Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Nutr ; 11: 1322904, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38371498

RESUMEN

Maize production is pivotal in ensuring food security, particularly in developing countries. However, the crop encounters multiple challenges stemming from climatic changes that adversely affect its yield, including biotic and abiotic stresses during production and storage. A promising strategy for enhancing maize resilience to these challenges involves modulating its hydroxycinnamic acid amides (HCAAs) content. HCAAs are secondary metabolites present in plants that are essential in developmental processes, substantially contributing to defense mechanisms against environmental stressors, pests, and pathogens, and exhibiting beneficial effects on human health. This mini-review aims to provide a comprehensive overview of HCAAs in maize, including their biosynthesis, functions, distribution, and health potential applications.

2.
Molecules ; 28(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37630299

RESUMEN

Potato (Solanum tuberosum) chips are the most consumed snacks worldwide today. Colored potato chips prepared from potato cultivars with red and purple flesh are a novel alternative to traditional potato chips because of their higher phenolic compound content, such as anthocyanins and hydroxycinnamic acid derivatives (HCADs), which might make these chips healthier compared with traditional chips. There is little information on the stability of these compounds. In this study, the nutritional value of these chips was evaluated by determining phenolic profiles, antioxidant activity and color parameters with liquid chromatography diode array and mass spectrometry detection (HPLC-DAD-ESI-MS/MS) and spectrophotometric methods during storage for four months. Five anthocyanins and three HCADs were detected, with the latter compounds being the most abundant, with concentrations on average between the first (97.82 mg kg-1) and the last (31.44 mg kg-1) week of storage. Similar trends were observed in antioxidant activity and stability, with the CUPRAC method showing the highest response among all the methods employed. The color indices were stable throughout the storage time. Based on these results, colored-flesh potato chips are an optimal alternative for consumption because of their high retention of phenolic compounds and antioxidant activity during storage, providing potential benefits to human health.


Asunto(s)
Antioxidantes , Solanum tuberosum , Humanos , Antocianinas , Ácidos Cumáricos , Fenoles , Bocadillos , Espectrometría de Masas en Tándem
3.
Ciênc. rural (Online) ; 53(7): e20210900, 2023. tab, graf
Artículo en Inglés | LILACS-Express | VETINDEX | ID: biblio-1404280

RESUMEN

ABSTRACT: This research assessed the phenolic composition of Jussara pulp from the Brazilian states of Minas Gerais (MG) and Espírito Santo (ES) using HPLC-DAD-MS/MS. Seventeen anthocyanins were detected in fruits, derived from cyanidin, pelargonidin and peonidin. Among the non-anthocyanic phenolic compounds, flavonols (kaempferol, quercetin and isorhamnetin derivatives), flavan-3-ols (catechin, epicatechin, B-type procyanidins and unknown dimers) and resveratrol in its glycosylated form have been identified. Catechin (32.41-60.56 mg 100g-1) and epicatechin (18.86-40.92 mg 100g-1) were the main flavan-3-ols present in the fruits. The samples showed small concentrations of resveratrol glycosides (0.02-0.91 mg 100g-1). The analytical methodology used (HPLC-DAD-ESI-MS/MS) permitted the identification of newly reported compounds in this fruit.


RESUMO: O objetivo desta pesquisa foi avaliar a composição fenólica da polpa de Jussara dos Estados brasileiros de Minas Gerais (MG) e Espírito Santo (ES) usando HPLC-DAD-MS / MS. Dezessete antocianinas foram detectadas, dentre elas, derivadas de cianidina, pelargonidina e peonidina. Dentre os compostos fenólicos não antociânicos, foram identificados flavonóis (derivados de caempferol, quercetina e isorhamnetina), flavan-3-ols (catequina, epicatequina, procianidinas do tipo B e dímeros desconhecidos) e resveratrol em sua forma glicosilada. Catequina (32,41-60,56 mg 100g-1) e epicatequina (18,86-40,92 mg 100g-1) foram os principais flavan-3-óis presentes nas frutas. As amostras apresentaram pequenas concentrações de glicosídeos resveratrol (0,02-0,91 mg 100g-1). A metodologia analítica utilizada (HPLC-DAD-ESI-MS / MS) permitiu a identificação de novos compostos relatados presentes na composição da polpa de Jussara.

4.
Molecules ; 27(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36557976

RESUMEN

The objective of the present work was to optimize the extraction of phytochemicals from Hamelia patens Jacq. by ultrasound-assisted extraction. Taguchi L9 orthogonal array was used to evaluate the factors solid/liquid ratio (1:8, 1:12, and 1:16), extraction time (10, 20, and 30 min), and ethanol concentration (0, 35, and 70%). Total polyphenols were the response variable. Chromatographic fractionation using Amberlite XAD-16 was carried out and the total polyphenols, flavonoids, and condensed tannins were quantified. The redox potential, the reduction of the 2,2-diphenyl-1-picrylhydrazyl (DPPH), and the lipid oxidation inhibition were determined. Anti-bacterial activity was evaluated. The phytochemicals were identified by liquid chromatography coupled to mass spectrometry. Optimal extraction conditions were a solid/liquid ratio of 1:16, ethanol of 35%, and 10 min of ultrasound-assisted extraction. Maximum polyphenol content in the crude extract was 1689.976 ± 86.430 mg of gallic acid equivalents (GAE)/100 g of dried plant material. The purified fraction showed a total polyphenols content of 3552.84 ± 7.25 mg of GAE, flavonoids 1316.17 ± 0.27 mg of catechin equivalents, and condensed tannins 1694.87 ± 22.21 mg of procyanidin B1 equivalents, all per 100 g of purified fraction. Its redox potential was 553.93 ± 1.22 mV, reducing 63.08 ± 0.42% of DPPH radical and inhibiting 77.78 ± 2.78% of lipid oxidation. The polyphenols demonstrated antibacterial activity against Escherichia coli, Klebsiella pneumonia, and Enterococcus faecalis. The HPLC-ESI-MS analysis revealed the presence of coumarins, hydroxycinnamic acids, and flavonoids.


Asunto(s)
Hamelia , Proantocianidinas , Polifenoles/química , Proantocianidinas/química , Cromatografía Líquida de Alta Presión/métodos , Extractos Vegetales/farmacología , Extractos Vegetales/análisis , Antioxidantes/farmacología , Antioxidantes/análisis , Flavonoides/farmacología , Flavonoides/análisis , Fitoquímicos/farmacología , Fitoquímicos/análisis , Etanol/química , Ácido Gálico/análisis , Lípidos
5.
Pathogens ; 11(10)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36297217

RESUMEN

The purpose of the present study was to assess the ovicidal and larvicidal activity of a hydroalcoholic extract (HAE) and their fractions (aqueous, Aq-F and organic, EtOAc-F) from Guazuma ulmifolia leaves using Haemonchus contortus as a biological model. The egg hatching inhibition (EHI) and larval mortality against infective larvae (L3) tests were used to determine the anthelmintic effect of the treatments. The extract and fractions were tested at different concentrations against eggs and L3. Additionally, distilled water and methanol were used as negative controls and ivermectin as a positive control. The extract and fractions were subjected to HPLC analysis to identify the major compounds. The HAE displayed the highest ovicidal activity (100% EHI at 10 mg/mL). Fractionation of the HA extract allowed increasing the nematicidal effect in the EtOAc-F (100% EHI at 0.62 mg/mL and 85.35% mortality at 25 mg/mL). The phytochemical analysis of the extract and fractions revealed the presence of kaempferol, ethyl ferulate, ethyl coumarate, flavonol, luteolin, ferulic acid, luteolin rhamnoside, apigenin rutinoside, coumaric acid derivative, luteolin glucoside, and quercetin glucoside. These results suggest that G. ulmifolia leaves could be potential candidates for the control of H. contortus or other gastrointestinal parasitic nematodes.

6.
J Agric Food Chem ; 70(41): 13071-13081, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-35686688

RESUMEN

Liquid chromatography high-resolution mass spectrometry fingerprinting together with pattern recognition techniques was used to determine the metabolites involved in the susceptibility of apple cultivars to rosy apple aphid (RAA). Preprocessing of ultra-high-performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry raw data of resistant and susceptible apple cultivars was carried out with XCMS and CAMERA packages. Univariate statistical tools and multivariate data analysis highlighted significant different profiles of the apple metabolomes according to their tolerance to RAA. Optimized and cross-validated Partial least squares discriminant analysis and orthogonal projections to latent structures discriminant analysis models confirmed trans-4-caffeoylquinic acid and 4-p-coumaroylquinic acid as biomarkers for the identification of resistant and susceptible apple cultivars to RAA and disclosed that only hydroxycinnamic acids are involved in the disease susceptibility of cultivars. In this sense, the final steps of the biosynthesis of caffeoylquinic acid (CQA) and p-coumaroylquinic acid (p-CoQA) become decisive because the isomerization of 5-CQA to 4-CQA is favored in resistant cultivars, whereas the isomerization of 5-p-CoQA to 4-p-CoQA is favored in susceptible cultivars.


Asunto(s)
Áfidos , Malus , Syzygium , Animales , Biomarcadores , Cromatografía Líquida de Alta Presión/métodos , Ácidos Cumáricos , Espectrometría de Masas , Metabolómica
7.
Pharmaceutics ; 14(5)2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35631520

RESUMEN

Coumaric acid (CouH), an antioxidant molecule assimilated by food consumption, was intercalated into layered double hydroxide (LDH) nanocarrier, having zinc and aluminium ions in the layers (LDH-Cou), to evaluate its pharmacological activity through in vitro and in vivo assays in mice. Therefore, the following tests were performed: coumarate delivery in saline solution, fibroblasts' cell viability using neutral red, peritonitis induced by carrageenan, formalin test, acetic-acid-induced writhing, and tail-flick assay, for the non-intercalated CouH and the intercalated LDH-Cou system. Furthermore, different pharmacological pathways were also investigated to evaluate their possible anti-inflammatory and antinociceptive mechanisms of action, in comparison to traditionally used agents (morphine, naloxone, caffeine, and indomethacin). The LDH-Cou drug delivery system showed more pronounced anti-inflammatory effect than CouH but not more than that evoked by the classic non-steroidal anti-inflammatory drug (NSAID) indomethacin. For the analgesic effect, according to the tail-flick test, the treatment with LDH-Cou expressively increased the analgesia duration (p < 0.001) by approximately 1.7−1.8 times compared to CouH or indomethacin. Thus, the results pointed out that the LDH-Cou system induced in vivo analgesic and anti-inflammatory activities and possibly uses similar mechanisms to that observed for classic NSAIDs, such as indomethacin.

8.
Toxicol In Vitro ; 78: 105259, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34666174

RESUMEN

Ferulic acid (FA) is a phenolic compound that has antioxidant, anti-inflammatory and anticarcinogenic properties besides presenting cytoprotective activity. It has limited oral bioavailability what is a challenge to its therapeutic application. In this way, this investigation aimed to develop FA-loaded nanocapsule suspensions (NC-FA) prepared with ethylcellulose and evaluate their in vitro release profile, mucoadhesion and irritation potential; scavenging capacity, cytotoxicity, cytoprotection and genoprotection against hydrogen peroxide-induced damage in hMNC (human Mononucleated Cells) culture. The nanocapsules presented physicochemical characteristics compatible with colloidal systems (NC-FA: 112 ± 3 nm; NC-B (without FA): 107 ± 3 nm; PdI < 0.2; Span<2.0 and negative zeta potential). In addition, the nanoparticulate system promoted the FA controlled release, increasing the half-life twice through the in vitro dialysis method. NC-FA and NC-B were able to interact with mucin, which is an indicative of mucoadhesive properties and the association of FA with nanocapsules showed decreased irritation by HET-CAM method. Besides, the NC-FA did not present cytotoxicity in hMNC and improved the ATBS radical scavenging capacity. Besides, it prevented, treated and reversed oxidative conditions in a H2O2-induced model in hMNC. Thus, this nanocarrier formulation is promising to perform more preclinical investigations focusing on diseases involving oxidative mechanisms.


Asunto(s)
Antioxidantes/administración & dosificación , Ácidos Cumáricos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Nanocápsulas/química , Animales , Antioxidantes/farmacocinética , Antioxidantes/farmacología , Células Cultivadas , Celulosa/análogos & derivados , Embrión de Pollo , Ácidos Cumáricos/farmacocinética , Ácidos Cumáricos/farmacología , Humanos , Peróxido de Hidrógeno/toxicidad , Irritantes , Linfocitos , Mucinas , Nanocápsulas/efectos adversos
9.
J Sci Food Agric ; 102(6): 2270-2280, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34625964

RESUMEN

BACKGROUND: Solanum tuberosum tubers have higher content of phenolic compounds such as hydroxycinnamic acid derivatives (HCAD) and anthocyanins in coloured genotypes. The use of fungicides for crops is common, but there are few studies regarding the interaction of fungicides and arbuscular mycorrhizal fungi (AMF). Here, the AMF-plant interactions and the metabolic responses of three potato genotypes with different tuber colorations (VR808, CB2011-509 and CB2011-104) inoculated with Claroideoglomus claroideum (CC), Claroideoglomus lamellosum (HMC26) or Funneliformis mosseae (HMC7) were studied together with the use of the fungicides MONCUT (M) and ReflectXtra (R). Mycorrhizal traits, phenolic compound profiles and antioxidant activity (AA) were evaluated. RESULTS: Despite only two HCADs being identified, with 5-caffeolquinic acid the most abundant, four anthocyanins were detected only in purple potato genotypes. The anthocyanin and HCAD profiles, as well as AA, showed that the CB2011-104 genotype had better characteristics than the other genotypes, while VR808 and CB509 showed similar responses. The responses were dependent on the specific combinations of genotype, fungicide and the AMF strain, and generally showed better responses when colonized by AMFs. CONCLUSION: The three potato genotypes had differential responses depending on the inoculated AMFs and the fungicide applied before sowing, where the optimal combinations for antioxidant response, mycorrhization degree and performance were HMC26/R for VR808, HMC7/M for CB2011-509 and HMC26/M for CB2011-104. Our results suggest the existence of functional compatibility that can be registered as beneficial effects even at the genotypic level of the host regarding a specific AMF strain. © 2021 Society of Chemical Industry.


Asunto(s)
Fungicidas Industriales , Micorrizas , Solanum tuberosum , Antocianinas , Antioxidantes/farmacología , Fungicidas Industriales/farmacología , Micorrizas/genética
10.
JSFA Reports, v. 2, n. 2, p. 64-80, fev. 2022
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4136

RESUMEN

BACKGROUND Stingless bees or meliponines (family Apidae, subfamily Meliponinae, tribe Meliponini) are eusocial bees from tropical and subtropical regions. Propolis of Scaptotrigona aff. Postica (Latreille, 1807) is used in the state of Maranhão (Northeast Brazil) in ointments to treat tumors and wounds. Samples of propolis of Scaptotrigona aff. Postica (Apidae, Meliponini) were collected monthly from an apiary located in Barra do Corda (state of Maranhão, northeast Brazil). Extracts of the twelve samples were obtained with 80% ethanol. Constituents of the samples were characterized by HPLC-PAD-ESI-MS/MS analysis, amounting to 100 substances. RESULTS Representatives of several classes of secondary metabolites were characterized, including benzoic and cinnamic acids, flavonoids (chalcones, flavone-C-glycosides, flavonol aglycones and glycosides), alkyl and alkenyl resorcinols, xanthones, diterpenes, cycloartane-type triterpenoids, pentacyclic triterpenoids, pyrrolizidine alkaloids and hydroxycinnamic acid amides (HCAAs). Considerable qualitative differences in chemical composition among samples were observed, depending on the year period of collection. Principal Coordinate Analysis recognized three distinct year periods (Jan-Mar, April-Sep, Oct-Dec) according to the corresponding chemical profiles. CONCLUSION Comparing with previous studies, the present work indicates that considerable differences in chemical composition occur also from year to year. Contrary to most propolis types reported so far, which derives exclusively or mostly from a single botanical source, the propolis from Barra do Corda seemingly depends on several resin sources. It is suggested that chalcones and flavonols stem from Mimosa tenuiflora (Mimosoideae); resorcinols, xanthones and cycloartane-type triterpenoids, from fruits of Mangifera indica (Anacardiaceae); pyrrolizidine alkaloids, possibly from some Crotalaria species (Faboideae); HCAAs probably originate from pollen contaminating the propolis samples. The propolis of S. aff. Postica poses challenges and possibilities of study for apicultural researchers, chemists and pharmacologists.

11.
Chem Biol Drug Des ; 98(6): 1104-1115, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34614302

RESUMEN

Tetragonisca angustula honey was fractioned in a SiO2 column to furnish three fractions (A-C) in which four hydroxycinnamic acid-Spermidine amides (HCAAs), known as N', N″, N‴-tris-p-coumaroyl spermidine, N', N″-dicaffeoyl, N‴-coumaroyl spermidine, N', N″, N‴-tris-caffeoyl spermidine and N', N″-dicaffeoyl and N‴-feruloyl spermidine were identified in the fractions B and C by electrospray ionization tandem mass spectrometry. A primary culture model previously infected with Neospora caninum (72 h) was used to evaluate the honey fractions (A-C) for two-time intervals: 24 and 72 h. Parasitic reduction ranged from 38% on fraction C (12.5 µg/ml), after 24 h, to 54% and 41% with fractions B and C (25 µg/ml) after 72 h of treatment, respectively. Additionally, HCAAs did not show any cell toxicity for 24 and 72 h. For infected cultures (72 h), the active fractions B (12.5 µg/ml) and C (25 µg/ml) decreased their NO content. In silico studies suggest that HCAAs may affect the parasite's redox pathway and improve the oxidative effect of NO released from infected cells. Here, we presented for the first time, that HCAAs from T. angustula honey have the potential to inhibit the growth of N. caninum protozoa.


Asunto(s)
Antiprotozoarios/farmacología , Abejas , Miel , Neospora/efectos de los fármacos , Espermidina/química , Amidas/química , Animales , Antiprotozoarios/química , Brasil , Células Cultivadas , Coccidiosis/tratamiento farmacológico , Simulación por Computador , Ácidos Cumáricos/química , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , Neuroglía/efectos de los fármacos , Neuroglía/parasitología , Óxido Nítrico/metabolismo , Ratas Wistar , Espermidina/análisis
12.
Pharmaceuticals (Basel) ; 14(6)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34071735

RESUMEN

Myeloperoxidase (MPO) is an enzyme present in human neutrophils, whose main role is to provide defenses against invading pathogens. However, highly reactive oxygen species (ROS), such as HOCl, are generated from MPO activity, leading to chronic diseases. Herein, we report the microwave-assisted synthesis of a new series of stable (E)-(2-hydroxy)-α-aminocinnamic acids, in good yields, which are structurally analogous to the natural products (Z)-2-hydroxycinnamic acids. The radical scavenging activity (RSA), MPO inhibitory activity and cytotoxicity of the reported compounds were evaluated. The hydroxy derivatives showed the most potent RSA, reducing the presence of DPPH and ABTS radicals by 77% at 0.32 mM and 100% at 0.04 mM, respectively. Their mechanism of action was modeled with BDEOH, IP and ΔEH-L theoretical calculations at the B3LYP/6 - 31 + G(d,p) level. Compounds showed in vitro inhibitory activity of MPO with IC50 values comparable to indomethacin and 5-ASA, but cytotoxicities below 15% at 100-200 µM. Docking calculations revealed that they reach the amino acid residues present in the distal cavity of the MPO active site, where both the amino and carboxylic acid groups of the α-aminopropenoic acid arm are structural requirements for anchoring. (E)-2-hydroxy-α-aminocinnamic acids have been synthesized for the first time with a reliable method and their antioxidant properties demonstrated.

13.
J Pharm Biomed Anal ; 190: 113540, 2020 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-32846401

RESUMEN

Accumulating evidence has been suggesting that combining two or more anticancer drugs can provide additive or synergistic effects, improving therapeutic efficacy and delaying resistance. Nowadays, advances in nanotechnology-based delivery systems have enabled the association of different drugs into a single carrier and provided therapeutic gains to the proposed regimen. However, a new strategy also requires innovative analytical approaches that assess loading capacity, biological performance, and also comprehend the mechanisms of action. Alpha-cyano-4-hydroxycinnamic acid (CHC) and the monoclonal antibody (mAb) cetuximab (CTX) are explored worldwide for their therapeutic benefits against multiple cancer cells. The present work aims to develop and validate a new method for simultaneous quantification of CHC and CTX in nanoparticulate systems by using reverse phase high-performance liquid chromatography (RP-HPLC) with ultraviolet (UV) detection for CHC, and fluorescence detection for CTX. This method was designed following the guidelines of the International Conference on Harmonization ICH Q2 (R1) and the Food and Drug Administration (FDA) - Guidance for Bioanalytical Method Validation. Chromatographic separation was performed on a C18 column with the mobile phase composed by water, 0.1 % (v/v) trifluoroacetic acid (TFA) and acetonitrile (ACN)-0.1 % TFA on gradient mode at a flow rate of 0.6 mL/min. The performance of the present method was evaluated by system suitability; therefore, linearity, accuracy, precision, detection, limit of detection / limit of quantification, and robustness were also highlighted. Specificity was demonstrated by the chromatographic analyses of CHC and CTX, subjected to several informative stress conditions. The developed method was also successfully used for the first time to quantify the CHC and CTX content in poly(lactic-co-glycolic acid)-based nanoparticles. In conclusion, this new and rapid method presented acceptable analytical performance and can be helpful to simultaneously quantify CHC and CTX in future studies applied to anticancer therapy.


Asunto(s)
Anticuerpos Monoclonales , Nanopartículas , Cetuximab , Cromatografía Líquida de Alta Presión , Ácidos Cumáricos , Límite de Detección
14.
Drug Deliv Transl Res ; 10(6): 1729-1747, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32683647

RESUMEN

Nose-to-brain delivery is a promising approach to target drugs into the brain, avoiding the blood-brain barrier and other drawbacks related to systemic absorption, and enabling an effective and safer treatment of diseases such as glioblastoma (GBM). Innovative materials and technologies that improve residence time in the nasal cavity and modulate biological interactions represent a great advance in this field. Mucoadhesive nanoparticles (NPs) based on poly(lactic-co-glycolic acid) (PLGA) and oligomeric chitosan (OCS) were designed as a rational strategy and potential platform to co-deliver alpha-cyano-4-hydroxycinnamic acid (CHC) and the monoclonal antibody cetuximab (CTX) into the brain, by nasal administration. The influence of formulation and process variables (O/Aq volume ratio, Pluronic concentration, PLGA concentration, and sonication time) on the properties of CHC-loaded NPs (size, zeta potential, PDI and entrapment efficiency) was investigated by a two-level full factorial design (24). Round, stable nano-sized particles (213-875 nm) with high positive surface charge (+ 33.2 to + 58.9 mV) and entrapment efficiency (75.69 to 93.23%) were produced by the emulsification/evaporation technique. Optimal process conditions were rationally selected based on a set of critical NP attributes (258 nm, + 37 mV, and 88% EE) for further conjugation with CTX. The high cytotoxicity of CHC-loaded NPs and conjugated NPs was evidenced for different glioma cell lines (U251 and SW1088). A chicken chorioallantoic membrane assay highlighted the expressive antiangiogenic activity of CHC-loaded NPs, which was enhanced for conjugated NPs. The findings of this work demonstrated the potential of this nanostructured polymeric platform to become a novel therapeutic alternative for GBM treatment. Graphical abstract.


Asunto(s)
Encéfalo , Quitosano , Glioblastoma , Nanopartículas , Administración Intranasal , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Línea Celular Tumoral , Quitosano/uso terapéutico , Glioblastoma/tratamiento farmacológico , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
15.
Drug Deliv Transl Res ; 10(3): 594-609, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31981140

RESUMEN

Combination therapy that uses multiple drugs against different molecular targets should be considered as interesting alternatives for treating complex diseases such as glioblastoma (GBM). Drugs like alpha-cyano-4-hydroxycinnamic acid (CHC) and the monoclonal antibody cetuximab (CTX) are already explored for their capacity to act against different hallmarks of cancer. Previous reports suggest that the simultaneous use of these drugs, as a novel combining approach, might result in additive or synergistic effects. Therefore, advances in nanotechnology-based delivery systems will inevitably bring nano-mediated therapeutic gains to the proposed combination since they enable the association of different drugs into a single carrier. The current study provides indications that the new dual therapeutic strategy proposed, in association with nanotechnology, provides significative improvements when compared to the use of isolated drugs. Nanotechnological tools were employed by developing polymeric nanoparticles based on poly(lactic-co-glycolic acid) and chitosan for CHC encapsulation. Furthermore, these structures were conjugated with CTX by supramolecular forces. In summary, the encapsulation of the CHC drug into the nanoparticles increased its individual therapeutic capacity. In addition, conjugation with CTX seemed to enhance therapeutic efficacy, especially for U251 GBM cells. In conclusion, developed nanostructured delivery systems exhibited a set of favorable attributes and potential to be applied as a promising new alternative for GBM treatment. Graphical abstract .


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Cetuximab/farmacología , Ácidos Cumáricos/farmacología , Glioblastoma/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cetuximab/química , Quitosano/química , Ácidos Cumáricos/química , Combinación de Medicamentos , Composición de Medicamentos , Sinergismo Farmacológico , Humanos , Nanopartículas , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química
16.
J Food Sci Technol ; 55(8): 3188-3198, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30065430

RESUMEN

Two cultivars of sorghum were germinated at 25 or 30 °C for 1, 2, or 3 days to investigate the evolution of γ-Aminobutyric acid (GABA), total free phenolic compounds (FPC), hydroxycinnamic acid derivatives, free amino acid (FAA) profile, and antioxidant activity during malting. Results showed time-temperature interaction had significant influence on GABA accumulation, increasing over time at 25 °C, but keeping constant after first day at 30 °C. Free amino acid profile changed during malting with time and temperature, increasing until the third or second day at 25 and 30 °C, respectively. Content of hydroxycinnamic acid derivatives depended on time, temperature, and cultivar; ferulic was the phenolic acid found in greater amount. Pearson correlation analysis suggested malting generated not only FPC responsible for antioxidant activity, but also other bioactive compounds like FAA, particularly sulfur-containing ones. Germination for 3 days at 25 °C was the most suitable condition to obtaining functional sorghum malt.

17.
Food Chem ; 241: 232-241, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28958524

RESUMEN

Yerba mate is a beverage rich in bioactive compounds popular in South America. Polyphenols and methylxanthines were qualitatively and quantitatively analyzed in four commercial brands of yerba mate, as well as the antioxidant capacity of the beverages. Using LC/MSn analysis, 58 polyphenols were observed of which 4-sinapoylquinic acid, di- and tri-methoxycinnamoylquinic acids, two isomers of trimethoxycinnamoylshikimic acid and four isomers of caffeoyl-2,7-anhydro-3-deoxy-2-octulopyranosonic acid were identified for the first time in mate. Additionally, 46 polyphenols and 2 methylxanthines were quantified by HPLC-DAD. Hydroxycinnamic acid derivatives and flavonols comprised 90% and 10% of mate phenols, respectively, 3-caffeoylquinic (26.8-28.8%), 5-caffeoylquinic (21.1-22.4%), 4-caffeoylquinic (12.6-14.2%) and 3,5-dicaffeoylquinic acids (9.5-11.3%) along with rutin (7.1-7.8%) were the most abundant polyphenols, whereas caffeine was the main methylxanthine (90%). Ilex paraguariensis is an important source of polyphenols with moderate methylxanthines content; therefore its high antioxidant capacity was mainly associated to its polyphenolic composition.


Asunto(s)
Ácidos Cumáricos/química , Flavonoles/química , Ilex paraguariensis , Extractos Vegetales , Polifenoles , América del Sur , Xantinas
18.
Artículo en Inglés | MEDLINE | ID: mdl-26347861

RESUMEN

The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and (pHCAs) by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida, and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of l-phenylalanine (l-Phe) and l-tyrosine (l-Tyr) to cinnamic acid and (pHCA), respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the l-Phe or l-Tyr biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement.

19.
Rev. colomb. cienc. pecu ; 26(4): 255-262, oct.-dic. 2013. ilus, tab
Artículo en Inglés | LILACS | ID: lil-703352

RESUMEN

Background: corn plant silage is characterized by its high nutritional value and high energy content. However, it is important to determine corn silage characteristics that affect its nutritional value, such as the cell wall constituents. Objective: the objective of this experiment was to evaluate the chemical-bromatological composition and apparent digestibility of 10 corn hybrids (DK265bm3, DK265, HS5, HS6, HTV2, HTV27, Anjou285, Mexxal, Pistachio and Buxxil). Methods: the hybrids were planted at INRA (Unité of Génétique Amélioration des Plantes Fourragères, Lusignan, France) in an area of 150 m2. The experiment was conducted in triplicate. All evaluations were conducted in whole corn plants without ears. Results: the DK265bm3 hybrids presented the best values for enzymatic solubility and cell wall digestibility; it was associated with reduced cell wall KL and esterified p-coumaric acid content compared with the other hybrids. The corn hybrids were evaluated before ensilage using Near Infrared Spectrometry, and a significant difference for chemical composition was found among treatments. Conclusion: DK265bm3 showed superior digestibility of DM, OM, cellulose, NDF and IVDMD compared to the other hybrids.


Antecedentes: el ensilaje de maíz se caracteriza por su alto contenido nutricional y energético. No obstante, la determinación de las características del ensilaje de maíz que afectan su valor nutritivo, como los constituyentes de la pared de la planta, son de suma importancia. Objetivo: el objetivo del presente trabajo fue evaluar la composición química y digestibilidad de 10 híbridos de maíz (DK265bm3, DK265, HS5, SA6, HTV2, HTV27, Anjou285, Mexxal, pistacho y Buxxil). Métodos: los híbridos fueron plantados en el INRA (Unité of Génétique Amélioration des Plantes Fourragères, Lusignan, France) en 150 metros cuadrados, el experimento se realizó por triplicado. Todas las evaluaciones se llevaron a cabo en plantas enteras sin mazorcas. Resultados: el híbrido DK265bm3 mostró mejores valores de solubilidad y digestibilidad enzimática de la pared celular, y esto se asoció con una reducción de la pared celular y el contenido de ácido p-cumárico esterificado en comparación con otros híbridos. Los híbridos de maíz fueron evaluados antes del ensilaje con Espectrometría de Infrarrojo Cercano, y se encontraron diferencias entre los tratamientos para la composición química. Conclusión: el DK265bm3 mostró mayores valores de digestibilidad de la materia seca, orgánica, celulosa, fibra detergente neutra y digestibilidad in vitro de la materia seca, en comparación con los otros híbridos.


Antecedentes: a silagem de milho é caracterizada pelo seu alto valor nutricional e energético. No entanto, a determinação das características da silagem de milho que afetam seu valor nutricional, como os constituintes da parede vegetal são de suma importância. Objetivo: avaliar a composição químico-bromatológica e a digestibilidade aparente de 10 híbridos de milho (DK265bm3, DK265, HS5, HS6, HTV2, HTV27, Anjou285, Mexxal, Pistachio e Buxxil). Métodos: os híbridos foram plantados no INRA (Unité of Génétique Amélioration des Plantes Fourragères, Lusignan, France) em 150 m² de área; o experimento foi conduzido em triplicata. Todas as avaliações foram conduzidas nas plantas inteiras sem espigas. Resultados: o híbrido DK265bm3 apresentou os melhores valores de solubilidade enzimática e digestibilidade da parede celular, e isto foi associado a redução da parede celular e do conteúdo de ácido p-coumárico esterificado comparado com os outros híbridos. Os híbridos de Milho foram avaliados antes da ensilagem usando o Espectometria de infravermelho próximo, e foi verificada a diferença entre os tratamentos para composição química. Conclusões: o hibrido de milho DK265bm3 mostrou valores superiores de digestibilidade da matéria seca, matéria orgânica, celulose, fibra em detergente neutro e digestibilidade in vitro da matéria seca, comparado aos outros híbridos.

20.
Rev. bras. plantas med ; Rev. bras. plantas med;14(3): 500-505, 2012. graf, tab
Artículo en Portugués | LILACS | ID: lil-658131

RESUMEN

Este artigo descreve o desenvolvimento e a validação de método espectrofotométrico UV-Visível para quantificação de derivados do ácido o-hidroxicinâmico em folhas de Echinodorus grandiflorus. O método demonstrou ser linear (r² = 0,9974), preciso (DPR < 15%) na análise de matriz complexa e exata (recuperação = 107,56%).


This paper describes the development and the validation of an UV-Vis spectrophotometric method for the quantification of derivatives of o-hydroxycinnamic acid in leaves of Echinodorus grandiflorus. The method showed to be linear (r² = 0.9974), precise (RSD < 15%) in the analysis of complex matrix and accurate (recovery = 107.56%).


Asunto(s)
Ácidos Cumáricos/análisis , Estudio de Validación , Metodología como un Tema , Control de Calidad , Espectrofotometría Ultravioleta/métodos , Alismataceae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA