Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Appl Crystallogr ; 57(Pt 2): 266-275, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38596734

RESUMEN

In cellulo crystallization is a rare event in nature. Recent advances that have made use of heterologous overexpression can promote the intracellular formation of protein crystals, but new tools are required to detect and characterize these targets in the complex cell environment. The present work makes use of Mask R-CNN, a convolutional neural network (CNN)-based instance segmentation method, for the identification of either single or multi-shaped crystals growing in living insect cells, using conventional bright field images. The algorithm can be rapidly adapted to recognize different targets, with the aim of extracting relevant information to support a semi-automated screening pipeline, in order to aid the development of the intracellular protein crystallization approach.

2.
Chemistry ; 29(24): e202300224, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-36807947

RESUMEN

BODIPY-based donor-acceptor dyads are widely used as sensors and probes in life science. Thus, their biophysical properties are well established in solution, while their photophysical properties in cellulo, i. e., in the environment, in which the dyes are designed to function, are generally understood less. To address this issue, we present a sub-ns time-resolved transient absorption study of the excited-state dynamics of a BODIPY-perylene dyad designed as a twisted intramolecular charge transfer (TICT) probe of the local viscosity in live cells.

3.
FEBS Lett ; 597(1): 122-133, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36285633

RESUMEN

Metals are widely present in biological systems as simple ions or complex cofactors, and are involved in a variety of processes essential for life. Their transport inside cells and insertion into the binding sites of the proteins that need metals to function occur through complex and selective pathways involving dedicated multiprotein machineries specifically and transiently interacting with each other, often sharing the coordination of metal ions and/or cofactors. The understanding of these machineries requires integrated approaches, ranging from bioinformatics to experimental investigations, possibly in the cellular context. In this review, we report two case studies where the use of integrated in vitro and in cellulo approaches is necessary to clarify at atomic resolution essential aspects of metal trafficking in cells.


Asunto(s)
Metaloproteínas , Metales , Proteínas , Sitios de Unión
4.
Microb Cell Fact ; 21(1): 211, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36242022

RESUMEN

BACKGROUND: A significant fraction of the human proteome is still inaccessible to in vitro studies since the recombinant production of several proteins failed in conventional cell factories. Eukaryotic protein kinases are difficult-to-express in heterologous hosts due to folding issues both related to their catalytic and regulatory domains. Human CDKL5 belongs to this category. It is a serine/threonine protein kinase whose mutations are involved in CDKL5 Deficiency Disorder (CDD), a severe neurodevelopmental pathology still lacking a therapeutic intervention. The lack of successful CDKL5 manufacture hampered the exploitation of the otherwise highly promising enzyme replacement therapy. As almost two-thirds of the enzyme sequence is predicted to be intrinsically disordered, the recombinant product is either subjected to a massive proteolytic attack by host-encoded proteases or tends to form aggregates. Therefore, the use of an unconventional expression system can constitute a valid alternative to solve these issues. RESULTS: Using a multiparametric approach we managed to optimize the transcription of the CDKL5 gene and the synthesis of the recombinant protein in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 applying a bicistronic expression strategy, whose generalization for recombinant expression in the cold has been here confirmed with the use of a fluorescent reporter. The recombinant protein largely accumulated as a full-length product in the soluble cell lysate. We also demonstrated for the first time that full-length CDKL5 produced in Antarctic bacteria is catalytically active by using two independent assays, making feasible its recovery in native conditions from bacterial lysates as an active product, a result unmet in other bacteria so far. Finally, the setup of an in cellulo kinase assay allowed us to measure the impact of several CDD missense mutations on the kinase activity, providing new information towards a better understanding of CDD pathophysiology. CONCLUSIONS: Collectively, our data indicate that P. haloplanktis TAC125 can be a valuable platform for both the preparation of soluble active human CDKL5 and the study of structural-functional relationships in wild type and mutant CDKL5 forms. Furthermore, this paper further confirms the more general potentialities of exploitation of Antarctic bacteria to produce "intractable" proteins, especially those containing large intrinsically disordered regions.


Asunto(s)
Proteoma , Pseudoalteromonas , Regiones Antárticas , Frío , Síndromes Epilépticos , Humanos , Péptido Hidrolasas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteoma/metabolismo , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Proteínas Recombinantes , Serina , Espasmos Infantiles , Treonina/metabolismo
5.
Viruses ; 14(7)2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35891503

RESUMEN

Nipah virus (NiV) is a zoonotic paramyxovirus with a fatality rate of up to 92% in humans. While several pathogenic mechanisms used by NiV to counteract host immune defense responses have been described, all of the processes that take place in cells during infection are not fully characterized. Here, we describe the formation of ordered intracellular structures during NiV infection. We observed that these structures are formed specifically during NiV infection, but not with other viruses from the same Mononegavirales order (namely Ebola virus) or from other orders such as Bunyavirales (Junín virus). We also determined the kinetics of the appearance of these structures and their cellular localization at the cellular periphery. Finally, we confirmed the presence of these NiV-specific ordered structures using structured illumination microscopy (SIM), as well as their localization by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and correlative light and electron microscopy (CLEM). Herein, we describe a cytopathogenic mechanism that provides a new insight into NiV biology. These newly described ordered structures could provide a target for novel antiviral approaches.


Asunto(s)
Ebolavirus , Infecciones por Henipavirus , Virus Nipah , Paramyxovirinae , Antivirales , Humanos , Virus Nipah/fisiología
6.
Methods Mol Biol ; 2487: 197-204, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35687238

RESUMEN

Multienzyme complexes naturally exist in cells to catalyze cascade reactions in metabolic pathways. By clustering the enzymes in close proximity, these nanomachineries achieve effective conversion of metabolites. Bioengineers are working on the development of synthetic versions of multienzyme complexes in cells to synergize heterologous biosynthesis. Assembling enzymes on protein scaffolds through protein-protein interactions is a viable and facile way to form synthetic multienzyme complexes. Here, we describe the general methods to construct self-assembled multienzyme nanostructures in Escherichia coli for biosynthesis of valuable chemicals.


Asunto(s)
Nanoestructuras , Biocatálisis , Catálisis , Escherichia coli/genética , Escherichia coli/metabolismo , Complejos Multienzimáticos/química , Nanoestructuras/química , Proteínas/química
7.
Molecules ; 27(9)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35566266

RESUMEN

Hemerocallis fulva is a medical and edible plant. In this study, we optimized the ultrasound-assisted extraction (UAE) process of extracting flavonoids from Hemerocallis fulva leaves by single-factor experiments and response surface methodology (RSM). The optimum extraction conditions generating the maximal total flavonoids content was as follows: 70.6% ethanol concentration; 43.9:1 mL/g solvent to sample ratio; 61.7 °C extraction temperature. Under the optimized extraction conditions, the total flavonoid content (TFC) in eight Hemerocallis fulva varieties were determined, and H. fulva (L.) L. var. kwanso Regel had the highest TFC. The cytotoxicity of the extract was studied using the Cell Counting Kit-8 (CCK-8 assay). When the concentration was less than 1.25 mg/mL, the extract had no significant cytotoxicity to HaCaT cells. The antioxidant activity was measured via chemical antioxidant activity methods in vitro and via cellular antioxidant activity methods. The results indicated that the extract had a strong ABTS and •OH radical scavenging activity. Additionally, the extract had an excellent protective effect against H2O2-induced oxidative damage at a concentration of 1.25 mg/mL, which could effectively reduce the level of ROS to 106.681 ± 9.733% (p < 0.001), compared with the 163.995 ± 6.308% of the H2O2 group. We identified five flavonoids in the extracts using high-performance liquid chromatography (HPLC). Infrared spectroscopy indicated that the extract contained the structure of flavonoids. The results showed that the extract of Hemerocallis fulva leaves had excellent biocompatibility and antioxidant activity, and could be used as a cheap and potential source of antioxidants in the food, cosmetics, and medicine industries.


Asunto(s)
Hemerocallis , Antioxidantes/química , Flavonoides/química , Hemerocallis/química , Peróxido de Hidrógeno/análisis , Extractos Vegetales/química , Hojas de la Planta/química
8.
Mol Cell ; 82(5): 1053-1065.e8, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35245449

RESUMEN

Enzymatic methylation of cytosine to 5-methylcytosine in DNA is a fundamental epigenetic mechanism involved in mammalian development and disease. DNA methylation is brought about by collective action of three AdoMet-dependent DNA methyltransferases, whose catalytic interactions and temporal interplay are poorly understood. We used structure-guided engineering of the Dnmt1 methyltransferase to enable catalytic transfer of azide tags onto DNA from a synthetic cofactor analog, Ado-6-azide, in vitro. We then CRISPR-edited the Dnmt1 locus in mouse embryonic stem cells to install the engineered codon, which, following pulse internalization of the Ado-6-azide cofactor by electroporation, permitted selective azide tagging of Dnmt1-specific genomic targets in cellulo. The deposited covalent tags were exploited as "click" handles for reading adjoining sequences and precise genomic mapping of the methylation sites. The proposed approach, Dnmt-TOP-seq, enables high-resolution temporal tracking of the Dnmt1 catalysis in mammalian cells, paving the way to selective studies of other methylation pathways in eukaryotic systems.


Asunto(s)
Azidas , ADN (Citosina-5-)-Metiltransferasas , 5-Metilcitosina , Animales , Azidas/metabolismo , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Metilasas de Modificación del ADN/genética , Mamíferos/metabolismo , Ratones
9.
ACS Appl Bio Mater ; 5(1): 205-213, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35014832

RESUMEN

Human neuraminidase 1 (NEU1) is a lysosomal glycosidase that cleaves the terminal sialic acids of sialylglycoconjugates. NEU1 is biosynthesized in the endoplasmic reticulum (ER) lumen as an N-glycosylated protein. NEU1 also associates with cathepsin A (CTSA) in ER, migrates to lysosomes, and exerts catalytic activity. Extraordinary in cellulo crystallization of NEU1 protein in ER despite carrying three N-glycans per molecule at N186, N343, and N352, respectively, were observed when the single human NEU1 gene was overexpressed in mammalian cells. In this study, we first purified the NEU1 from the isolated crystals produced by the HEK293 NEU1-KO cell transiently overexpressing the normal NEU1 and found that the N-glycans were high-mannose or complex types carrying terminal sialic acids. The result suggests that a part of NEU1 crystals were formed or transported to the Golgi apparatus. Second, we compared the effects of single amino acid substitution at the N-sequons, including N186Q, N343Q, and N352Q, each one N-glycan reduction from one NEU1 molecule. We demonstrated that N186Q mutant protein with low enzyme activity and formed a few amounts of smaller crystals. The N343Q mutant exhibited half of the normal intracellular activity, but the numbers and sizes of crystals were almost the same as those of normal NEU1. The N352Q mutant exhibited almost the same activity as the normal enzyme. The numbers of the N352Q crystals were smaller than those of normal NEU1. According to these findings, the N186Q NEU1 protein should have lower stability in ER due to abnormal folding. The second N-glycan at the N343-sequon has little effect on self-aggregation of NEU1. The third N-glycan at the N352-sequon contributes to the self-aggregation of NEU1. We also demonstrated that the three NEU1 mutants associate with the relatively excessive CTSA and migrate to lysosomes.


Asunto(s)
Neuraminidasa , Ácidos Siálicos , Animales , Catepsina A/genética , Cristalización , Células HEK293 , Humanos , Mamíferos/metabolismo , Neuraminidasa/genética , Polisacáridos
10.
Hum Mutat ; 43(2): 169-179, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34837441

RESUMEN

A centronuclear myopathy (CNM) is a group of inherited congenital diseases showing clinically progressive muscle weakness associated with the presence of centralized myonuclei, diagnosed by genetic testing and muscle biopsy. The gene encoding dynamin 2, DNM2, has been identified as a causative gene for an autosomal dominant form of CNM. However, the information of a DNM2 variant alone is not always sufficient to gain a definitive diagnosis as the pathogenicity of many gene variants is currently unknown. In this study, we identified five novel DNM2 variants in our cohort. To establish the pathogenicity of these variants without using clinicopathological information, we used a simple in cellulo imaging-based assay for T-tubule-like structures to provide quantitative data that enable objective determination of pathogenicity by novel DNM2 variants. With this assay, we demonstrated that the phenotypes induced by mutant dynamin 2 in cellulo are well correlated with biochemical gain-of-function features of mutant dynamin 2 as well as the clinicopathological phenotypes of each patient. Our approach of combining an in cellulo assay with clinical information of the patients also explains the course of a disease progression by the pathogenesis of each variant in DNM2-associated CNM.


Asunto(s)
Dinamina II , Miopatías Estructurales Congénitas , Dinamina II/genética , Humanos , Músculo Esquelético/patología , Mutación , Miopatías Estructurales Congénitas/genética , Virulencia
11.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34445475

RESUMEN

Discovered more than a century ago, Alzheimer's disease (AD) is not only still present in our societies but has also become the most common dementia, with 50 million people worldwide affected by the disease. This number is expected to double in the next generation, and no cure is currently available to slow down or stop the disease progression. Recently, some advances were made due to the approval of the aducanumab treatment by the American Food and Drug Administration. The etiology of this human-specific disease remains poorly understood, and the mechanisms of its development have not been completely clarified. Several hypotheses concerning the molecular mechanisms of AD have been proposed, but the existing studies focus primarily on the two main markers of the disease: the amyloid ß peptides, whose aggregation in the brain generates amyloid plaques, and the abnormally phosphorylated tau proteins, which are responsible for neurofibrillary tangles. These protein aggregates induce neuroinflammation and neurodegeneration, which, in turn, lead to cognitive and behavioral deficits. The challenge is, therefore, to create models that best reproduce this pathology. This review aims at gathering the different existing AD models developed in vitro, in cellulo, and in vivo. Many models have already been set up, but it is necessary to identify the most relevant ones for our investigations. The purpose of the review is to help researchers to identify the most pertinent disease models, from the most often used to the most recently generated and from simple to complex, explaining their specificities and giving concrete examples.


Asunto(s)
Enfermedad de Alzheimer/patología , Modelos Animales de Enfermedad , Enfermedad de Alzheimer/etiología , Animales , Progresión de la Enfermedad , Humanos
12.
IUCrJ ; 8(Pt 4): 665-677, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34258014

RESUMEN

The crystallization of recombinant proteins in living cells is an exciting new approach in structural biology. Recent success has highlighted the need for fast and efficient diffraction data collection, optimally directly exposing intact crystal-containing cells to the X-ray beam, thus protecting the in cellulo crystals from environmental challenges. Serial femtosecond crystallography (SFX) at free-electron lasers (XFELs) allows the collection of detectable diffraction even from tiny protein crystals, but requires very fast sample exchange to utilize each XFEL pulse. Here, an efficient approach is presented for high-resolution structure elucidation using serial femtosecond in cellulo diffraction of micometre-sized crystals of the protein HEX-1 from the fungus Neurospora crassa on a fixed target. Employing the fast and highly accurate Roadrunner II translation-stage system allowed efficient raster scanning of the pores of micro-patterned, single-crystalline silicon chips loaded with living, crystal-containing insect cells. Compared with liquid-jet and LCP injection systems, the increased hit rates of up to 30% and reduced background scattering enabled elucidation of the HEX-1 structure. Using diffraction data from only a single chip collected within 12 min at the Linac Coherent Light Source, a 1.8 Šresolution structure was obtained with significantly reduced sample consumption compared with previous SFX experiments using liquid-jet injection. This HEX-1 structure is almost superimposable with that previously determined using synchrotron radiation from single HEX-1 crystals grown by sitting-drop vapour diffusion, validating the approach. This study demonstrates that fixed-target SFX using micro-patterned silicon chips is ideally suited for efficient in cellulo diffraction data collection using living, crystal-containing cells, and offers huge potential for the straightforward structure elucidation of proteins that form intracellular crystals at both XFELs and synchrotron sources.

13.
Acta Crystallogr D Struct Biol ; 77(Pt 6): 820-834, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34076595

RESUMEN

Fixed-target serial crystallography has become an important method for the study of protein structure and dynamics at synchrotrons and X-ray free-electron lasers. However, sample homogeneity, consumption and the physical stress on samples remain major challenges for these high-throughput experiments, which depend on high-quality protein microcrystals. The batch crystallization procedures that are typically applied require time- and sample-intensive screening and optimization. Here, a simple protein crystallization method inside the features of the HARE serial crystallography chips is reported that circumvents batch crystallization and allows the direct transfer of canonical vapor-diffusion conditions to in-chip crystallization. Based on conventional hanging-drop vapor-diffusion experiments, the crystallization solution is distributed into the wells of the HARE chip and equilibrated against a reservoir with mother liquor. Using this simple method, high-quality microcrystals were generated with sufficient density for the structure determination of four different proteins. A new protein variant was crystallized using the protein concentrations encountered during canonical crystallization experiments, enabling structure determination from ∼55 µg of protein. Additionally, structure determination from intracellular crystals grown in insect cells cultured directly in the features of the HARE chips is demonstrated. In cellulo crystallization represents a comparatively unexplored space in crystallization, especially for proteins that are resistant to crystallization using conventional techniques, and eliminates any need for laborious protein purification. This in-chip technique avoids harvesting the sensitive crystals or any further physical handling of the crystal-containing cells. These proof-of-principle experiments indicate the potential of this method to become a simple alternative to batch crystallization approaches and also as a convenient extension to canonical crystallization screens.


Asunto(s)
Cristalografía por Rayos X/métodos , Proteínas/química , Prueba de Estudio Conceptual
14.
Angew Chem Int Ed Engl ; 60(27): 14841-14845, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33852169

RESUMEN

Human anamorsin is an iron-sulfur (Fe-S)-cluster-binding protein acting as an electron donor in the early steps of cytosolic iron-sulfur protein biogenesis. Human anamorsin belongs to the eukaryotic CIAPIN1 protein family and contains two highly conserved cysteine-rich motifs, each binding an Fe-S cluster. In vitro works by various groups have provided rather controversial results for the type of Fe-S clusters bound to the CIAPIN1 proteins. In order to unravel the knot on this topic, we used an in cellulo approach combining Mössbauer and EPR spectroscopies to characterize the iron-sulfur-cluster-bound form of human anamorsin. We found that the protein binds two [2Fe-2S] clusters at both its cysteine-rich motifs.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Proteínas Hierro-Azufre/química , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Unión Proteica , Espectroscopía de Mossbauer
15.
J Appl Crystallogr ; 53(Pt 6): 1414-1415, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33304219

RESUMEN

Lahey-Rudolph and co-workers [J. Appl. Cryst. (2020), 53, 1169-1180] have reported a rapid and sensitive method to screen for crystals in cellulo - a welcome addition to the structural biology toolbox.

16.
J Appl Crystallogr ; 53(Pt 5): 1169-1180, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33117106

RESUMEN

Crystallization of recombinant proteins in living cells is an exciting new approach for structural biology that provides an alternative to the time-consuming optimization of protein purification and extensive crystal screening steps. Exploiting the potential of this approach requires a more detailed understanding of the cellular processes involved and versatile screening strategies for crystals in a cell culture. Particularly if the target protein forms crystalline structures of unknown morphology only in a small fraction of cells, their detection by applying standard visualization techniques can be time consuming and difficult owing to the environmental challenges imposed by the living cells. In this study, a high-brilliance and low-background bioSAXS beamline is employed for rapid and sensitive detection of protein microcrystals grown within insect cells. On the basis of the presence of Bragg peaks in the recorded small-angle X-ray scattering profiles, it is possible to assess within seconds whether a cell culture contains microcrystals, even in a small percentage of cells. Since such information cannot be obtained by other established detection methods in this time frame, this screening approach has the potential to overcome one of the bottlenecks of intracellular crystal detection. Moreover, the association of the Bragg peak positions in the scattering curves with the unit-cell composition of the protein crystals raises the possibility of investigating the impact of environmental conditions on the crystal structure of the intracellular protein crystals. This information provides valuable insights helping to further understand the in cellulo crystallization process.

17.
Antioxidants (Basel) ; 9(7)2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32630721

RESUMEN

Nymphaea lotus L. is the medicinal plant that has long been used for food, cosmetics and traditional medicines in Africa and Asia since ancient times. Its flavonoids and other interesting phytochemical compounds from rhizome, leaf and the whole flowers have been reported in the previous published research. However, stamens, which are essential for reproductive functions, may also represent new alternative sources of potential antioxidant flavonoids, as investigated in this study. The innovative green chemistry methods, i.e., ultrasound-assisted extraction (UAE) as well as a macroporous resin (MPR) purification procedure, were employed in this current research. Using a full factorial design coupled to three-dimensional (3D) surface plot methodology, the influence of three variables, namely aqEtOH concentration (ranging from 50 to 100% (v/v), US frequency (ranging from 0 (no US applied) to 45 kHz), and the extraction duration (ranging from 20 to 60 min), were evaluated. Five MPRs with different surface areas, average pore diameters, matrix types and polarities were also investigated for the purification of total flavonoids. The optimal UAE condition is 90% (v/v) aqEtOH with 34.65 khz ultrasonic frequency and 46 min of extraction duration. Compared with the conventional heat reflux extraction (HRE) method, a significant 1.35-fold increase in total flavonoids content was obtained using optimized UAE conditions (169.64 for HRE vs. 235.45 mg/g dry weight for UAE), causing a 2.80-fold increase when this UAE associated with MPR purification (475.42 mg/g dry weight). In vitro cell free antioxidant activity of N. lotus stamen extracts and in cellulo antioxidant investigation using yeast model showed the same trend, indicating that the best antioxidant flavonoid can be found in UAE coupled with MPR purification. Moreover, in the yeast model, the expression of key antioxidant genes such as SIR2 and SOD2 were expressed at the highest level in yeast cells treated with the extract from UAE together with MPR purification. Consequently, it can be seen that the UAE combined with MPR purification can help enhance the flavonoid antioxidant potential of the stamens extract from this medicinal species.

18.
Methods Enzymol ; 639: 379-388, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32475411

RESUMEN

Within the past two decades, photoconvertible fluorescent proteins (PC-FPs) have emerged as a class of useful proteins for the visualization and tracking of individual cells, complex cellular mechanisms, protein-protein interactions, and other dynamic processes. Despite the utility of these proteins, they are inherently limited by a number of factors including large size and inflexibility of tag location within a protein of interest. The following chapter describes the discovery and use of a small molecule photoconvertible dye based on the novel diazaxanthilidene scaffold. The diazaxanthilidene dye presented in this chapter is shown to be an effective alternative to well-known PC-FPs for spatiotemporally controlled cell labeling experiments.


Asunto(s)
Colorantes , Proteínas , Colorantes Fluorescentes , Proteínas Luminiscentes
19.
Methods Mol Biol ; 2133: 201-219, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32144669

RESUMEN

The development of expressed protein ligation (EPL) widened the scope of questions that could be addressed by mechanistic biochemistry. Protein trans-splicing (PTS) relies on the same basic chemical principles, but utilizes split inteins to tracelessly ligate distinct peptide or polypeptide fragments together with native peptide bonds. Here we present a method to adapt PTS methodologies for their use in live cells, in order to deliver synthetic or native histone modifications. As an example, we provide a protocol to incorporate a small molecule fluorophore into chromatinized histones. The protocol should be easily adaptable to incorporate other modifications to chromatin in vivo.


Asunto(s)
Histonas/química , Empalme de Proteína , Técnicas de Síntesis en Fase Sólida/métodos , Biología Sintética/métodos , Western Blotting/métodos , Fraccionamiento Celular/métodos , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Cromatina/química , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Fase Inversa/métodos , Disulfuros/química , Colorantes Fluorescentes/química , Expresión Génica , Células HEK293 , Histonas/metabolismo , Humanos , Inteínas , Microscopía Confocal , Proteínas Nucleares/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Transfección
20.
Bio Protoc ; 10(14): e3684, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-33659355

RESUMEN

Advances in protein engineering have enabled the production of self-assembled protein crystals within living cells. Our recent publication demonstrates the production of ftn-PAK4, which is a ferritin-containing crystal that can mineralize iron and become magnetic when isolated. We have developed an optimized protocol for the production and isolation of PAK4-based crystals. The crystals are first grown in low-passage HEK293T cells, released using a lysis buffer containing NP-40 and DNase, and collected under careful centrifugation conditions. Our protocol maximizes the purity and yield of crystals and is quick and straightforward.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA