'Holstein: 30.9%, Montbéliarde: 26%, P < 0.001), and in the SA region (4%, P < 0.05) compared to the L region No significant seasonal effect on SPC was observed for either breed (P > 0.05). The RP increased in the THI > 72 category (Prim'Holstein: 4.1%, Montbéliarde: 7.4%, P < 0.001) and in the Ar region (Prim'Holstein: 122%, Montbéliarde: 73.4%) for both breeds. RP decreased in autumn compared to winter (Prim'Holstein: 15.3%, Montbéliarde: 8.4%). This study underscores the adverse impact of mild to severe heat stress (HS) and related factors (season, region) on fertility of Prim'Holstein and Montbéliarde cows under Algerian conditions, emphasizing the necessity for heat stress mitigation strategies, especially in adverse littoral humid and Saharan-arid environmental conditions.

7.
Sci Rep ; 14(1): 18656, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134614

RESUMEN

In this study, we investigated the humidity sensing properties of TiO2-based ceramics doped with tantalum pentoxide (Ta2O5) and indium tin oxide (ITO). Pure TiO2, 1%Ta-doped TiO2 (1%TTO), 1%ITO-doped TiO2 (1%ISTO), and 1%(Ta2O5 + ITO) co-doped TiO2 (1%ISTTO) ceramic samples were obtained by sintering at 1200 °C for 3 h. The rutile phase was observed in all samples. The lattice parameters of the single and co-doped samples were larger than those of pure TiO2, confirming the substitution of dopants. Porosity was observed in all ceramics. The mean grain sizes of all doped samples were significantly reduced compared to undoped TiO2. A homogeneous element dispersion was observed in the 1%TTO and 1%ISTTO ceramics, while segregation particles of related In-rich elements was observed in the 1%ISTO ceramic. Giant dielectric properties were not achieved in any samples due to the porosity. Nevertheless, excluding the undoped TiO2, the dielectric properties of all porous ceramics varied significantly with changes in humidity. The 1%ISTTO ceramic demonstrated superior humidity sensing properties, including a low maximum hysteresis error of 3.6% at 102 Hz. In contrast, the 1% TTO and 1% ISTO ceramics showed higher maximum hysteresis errors of 7.2% and 19.8%, respectively. Notably, the response and recovery times were 7.05 ± 0.18 and 2.48 ± 0.39 min, respectively, with good repeatability. This improvement is likely due to the synergistic effect of oxygen vacancies and Ta Ti · defects on the surface, enhancing the humidity sensing properties of the 1% ISTTO ceramic, coupled with its optimal microstructure due to its lowest porosity and grain size.

8.
Sci Rep ; 14(1): 18861, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143263

RESUMEN

The microstructure of concrete can be affected by many factors, from non-destructive environmental factors through to destructive damage induced by transient stresses. Coda wave interferometry is a technique that is sensitive enough to detect weak changes within concrete by evaluating the ultrasonic signal perturbation compared to a reference state. As concrete microstructure is sensitive to many factors, it is important to separate their contributions to the observables. In this study, we characterize the relationships between the concrete elastic and inelastic properties, and temperature and relative humidity. We confirm previous theoretical studies that found a linear relationship between temperature changes and velocity variation of the ultrasonic waves for a given concrete mix, and provide scaling factors per Kelvin for multiple settings. We also confirm an anti-correlation with relative humidity using long-term conditioning. Furthermore, we explore beyond the existing studies to establish the relationship linking humidity and temperature changes to ultrasonic wave attenuation.

9.
Clin Infect Dis ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158989

RESUMEN

PURPOSE: To identify weather variables associated with pathogens contributing to infectious conjunctivitis globally. METHODS: Sample collection and pathogen identification from patients with acute infectious conjunctivitis was performed from 2017 to 2023. We linked pathogens identified from 13 sites across 8 countries with publicly available weather data by geographic coordinates. Mixed effects logistic regression analysis was performed to estimate the associations between temperature, precipitation, and relative humidity exposures, and the prevalence of infection types (RNA virus, DNA virus, bacteria, and fungus). RESULTS: 498 cases from the United States, India, Nepal, Thailand, Burkina Faso, Niger, Vietnam, and Israel were included in the analysis. 8-day average precipitation (mm) was associated with increased odds of RNA virus infection (odds ratio (OR)=1.47, 95% confidence interval (CI): 1.12 to 1.93, P=0.01) and decreased odds of DNA infection (OR=0.62, 95% CI: 0.46 to 0.82, P<0.001). Relative humidity (%) was associated with increased odds of RNA virus infections (OR=2.64, 95% CI: 1.51 to 4.61, P<0.001), and fungal infections (OR=2.35, 95% CI: 1.19 to 4.66, P=0.01), but decreased odds of DNA virus (OR=0.58, 95%CI: 0.37 to 0.90, P=0.02) and bacterial infections (OR=0.42, 95% CI: 0.25 to 0.71, P<0.001). Temperature (°C) was not associated with ocular infections for any pathogen type. CONCLUSIONS: This study suggests that weather factors affect pathogens differently. Particularly, humidity and precipitation were predictors for pathogens contributing to conjunctivitis worldwide. Additional work is needed to clarify the effects of shifts in weather and environmental factors on ocular infectious diseases.

10.
Public Health ; 236: 52-59, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39163744

RESUMEN

OBJECTIVES: The allergic airway disease, such as allergic rhinitis, chronic rhinosinusitis, asthma, is a general term of a range of inflammatory disorders affecting the upper and lower airways and lung parenchyma. This study aimed to investigate the short-term effects of air pollutants and meteorological factors on AAD-related daily outpatient visits. STUDY DESIGN: An ecological study. METHODS: Data on outpatient visits due to AAD (n = 4,554,404) were collected from the platform of the Ningbo Health Information from January 1, 2015 to December 31, 2021. A Quasi-Poisson generalized additive regression model was established to analyze the lag effects of air pollution on daily outpatient visits for AAD. Restricted cubic spline functions were used to explore the potential non-linear relationships between air pollutants and meteorological and daily outpatient visits for AAD. RESULTS: PM2.5, PM10, SO2, NO2, or CO were associated with daily outpatient visits for AAD, and there was a significant increasing trend in the cumulative lag effects. SO2 had the largest effect at Lag07, with a 25.3% (95% CI: 21.6%-29.0%) increase in AAD for every 10 µg/m3 increase in exposure concentration. Subgroup analysis showed that the 0-18 years old age group had the strongest effects, especially for AR, and all effects were stronger in the cold season. CONCLUSIONS: Given that patients aged 0-18 are more susceptible to environmental changes, protective measures specifically for children should be taken during dry and cold weather conditions with poor air quality.

11.
Anal Bioanal Chem ; 416(22): 4961-4971, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39110175

RESUMEN

In atmospheric pressure chemical ionization mass spectrometry (APCI-MS), [M-3H+H2O]+ ions can deliver analyte-specific signals that enable direct analysis of volatile n-alkane mixtures. The underlying ionization mechanisms have been the subject of open debate, and in particular the role of water is insufficiently clarified to allow for reliable process analytics when the humidity level changes over time. This can be a problem, particularly in online monitoring, where analyte accumulation in the ion source can also occur. Here, we investigated the role of water during APCI-MS of volatile n-alkanes by changing the carrier gas for sample injection from a dry to a wetted state as well as by using 18O-labeled water. This allowed for a distinction between gaseous and surface-adsorbed water molecules. While adsorbed water seems to be responsible for the desired [M-3H+H2O]+ signals through surface reactions with the analyte molecules, gaseous water was found to promote the formation of CnH2n+1O+ of different (and analyte-independent) hydrocarbons, revealing a reaction with hydrocarbon species which accumulated in the ion source during continuous operation. At the same time, gaseous water competed with analyte molecules for ionization and thus suppressed the formation of alkyl (CnH2n+1+) and alkenyl (CnH2n-1+) ions. The results reveal a memory effect due to hydrocarbon adsorption, which may cause severe interpretation difficulties when the ionization chamber undergoes sudden humidity changes. The use of [M-3H+H2O]+ for n-alkane analysis in alkane/water mixtures can be facilitated by constantly maintaining high humidity and hence stabilizing the ionization conditions.

12.
Cureus ; 16(8): e66578, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39156990

RESUMEN

Background Acute community-acquired pneumonia (CAP) is considered the leading cause of infectious death worldwide. Air pollution and prolonged exposure to airborne contaminants have been implicated in various respiratory conditions, including asthma and chronic obstructive pulmonary disease (COPD). However, the specific impact of air pollution on pneumonia, particularly CAP, remains underexplored. Given the rising levels of urban air pollution and its potential health ramifications, our study aimed to examine the association between exposure to outdoor air pollution and severity as well as the outcomes of pneumonia cases requiring hospitalization. Methodology A cohort analytical study with retrospective data collection was carried out in the pulmonology department of the Gabès University Hospital between January and October 2022. We compared levels of particulate matter less than or equal to 10µm in aerodynamic diameter (PM10), sulfur dioxide (SO2), ozone (O3), moisture and ambient temperature with severity and outcomes of pneumonia requiring hospitalization. The choice of these specific pollutants and environmental factors was based on their established impact on respiratory health and their prevalence in the study region. Results Increased sulfur dioxide (SO2) levels were associated with increased use of non-invasive ventilation (NIV) (r = 0.400). Higher levels of particulate matter (PM10) were significantly associated with the development of lung abscesses. Similarly, increased humidity and ambient temperature were strongly correlated with the development of lung abscesses. Increased air SO2 levels were correlated with a higher CURB65 score (r = 0.299). High outdoor SO2 levels and increasing moisture content were associated with increased Pneumonia Severity Index (PSI) score (r = 0.303 and = 0.310, respectively). Higher levels of PM10 were associated with an increased risk of pleural effusion, a serious complication of pneumonia. Finally, higher ambient temperatures were correlated with more extensive opacities on chest X-rays (r = 0.706), suggesting the severity of pneumonia. Conclusion This study highlights the significant associations between environmental factors and various clinical parameters in pneumonia patients. The findings underscore the importance of considering environmental exposures, such as air quality and weather conditions, in understanding and managing the severity of pneumonia.

13.
ACS Sens ; 9(8): 4143-4153, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39086324

RESUMEN

One challenge for gas sensors is humidity interference, as dynamic humidity conditions can cause unpredictable fluctuations in the response signal to analytes, increasing quantitative detection errors. Here, we introduce a concept: Select humidity sensors from a pool to compensate for the humidity signal for each gas sensor. In contrast to traditional methods that extremely suppress the humidity response, the sensor pool allows for more accurate gas quantification across a broader range of application scenarios by supplying customized, high-dimensional humidity response data as extrinsic compensation. As a proof-of-concept, mitigation of humidity interference in colorimetric gas quantification was achieved in three steps. First, across a ten-dimensional variable space, an algorithm-driven high-throughput experimental robot discovered multiple local optimum regions where colorimetric humidity sensing formulations exhibited high evaluations on sensitivity, reversibility, response time, and color change extent for 10-90% relative humidity (RH) in room temperature (25 °C). Second, from the local optimum regions, 91 sensing formulations with diverse variables were selected to construct a parent colorimetric humidity sensor array as the sensor pool for humidity signal compensation. Third, the quasi-optimal sensor subarrays were identified as customized humidity signal compensation solutions for different gas sensing scenarios across an approximately full dynamic range of humidity (10-90% RH) using an ingenious combination optimization strategy, and two accurate quantitative detections were attained: one with a mean absolute percentage error (MAPE) reduction from 4.4 to 0.75% and the other from 5.48 to 1.37%. Moreover, the parent sensor array's excellent humidity selectivity was validated against 10 gases. This work demonstrates the feasibility and superiority of robot-assisted construction of a customizable parent colorimetric sensor array to mitigate humidity interference in gas quantification.


Asunto(s)
Colorimetría , Gases , Humedad , Robótica , Colorimetría/instrumentación , Colorimetría/métodos , Robótica/instrumentación , Gases/análisis , Gases/química , Algoritmos
14.
Adv Sci (Weinh) ; : e2403647, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146196

RESUMEN

The significant role of the cathodic binder in modulating mass transport within the catalyst layer (CL) of fuel cells is essential for optimizing cell performance. This investigation focuses on enhancing the membrane electrode assembly (MEA) through the utilization of a short-side-chain perfluoro-sulfonic acid (SSC-PFSA) ionomer as the cathode binder, referred to as SSC-MEA. This study meticulously visualizes the distinctive interpenetrating networks of ionomers and catalysts, and explicitly clarifies the triple-phase interface, unveiling the transport-friendly microstructure and transport mechanisms inherent in SSC-MEA. The SSC-MEA exhibits advantageous microstructural features, including a better-connected ionomer network and well-organized hierarchical porous structure, culminating in superior mass transfer properties. Relative to the MEA bonded by long-side-chain perfluoro-sulfonic acid (LSC-PFSA) ionomer, noted as LSC-MEA, SSC-MEA exhibits a notable peak power density (1.23 W cm-2), efficient O2 transport, and remarkable proton conductivity (65% improvement) at 65 °C and 70% relativity humidity (RH). These findings establish crucial insights into the intricate morphology-transport-performance relationship in the CL, thereby providing strategic guidance for developing highly efficient MEA.

15.
J Hazard Mater ; 478: 135467, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39146586

RESUMEN

Formaldehyde (HCHO) is a major indoor pollutant that is extremely harmful to human health even at ppb-level. Meanwhile, ppb-level HCHO is also a potential disease marker in the exhalation of patients with respiratory diseases. Higher humidity resistance and lower practical limit of detection (pLOD) both have to be pursued for practical HCHO sensors. In this work, by assembling indium oxide (In2O3) and fluorinated dipole modified reduced graphene oxide (rGO), we prepared a high-performance room temperature HCHO sensor (In2O3 @ATQ-rGO). Excellent sensing properties toward HCHO under visible illumination have been achieved, including ultra-low pLOD of 3 ppb and high humidity-resistance. By control experiments and density functional theory calculation, it is indicated that the introduced fluorinated dipoles act as not only an "umbrella" to improve the humidity resistance of the composite, but also a "bridge" to accelerate the electron transport, improving the sensitivity of the material. The significant practicality and reliability of the obtained sensors were verified by in-situ simulation experiments using a 3 m3 test chamber with a humidity control system and by detection of the simulated lung disease patient's exhalation. This work provides an effective strategy of simultaneously achieving high humidity-resistance and low pLOD of room temperature formaldehyde sensing materials.

16.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(4): 980-988, 2024 Jul 20.
Artículo en Chino | MEDLINE | ID: mdl-39169998

RESUMEN

Objective: The study aims to preliminarily investigate the prevalence characteristics of allergen-specific immunoglobulin E (IgE) in 57558 patients over the past decade by examining its distribution in the province and exploring its associations with age, sex, temperature, and relative humidity, providing insights for the prevention and diagnosis of allergic diseases in the Sichuan region. Methods: A retrospective analysis was conducted on a cohort of 57558 patients who underwent allergen testing (by means of EUROIMMUN immunoblotting method) at West China Hospital, Sichuan University between August 2012 and February 2022. The clinical data of these patients were collected to establish a comprehensive database, while the temperature and humidity records of the corresponding timeframe were gathered for further analysis. The positive results from the allergen tests were categorized into four levels, including weakly positive (±), positive (+), moderately positive (++), and strongly positive (+++). Statistical analyses were performed using SPSS 25.0, with Chi-square tests conducted to compare count data and Pearson's correlation tests done conducted to assess the relationships between different types of allergens and temperature/relative humidity. P<0.05 was applied to determine statistically significant differences. GraphPad Prism 9.0.0 was utilized to generate visual representations of the data. Results: The overall positivity rate of allergen-specific IgE among the 57558 samples was 30.69%. The top five allergens that elicited positive results were dust mite mix 1 (14.46%), crab (6.67%), soybean (4.72%), fish mix 1 (4.64%), and cockroach (4.34%). Notably, weakly positive (±) results were predominant for allergens such as eggs, peanuts, soybeans, cow's milk, beef, mutton, crab, shrimp, fish mix 1, cockroach, humulus japonicus, ambrosia artemisifolia, artemisia vulgaris, tree mix 2, house dust, and mold mix 1, collectively constituting over 40% of the positive outcomes. In contrast, cat hair and dog dander exhibited an equal distribution of approximately 25% for each positive levels, while mite mix 1 demonstrated the highest proportion of strongly positive results (+++), accounting for 37.66% of all positive results. Sex disparities in positivity rates were evident for various allergens, with significant differences observed for peanut, soybean, crab, shrimp, fish mix 1, cockroach, ambrosia artemisifolia, tree mix 2, cat hair, dog dander, and mite mix 1. Furthermore, the study identified age-related trends in allergen positivity rates, with a general decline observed across most allergens with increasing age. The positive rate of at least one food allergen was highest in the 0-10 age group (36.18%), and the positive rate of at least one inhalation allergen was highest in the 11-20 age group (45.35%). Noteworthy correlations were observed between allergen-specific IgE positivity and environmental factors, including a strong negative correlation between cow's milk allergy and relative humidity ( r=-0.640, P<0.05), a strong negative correlation of artemisia vulgaris sensitivity with temperature ( r Mean high temperature=-0.695, r Mean low temperature=-0.692, P<0.05), and a very strong positive correlation of mold mix 1 sensitivity with relative humidity ( r=0.704, P<0.05). Conclusion: Allergen-specific IgE positivity is associated with genetic factors, demonstrates significant sex- and age-related characteristics in the population, and is influenced by changes in local temperature and relative humidity.


Asunto(s)
Alérgenos , Inmunoglobulina E , Humanos , Alérgenos/inmunología , Inmunoglobulina E/inmunología , Inmunoglobulina E/sangre , Estudios Retrospectivos , Masculino , Femenino , China/epidemiología , Animales , Prevalencia , Adulto , Persona de Mediana Edad , Hipersensibilidad/epidemiología , Hipersensibilidad/inmunología , Adulto Joven , Niño , Adolescente , Humedad , Preescolar , Hipersensibilidad a los Alimentos/inmunología , Temperatura , Anciano , Pyroglyphidae/inmunología
17.
ACS Sens ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174348

RESUMEN

Continuous monitoring of ammonia (NH3) in humid environments poses a notable challenge for gas sensing applications because of its effect on sensor sensitivity. The present work investigates the detection of NH3 in a natural humid environment utilizing ReS2/Ti3C2Tx heterostructures as a sensing platform. ReS2 nanosheets were vertically grown on the surface of Ti3C2Tx sheets through a hydrothermal synthetic approach, resulting in the formation of ReS2/Ti3C2Tx heterostructures. The structural, morphological, and optical properties of ReS2/Ti3C2Tx were investigated using various state-of-the-art techniques, including scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, zeta potential, Brunauer-Emmett-Teller technique, and Raman spectroscopy. The heterostructures exhibited 1.3- and 8-fold increases in specific surface area compared with ReS2 and Ti3C2Tx, respectively, potentially enhancing the active gas adsorption sites. The electrical investigations of the ReS2/Ti3C2Tx-based sensor demonstrated enhanced selectivity and superior sensing response ranging from 7.8 to 12.4% toward 10 ppm of NH3 within a relative humidity range of 15-85% at room temperature. These findings highlight the synergistic effect of ReS2 and Ti3C2Tx, offering valuable insights for NH3 sensing in environments with high humidity, and are explained in the gas sensing mechanism.

18.
New Phytol ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175085

RESUMEN

Soil moisture shapes ecological patterns and processes, but it is difficult to continuously measure soil moisture variability across the landscape. To overcome these limitations, soil moisture is often bioindicated using community-weighted means of the Ellenberg indicator values of vascular plant species. However, the ecology and distribution of plant species reflect soil water supply as well as atmospheric water demand. Therefore, we hypothesized that Ellenberg moisture values can also reflect atmospheric water demand expressed as a vapour pressure deficit (VPD). To test this hypothesis, we disentangled the relationships among soil water content, atmospheric vapour pressure deficit, and Ellenberg moisture values in the understory plant communities of temperate broadleaved forests in central Europe. Ellenberg moisture values reflected atmospheric VPD rather than soil water content consistently across local, landscape, and regional spatial scales, regardless of vegetation plot size, depth as well as method of soil moisture measurement. Using in situ microclimate measurements, we discovered that forest plant indicator values for moisture reflect an atmospheric VPD rather than soil water content. Many ecological patterns and processes correlated with Ellenberg moisture values and previously attributed to soil water supply are thus more likely driven by atmospheric water demand.

19.
Small ; : e2404160, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39175379

RESUMEN

Dual-mode humidity sensors have received wide attention in recent years due to their great potential in multifunction applications. Herein, following a "two birds with one stone" strategy, a dual-mode and self-powered low humidity sensor based on LiBr-MOF-801 with high response and power generation is proposed. The optimized LiBr-MOF-801-based sensor exhibits impedance-voltage dual-mode sensitivity in the low humidity range of 0-23% relative humidity (RH) with high response (57.1 and 0.61 V), small hysteresis (0.3% RH) and good long-term stability at room temperature (20 °C). Moreover, an integrated humidity power generator is obtained by series connection of the self-powered humidity sensor within 15 cm2, and the output voltage reaches 2.6 V with an output power density of 110 nW cm-2, and can be used as energy, supplying power to commercial electronic equipment even in low humidity. This work provides a new sight for fabricating high-performance, dual-mode, and self-powered low-humidity sensors.

20.
Artículo en Inglés | MEDLINE | ID: mdl-39175443

RESUMEN

Inspired by the versatility of the direct laser writing carbonization (DLWc) technique as well as the metal-ion-assisted coordination polymer of 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA), in the present study, we present a DLWc-enabled approach for cost-effectively fabricating a poly-peri-naphthalene (PPN) thin film with the advantages of patternability, environmental benignity, and scalability. Optical and scanning electron microscopy, as well as ultraviolet-visible-near-infrared, Fourier transform infrared, Raman, and X-ray photoelectron spectroscopies, were performed to confirm that the spray-coated thin film of the Mg-PTCDA coordination polymer can be in situ converted into a PPN thin film upon CO2 laser irradiation. The effects of the laser power and Mg2+ concentration on the structure and electrical properties of the laser-processed PPN thin films were investigated. Lastly, we demonstrated that the laser-processed PPN thin films can be used for humidity sensing with characteristics of a rapid response time and excellent hysteresis. It is expected that this new method for fabricating PPN thin films will lead to a wide range of applications of PPN in the fields of sensing, electronics, and energy storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA