Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133.760
Filtrar
1.
Clin Res Hepatol Gastroenterol ; 48(7): 102421, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39002816

RESUMEN

BACKGROUND: Spermine oxidase (SMOX), an inducible enzyme involved in the catabolic pathway of polyamine, was found to be upregulated in hepatocellular carcinoma and might be an important oncogene of it in our previous studies. This study attempted to further investigate its relationship with liver inflammation and fibrosis both in vitro and in vivo. METHODS: The effect of SMOX inhibition on LPS-induced inflammatory response in mouse liver cell line AML12 was validated by using small interfering RNA or SMOX inhibitor MDL72527. Western blotting and immunofluorescence were utilized to verify whether LPS could induce ß-catenin to transfer into the nucleus and whether it could be reversed by interfering with the expression of SMOX or using SMOX inhibitor. Then, the SMOX inhibitor MDL72527 and SMOX knockout mice were used to verify the hypothesis above in vivo. RESULTS: The expression of SMOX could be induced by LPS in AML12 cells. The inhibition of SMOX could inhibit LPS-induced inflammatory response in AML12 cells. LPS could induce ß-catenin transfer from cytoplasm to nucleus, while SMOX downregulation or inhibition could partially reverse this process. In vivo intervention with SMOX inhibitor MDL72527 or SMOX knockout mice could significantly improve the damage of liver function, reduce intrahepatic inflammation, inhibit the nuclear transfer of ß-catenin in liver tissue, and alleviate carbon tetrachloride-induced liver fibrosis in mice. CONCLUSION: SMOX can promote the inflammatory response and fibrosis of hepatocytes. It provides a new therapeutic strategy for hepatitis and liver fibrosis, inhibiting early liver cancer.

2.
Diabetes Res Clin Pract ; 214: 111783, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002932

RESUMEN

AIMS: The evidence for joint and independent associations of low muscle mass and low muscle strength with diabetes is limited and mixed. The study aimed to determine the associations of muscle parameters (muscle mass, strength, quality, and sarcopenia) and sarcopenia obesity with diabetes, and the previously unstudied mediating effect of inflammation. MATERIALS AND METHODS: A total of 13,420 adults from the 2023 China National Health Survey (CNHS) and 5,380 adults from the 2011-2014 National Health and Nutrition Examination Survey (NHANES) were included in this study. Muscle mass was determined using bioelectrical impedance analysis (BIA) in the CNHS, and whole-body dual X-ray absorptiometry (DXA) in the NHANES. Muscle strength was assessed using digital hand dynamometer. Multivariate logistic regression models were used to evaluate the associations of muscle parameters and sarcopenia obesity with diabetes. Inflammatory status was assessed using blood cell counts and two systemic inflammation indices (platelet-to-lymphocyte ratio (PLR) and system inflammation response index (SIRI)). Mediation analysis was conducted to examine inflammation's role in these associations. RESULTS: Low muscle mass and strength were independently related to diabetes. Low muscle quality was associated with elevated diabetes risk. Sarcopenia has a stronger association with diabetes compared to low muscle strength alone or mass alone (CNHS, odds ratio (OR) = 1.93, 95 % confidence interval (CI):1.64-2.27; NHANES, OR = 3.80, 95 %CI:2.58-5.58). Participants with sarcopenia obesity exhibit a higher risk of diabetes than those with obesity or sarcopenia alone (CNHS, OR = 2.21, 95 %CI:1.72-2.84; NHANES, OR = 6.06, 95 %CI:3.64-10.08). Associations between muscle parameters and diabetes were partially mediated by inflammation (mediation proportion: 1.99 %-36.64 %, P < 0.05). CONCLUSION: Low muscle mass and muscle strength are independently or jointly associated with diabetes, and inflammation might be a potential mechanism underlying this association. Furthermore, the synergistic effects of sarcopenia and obesity could significantly increase diabetes risk.

3.
J Ethnopharmacol ; 334: 118560, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004193

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Fermented milk and palm wine are regularly used by several ethnic groups in Cameroon in traditional treatment rituals for infections, inflammatory, cardiovascular disorders, and even metabolic diseases such as diabetes, hypercholesterolemia etc. Reports from many studies have demonstrated that fermented milk and palm wine are potential sources of probiotic bacteria. However, the capacity of probiotics isolated from these natural sources to alleviate neuropathic pain has not been experimentally tested. AIM OF THE STUDY: This study aimed at investigating the ameliorative potential of lactic acid bacteria isolated from palm wine and traditional fermented cow milk on the chronic constriction injury (CCI) induced neuropathic pain in mice. MATERIALS AND METHODS: Pour plating technique on De Man Rogasa (MRS) agar was utilised for isolation of lactic acid bacteria from fermented cow milk and palm wine, and identified using the 16S r RNA gene sequencing. Neuropathic pain was induced by chronic constriction injury of the sciatic nerve. These bacteria were orally administered at different concentrations to Balb/c mice by gavage for 14 consecutive days. Cold allodynia, mechanical hyperalgesia and exploratory behaviour were evaluated on day 0, 7th and 14th respectively. The total level of calcium, oxidative stress markers and myeloperoxidase were also quantified in the sciatic nerve homogenate. Cyclooxygenase-2(COX-2) and cytokine profile were determined from serum. RESULTS: Lactic acid bacteria were isolated from fermented cow milk and palm wine and two isolates were chosen according to their probiotic potentials and identified as strain of Limolactobacillus fermentum and Enterococcus lactis. Their 16 S rRNA gene sequences were deposited in NCBI genbank with accession number of OP896078 and OR619545, respectively. Pretreatment with Limosilactobacillus fermentum and Enterococcus lactis significantly alleviated mechanical hyperalgesia and cold allodynia with similar effect to the reference drug, morphine. These two isolates ameliorated CCI induced neuropathic pain by increasing antioxida776nts (GSH, CAT and SOD, P < 0.01) and decreasing pro-oxidants (MDA and NO, P < 0.01). Also, they inhibited the release of proinflammatory cytokines (IL-1ß, TNF-α, IFN-γ, and IL-6; P < 0.01) and IL-10 level was significantly (P < 0.01) increased when compared to the negative control. Treatment with these bacteria significantly dropped the level of total calcium (P < 0.01), COX-2 (P < 0.01) and MPO (P < 0.01) when compared with the negative control. CONCLUSION: The neuroprotective potentials of these selected lactic acid bacteria against CCI induced neuropathic pain may be attributed to their anti-oxidant, anti-inflammatory properties and reduced calcium deposition in sciatic nerve.

4.
Cell Signal ; 121: 111299, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004324

RESUMEN

The lack of therapeutics along with complex pathophysiology made non-alcoholic fatty liver disease (NAFLD) a research hotspot. Studies showed that the deficiency of Vitamin D plays a vital role in NAFLD pathogenesis. While several research studies focused on vitamin D supplementation in NAFLD, there is still a need to understand the regulatory mechanism of direct vitamin D receptor activation in NAFLD. In the present study, we explored the role of direct Vitamin D receptor activation using paricalcitol in choline-deficient high-fat diet-induced NAFLD rat liver and its modulation on protein acetylation. Our results showed that paricalcitol administration significantly reduced the fat accumulation in HepG2 cells and the liver of NAFLD rats. Paricalcitol attenuated the elevated serum level of alanine transaminase, aspartate transaminase, insulin, low-density lipoprotein, triglyceride, and increased high-density lipoprotein in NAFLD rats. Paricalcitol significantly decreased the increased total protein acetylation by enhancing the SIRT1 and SIRT3 expression in NAFLD liver. Further, the study revealed that paricalcitol reduced the acetylation of NFκB and FOXO3a in NAFLD liver along with a decrease in the mRNA expression of IL1ß, NFκB, TNFα, and increased catalase and MnSOD. Moreover, total antioxidant activity, glutathione, and catalase were also elevated, whereas lipid peroxidation, myeloperoxidase, and reactive oxygen species levels were significantly decreased in the liver of NAFLD after paricalcitol administration. The study concludes that the downregulation of SIRT1 and SIRT3 in NAFLD liver was associated with an increased acetylated NFκB and FOXO3a. Paricalcitol effectively reversed hepatic inflammation and oxidative stress in NAFLD rats through transcriptional regulation of NFκB and FOXO3a, respectively, by inhibiting their acetylation.

5.
Amino Acids ; 56(1): 45, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007996

RESUMEN

Certain long non-coding RNAs (lncRNAs) have potential peptide-coding abilities. Here, the role and molecular basis of the RNF217-AS1-encoded peptide in stomach cancer (SC) tumorigenesis were explored. Here, lncRNAs associated with SC pathogenesis and macrophage infiltration and lncRNAs with peptide-coding potential were searched by bioinformatics analysis. The gene mRNA and protein levels were examined by RT-qPCR and western blot assays, respectively. Cell viability, migratory, and invasive abilities were measured by CCK-8, Transwell migration, and Transwell invasion assays, respectively. The potential biological processes related to lncRNA RNF217-AS1 were identified by single-gene GSEA analysis. The effect of RNF217-AS1-encoded peptide on SC tumorigenesis was examined by mouse xenograft experiments. The results showed that lncRNA NR2F1-AS1 and RNF217-AS1 were differentially expressed and associated with macrophage infiltration in SC, and they had the ability to translate into short peptides. The RNF217-AS1 ORF-encoded peptide could reduce SC cell viability, inhibit cell migration and invasion, as well as hinder the development of SC xenograft tumors. The RNF217-AS1 ORF-encoded peptide in human SC AGS cells suppressed THP-1 cell migration, triggered the differential expression of CXCL1/CXCL2/CXCL8/CXCL12, and inactivated the TLR4/NF-κB/STAT1 signaling pathways. As a conclusion, the RNF217-AS1 ORF-encoded peptide hindered SC progression in vitro and in vivo and suppressed macrophage recruitment and pro-inflammatory responses in SC.


Asunto(s)
Carcinogénesis , Movimiento Celular , Macrófagos , ARN Largo no Codificante , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Humanos , Animales , Ratones , Macrófagos/metabolismo , Carcinogénesis/genética , Línea Celular Tumoral , Péptidos/genética , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Inflamación/metabolismo , Inflamación/genética , Proliferación Celular
6.
Cell Biol Toxicol ; 40(1): 55, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008169

RESUMEN

Drug-induced organic damage encompasses various intricate mechanisms, wherein HMGB1, a non-histone chromosome-binding protein, assumes a significant role as a pivotal hub gene. The regulatory functions of HMGB1 within the nucleus and extracellular milieu are interlinked. HMGB1 exerts a crucial regulatory influence on key biological processes including cell survival, inflammatory regulation, and immune response. HMGB1 can be released extracellularly from the cell during these processes, where it functions as a pro-inflammation cytokine. HMGB1 interacts with multiple cell membrane receptors, primarily Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE), to stimulate immune cells and trigger inflammatory response. The excessive or uncontrolled HMGB1 release leads to heightened inflammatory responses and cellular demise, instigating inflammatory damage or exacerbating inflammation and cellular demise in different diseases. Therefore, a thorough review on the significance of HMGB1 in drug-induced organic damage is highly important for the advancement of pharmaceuticals, ensuring their effectiveness and safety in treating inflammation as well as immune-related diseases. In this review, we initially outline the characteristics and functions of HMGB1, emphasizing their relevance in disease pathology. Then, we comprehensively summarize the prospect of HMGB1 as a promising therapeutic target for treating drug-induced toxicity. Lastly, we discuss major challenges and propose potential avenues for advancing the development of HMGB1-based therapeutics.


Asunto(s)
Citocinas , Proteína HMGB1 , Inflamación , Proteína HMGB1/metabolismo , Humanos , Animales , Inflamación/metabolismo , Inflamación/inducido químicamente , Inflamación/patología , Citocinas/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo
7.
Elife ; 122024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39009040

RESUMEN

Background: Prinflammatory extracellular chromatin from neutrophil extracellular traps (NETs) and other cellular sources is found in COVID-19 patients and may promote pathology. We determined whether pulmonary administration of the endonuclease dornase alfa reduced systemic inflammation by clearing extracellular chromatin. Methods: Eligible patients were randomized (3:1) to the best available care including dexamethasone (R-BAC) or to BAC with twice-daily nebulized dornase alfa (R-BAC + DA) for seven days or until discharge. A 2:1 ratio of matched contemporary controls (CC-BAC) provided additional comparators. The primary endpoint was the improvement in C-reactive protein (CRP) over time, analyzed using a repeated-measures mixed model, adjusted for baseline factors. Results: We recruited 39 evaluable participants: 30 randomized to dornase alfa (R-BAC +DA), 9 randomized to BAC (R-BAC), and included 60 CC-BAC participants. Dornase alfa was well tolerated and reduced CRP by 33% compared to the combined BAC groups (T-BAC). Least squares (LS) mean post-dexamethasone CRP fell from 101.9 mg/L to 23.23 mg/L in R-BAC +DA participants versus a 99.5 mg/L to 34.82 mg/L reduction in the T-BAC group at 7 days; p=0.01. The anti-inflammatory effect of dornase alfa was further confirmed with subgroup and sensitivity analyses on randomised participants only, mitigating potential biases associated with the use of CC-BAC participants. Dornase alfa increased live discharge rates by 63% (HR 1.63, 95% CI 1.01-2.61, p=0.03), increased lymphocyte counts (LS mean: 1.08 vs 0.87, p=0.02) and reduced circulating cf-DNA and the coagulopathy marker D-dimer (LS mean: 570.78 vs 1656.96 µg/mL, p=0.004). Conclusions: Dornase alfa reduces pathogenic inflammation in COVID-19 pneumonia, demonstrating the benefit of cost-effective therapies that target extracellular chromatin. Funding: LifeArc, Breathing Matters, The Francis Crick Institute (CRUK, Medical Research Council, Wellcome Trust). Clinical trial number: NCT04359654.


Asunto(s)
Antiinflamatorios , Tratamiento Farmacológico de COVID-19 , COVID-19 , Desoxirribonucleasa I , Humanos , Masculino , Femenino , Desoxirribonucleasa I/administración & dosificación , Desoxirribonucleasa I/uso terapéutico , Persona de Mediana Edad , Antiinflamatorios/administración & dosificación , Antiinflamatorios/uso terapéutico , Anciano , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/uso terapéutico , Trampas Extracelulares/efectos de los fármacos , SARS-CoV-2 , Proteína C-Reactiva/análisis , Proteína C-Reactiva/metabolismo , Dexametasona/administración & dosificación , Dexametasona/uso terapéutico , Adulto , Nebulizadores y Vaporizadores , Resultado del Tratamiento , Administración por Inhalación
8.
J Headache Pain ; 25(1): 113, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39009958

RESUMEN

BACKGROUND: Neurogenic meningeal inflammation is regarded as a key driver of migraine headache. Multiple evidence show importance of inflammatory processes in the dura mater for pain generation but contribution of the leptomeninges is less clear. We assessed effects of cortical spreading depolarization (CSD), the pathophysiological mechanism of migraine aura, on expression of inflammatory mediators in the leptomeninges. METHODS: A single CSD event was produced by a focal unilateral microdamage of the cortex in freely behaving rats. Three hours later intact cortical leptomeninges and parenchyma of ipsi-lesional (invaded by CSD) and sham-treated contra-lesional (unaffected by CSD) hemispheres were collected and mRNA levels of genes associated with inflammation (Il1b, Tnf, Ccl2; Cx3cl1, Zc3h12a) and endocannabinoid CB2 receptors (Cnr2) were measured using qPCR. RESULTS: Three hours after a single unilateral CSD, most inflammatory factors changed their expression levels in the leptomeninges, mainly on the side of CSD. The meninges overlying affected cortex increased mRNA expression of all proinflammatory cytokines (Il1b, Tnf, Ccl2) and anti-inflammatory factors Zc3h12a and Cx3cl1. Upregulation of proinflammatory cytokines was found in both meninges and parenchyma while anti-inflammatory markers increased only meningeal expression. CONCLUSION: A single CSD is sufficient to produce pronounced leptomeningeal inflammation that lasts for at least three hours and involves mostly meninges overlying the cortex affected by CSD. The prolonged post-CSD inflammation of the leptomeninges can contribute to mechanisms of headache generation following aura phase of migraine attack.


Asunto(s)
Depresión de Propagación Cortical , Meninges , Animales , Depresión de Propagación Cortical/fisiología , Ratas , Masculino , Meninges/fisiopatología , Inflamación/fisiopatología , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Modelos Animales de Enfermedad , Ratas Wistar , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/genética
9.
BMC Nephrol ; 25(1): 226, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009991

RESUMEN

BACKGROUND: Contrast-induced acute kidney injury (CI-AKI) is an acute renal complication that occurs after intravascular contrast agent administration. Sodium selenite (SS) is an inorganic source of Se and has potent antioxidant properties. This study intends to examine its anti-inflammatory and antioxidant effects in CI-AKI. METHODS: A rat CI-AKI model was established with the pretreatment of SS (0.35 mg/kg). Hematoxylin-eosin staining was employed for histopathological analysis of rat kidney specimens. Biochemical analysis was conducted for renal function detection. Tissue levels of oxidative stress-related markers were estimated. Reverse transcription-quantitative polymerase chain reaction revealed the mRNA levels of proinflammatory cytokines. Western blotting showed the Nrf2 signaling-related protein expression in the rat kidney. RESULTS: SS administration alleviated the renal pathological changes and reduced the serum levels of serum creatinine, blood urea nitrogen, neutrophil gelatinase-associated lipocalin, cystatin C, and urinary level of kidney injury molecule-1 in CI-AKI rats. SS attenuated oxidative stress and inflammatory response in CI-AKI rat kidney tissues. SS activated the Nrf2 signaling transduction in the renal tissues of rats with CI-AKI. CONCLUSION: SS ameliorates CI-AKI in rats by reducing oxidative stress and inflammation via the Nrf2 signaling.


Asunto(s)
Lesión Renal Aguda , Medios de Contraste , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Ratas Sprague-Dawley , Transducción de Señal , Selenito de Sodio , Animales , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/patología , Estrés Oxidativo/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Ratas , Masculino , Medios de Contraste/efectos adversos , Transducción de Señal/efectos de los fármacos , Selenito de Sodio/farmacología , Selenito de Sodio/uso terapéutico , Elementos de Respuesta Antioxidante , Inflamación/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Creatinina/sangre
10.
BMC Surg ; 24(1): 208, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39010005

RESUMEN

BACKGROUND: SII, PNI, SIRI, AAPR, and LIPI are prognostic scores based on inflammation, nutrition, and immunity. The purpose of this study was to examine the prognostic value of the SII, PNI, SIRI, AAPR, and LIPI in patients with UTUC who underwent radical nephroureterectomy with bladder cuff excision. MATERIALS AND METHODS: Data of UTUC patients in Sichuan Provincial People's Hospital from January 2017 to December 2021 were collected. The optimal critical values of SII, PNI, SIRI, and AAPR were determined by ROC curve, and LIPI was stratified according to the dNLR and LDH. The Kaplan-Meier method was used to draw the survival curve, and Cox proportional hazard model was used to analyze the factors affecting the prognosis of UTUC patients. RESULTS: A total of 81 patients with UTUC were included in this study. The optimal truncation value of PNI, SII, SIRI and AAPR were determined to be 48.15, 596.4, 1.45 and 0.50, respectively. Univariate Cox proportional hazard regression showed that low PNI, high SII, high SIRI, low AAPR and poor LIPI group were effective predictors of postoperative prognosis of UTUC patients. Multivariate Cox proportional hazard regression showed that high SII was an independent risk factor for postoperative prognosis of UTUC patients. According to ROC curve, the prediction efficiency of fitting indexes of PNI, SII, SIRI, AAPR and LIPI is better than that of using them alone. CONCLUSIONS: The SII, PNI, SIRI, AAPR, and LIPI was a potential prognostic predictor in UTUC patients who underwent radical nephroureterectomy with bladder cuff excision.


Asunto(s)
Inflamación , Nefroureterectomía , Humanos , Estudios Retrospectivos , Masculino , Femenino , Pronóstico , Persona de Mediana Edad , Inflamación/inmunología , Anciano , Carcinoma de Células Transicionales/cirugía , Carcinoma de Células Transicionales/mortalidad , Estado Nutricional , Evaluación Nutricional , Periodo Preoperatorio , Inmunidad , Neoplasias Renales/cirugía , Neoplasias Renales/inmunología , Neoplasias Renales/mortalidad
11.
J Stroke Cerebrovasc Dis ; 33(9): 107874, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39013504

RESUMEN

BACKGROUND: Systemic inflammation impairs outcomes in acute ischemic stroke (AIS). There is limited knowledge regarding the prognostic value of inflammatory biomarkers derived from complete blood count in predicting in-hospital mortality (IHM) in AIS patients treated with recombinant tissue plasminogen activator (rt-PA). Our study aims to compare the predictive performance of various inflammatory biomarkers for predicting IHM in AIS patients. METHODS: This retrospective study included AIS patients treated with rt-PA between January 2015 and July 2022. We identified the following inflammatory biomarkers: white blood cell counts (WBCs), absolute neutrophil count, absolute lymphocyte count, neutrophil to lymphocyte count ratio, platelet to neutrophil ratio, platelet to lymphocyte ratio, red cell distribution width (RDW), RDW to platelet ratio (RPR), and hemoglobin to RDW (HB/RDW) at admission before rt-PA administration. We assessed the predictive value of these biomarkers for IHM by plotting receiver operating characteristic (ROC) curves. The associations between inflammatory biomarkers and IHM were analyzed using multivariable logistic regression (MVLR) analyses. RESULTS: Of 345 AIS patients, IHM occurred in 65 patients (18.84%). HB/RDW and RDW showed better predictive performance compared to other inflammatory biomarkers. In ROC curve analysis, HB/RDW and RDW had an area under ROC of 0.668. HB/RDW outperformed RDW in terms of the positive likelihood ratio (2.733 vs 1.575), accuracy (0.757 vs 0.585), specificity (0.814 vs 0.560), and positive predictive values (0.388 vs 0.267). In MVLR analysis, RDW, RPR, and HB/RDW remained significantly associated with IHM (per 1-unit increases: odds ratios (ORs) = 1.450, 95% CI: [1.178-1.784]; per 1-unit increases: ORs = 1.329, 95% CI [1.103-1.602]; and per 0.1-unit decreases: ORs = 1.412, 95% CI [1.089-1.831], respectively). CONCLUSIONS: The association between HB/RDW and IHM in AIS patients treated with rt-PA was significant. HB/RDW exhibited superior predictive performance compared to other inflammatory biomarkers in predicting IHM.

12.
Behav Brain Res ; 472: 115149, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39013529

RESUMEN

The microbiome-gut-brain axis is related to schizophrenia (SCZ). The role of intestinal mycobiota in SCZ has been under investigated. We present a half-year follow-up study involving 109 chronic SCZ patients and 77 healthy controls. Intestinal mycobiota was tested by internal transcribed spacer (ITS). Untargeted liquid chromatography-mass spectrometry (LC-MS) was used to measure fecal metabolites. Symptom severity was assessed using the Positive and Negative Syndrome Scale. Enterotype analysis showed that Candida-type patients exhibited severer positive symptoms and depression factors than Saccharomyces-type patients. Candida and its top species and operational taxonomic units (OTUs) were positively correlated with depression factors (all p=0.001). Fecal metabolites analysis showed that upregulated metabolites were associated with chronic inflammation (NF-κB pathway and T helper cell differentiation), downregulated metabolites were associated with glutamate metabolism, serotonergic and dopaminergic synapse. Procrustes analysis revealed significant correlation between intestinal mycobiota and fecal metabolites (M2=0.937, p<0.001). Metabolic module analysis showed that the top module, MEturquoise (associated with Th1 and Th2 cell differentiation), was negatively correlated with SCZ (r=-0.783, p<0.0001), positively correlated with Candida, Aspergillus, Trichosporon and Talaromyces (decreased in SCZ) and negatively correlated with Saccharomyces (increased in SCZ). We also found impairments of intestinal barrier in SCZ, characterized by increased in blood D-lactate (mucosa impairment marker) and decreased in blood mucin 2 (mucosal barrier protective protein). Serum levels of TNF-α was increased and showed stable high levels during treatment. This study suggests that mycobiota dysbiosis-related chronic inflammation and an impaired intestinal mucosal barrier are associated with chronic SCZ.

13.
J Agric Food Chem ; 72(28): 15740-15754, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38970822

RESUMEN

Hepatic fibrosis is a compensatory response to chronic liver injury and inflammation, and dietary intervention is recommended as one of the fundamental prevention strategies. Raspberry ketone (RK) is an aromatic compound first isolated from raspberry and widely used to prepare food flavors. The current study investigated the hepatoprotection and potential mechanism of RK against hepatic fibrosis. In vitro, hepatic stellate cell (HSC) activation was stimulated with TGF-ß and cultured with RK, farnesoid X receptor (FXR), or peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) agonist or inhibitor, respectively. In vivo, C57BL/6 mice were injected intraperitoneally with thioacetamide (TAA) at 100/200 mg/kg from the first to the fifth week. Mice were intragastrically administrated with RK or Cur once a day from the second to the fifth week. In activated HSCs, RK inhibited extracellular matrix (ECM) accumulation, inflammation, and epithelial-mesenchymal transition (EMT) process. RK both activated FXR/PGC-1α and regulated their crosstalk, which were verified by their inhibitors and agonists. Deficiency of FXR or PGC-1α also attenuated the effect of RK on the reverse of activated HSCs. RK also decreased serum ALT/AST levels, liver histopathological change, ECM accumulation, inflammation, and EMT in mice caused by TAA. Double activation of FXR/PGC-1α might be the key targets for RK against hepatic fibrosis. Above all, these discoveries supported the potential of RK as a novel candidate for the dietary intervention of hepatic fibrosis.


Asunto(s)
Butanonas , Células Estrelladas Hepáticas , Cirrosis Hepática , Ratones Endogámicos C57BL , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Receptores Citoplasmáticos y Nucleares , Transducción de Señal , Animales , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Ratones , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/tratamiento farmacológico , Masculino , Transducción de Señal/efectos de los fármacos , Humanos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Butanonas/farmacología , Rubus/química , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Transición Epitelial-Mesenquimal/efectos de los fármacos
14.
Brain Behav Immun ; 120: 545-553, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971206

RESUMEN

Dried blood spots (DBS) provide a minimally invasive method to assess inflammatory markers and can be collected remotely at-home or in-person in the lab. However, there is a lack of methodological information comparing these different collection methods and in older adults. We investigated the feasibility (including adherence, yield, quality, and participant preferences) and measurement properties (reliability, validity) of remotely collected DBS inflammatory markers in older adults. Participants (N = 167, mean age = 72, range: 60-96 years) collected their own DBS (finger prick on filter paper) during three remote interviews over âˆ¼ 6 months. Within 4-5 days on average of their last remote interview, a subset of 41 participants also attended an in-person lab visit that included a researcher-collected DBS sample, venous blood draw, and survey to assess participant preferences of DBS collection. DBS and venous blood were assayed for CRP, IL-6, and TNF-α. Adherence: 98% of expected DBS samples (493 out of 501) were completed and mailed back to the lab. Yield: 97% of DBS samples were sufficient for all assays. Quality: On average, 0.80 fewer optimal spots (60uL of blood that filled the entire circle) were obtained remotely vs. in-person (p = 0.013), but the number of useable or better spots (at least 30-40uL of blood) did not differ (p = 0.89). Preference: A slight majority of participants (54%) preferred in-person DBS collection. Reliability: DBS test-retest reliabilities were good: CRP (ICC = 0.74), IL-6 (ICC = 0.76), and TNF-α (ICC = 0.70). Validity: Inflammatory levels from DBS correlated strongly with levels from venous blood (r = 0.60-0.99) and correlated as expected with sociodemographic and physical health and function variables. Older adults can remotely collect their own DBS to acquire reliable and valid inflammatory data. Remote DBS collection is highly feasible and may allow for inflammatory markers to be assessed in larger, more representative samples than are possible with lab- or clinic-based research designs.

15.
Acta Biomater ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38972625

RESUMEN

Polymeric elastomers are widely utilized in implantable biomedical devices. Nevertheless, the implantation of these elastomers can provoke a robust foreign body response (FBR), leading to the rejection of foreign implants and consequently reducing their effectiveness in vivo. Building effective anti-FBR coatings on those implants remains challenging. Herein, we introduce a coating-free elastomer with superior immunocompatibility. A super-hydrophilic anti-fouling zwitterionic layer can be generated in situ on the surface of the elastomer through a simple chemical trigger. This elastomer can repel the adsorption of proteins, as well as the adhesion of cells, platelets, and diverse microbes. The elastomer elicited negligible inflammatory responses after subcutaneous implantation in rodents for 2 weeks. No apparent fibrotic capsule formation was observed surrounding the elastomer after 6 months in rodents. Continuous subcutaneous insulin infusion (CSII) catheters constructed from the elastomer demonstrated prolonged longevity and performance compared to commercial catheters, indicating its great potential for enhancing and extending the performance of various implantable biomedical devices by effectively attenuating local immune responses. STATEMENT OF SIGNIFICANCE: The foreign body response remains a significant challenge for implants. Complicated coating procedures are usually needed to construct anti-fibrotic coatings on implantable elastomers. Herein, a coating-free elastomer with superior immunocompatibility was achieved using a zwitterionic monomer derivative. A pure zwitterionic layer can be generated on the elastomer surface through a simple chemical trigger. This elastomer significantly reduces protein adsorption, cell and bacterial adhesion, and platelet activation, leading to minimal fibrotic capsule formation even after six months of subcutaneous implantation in rodents. CSII catheters constructed from the PQCBE-H elastomer demonstrated prolonged longevity and performance compared to commercial catheters, highlighting the significant potential of PQCBE-H elastomers for enhancing and extending the performance of various implantable biomedical devices.

16.
J Agric Food Chem ; 72(28): 15725-15739, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38973111

RESUMEN

Indole-3-lactic acid (ILA) has exhibited antimicrobial properties. However, its role in inhibiting Helicobacter pylori infection remains elusive. This study investigated the inhibitory effect of ILA produced by Lacticaseibacillus paracasei on H. pylori, which was further confirmed by cell and animal experiments. 5 mg/mL ILA was sufficient to directly inhibit the growth of H. pylori in vitro, with a urease inhibitory activity reaching 60.94 ± 1.03%, and the cell morphology and structure were destroyed. ILA inhibited 56.5% adhesion of H. pylori to GES-1 and significantly reduced the number of apoptotic cells. Furthermore, ILA suppresses H. pylori colonization by approximately 38% to 63%, reduced inflammation and oxidative stress in H. pylori-infected mice, and enhanced the enrichment and variety of gut microbiota, notably fostering the growth of beneficial bacteria such as Lactobacillus and Bifidobacterium strains. The results support that ILA derived from Lactobacillus can be applicated as a novel prebiotic in anti-H. pylori functional foods.


Asunto(s)
Células Epiteliales , Mucosa Gástrica , Infecciones por Helicobacter , Helicobacter pylori , Indoles , Lacticaseibacillus paracasei , Helicobacter pylori/efectos de los fármacos , Animales , Ratones , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Humanos , Mucosa Gástrica/microbiología , Mucosa Gástrica/efectos de los fármacos , Indoles/farmacología , Indoles/química , Lacticaseibacillus paracasei/química , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Antibacterianos/farmacología , Antibacterianos/química , Inflamación/prevención & control , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Adhesión Bacteriana/efectos de los fármacos
17.
bioRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38979231

RESUMEN

Traumatic brain injury (TBI) is a significant public health concern characterized by a complex cascade of cellular events. TBI induces adenosine monophosphate-activated protein kinase (AMPK) dysfunction impairs energy balance activates inflammatory cytokines and leads to neuronal damage. AMPK is a key regulator of cellular energy homeostasis during inflammatory responses. Recent research has revealed its key role in modulating the inflammatory process in TBI. Following TBI the activation of AMPK can influence various important pathways and mechanisms including metabolic pathways and inflammatory signaling. Our study investigated the effects of post-TBI loss of AMPK function on functional outcomes inflammasome activation, and inflammatory cytokine production. Male C57BL/6 adult wild-type (WT) and AMPK knockout (AMPK-KO) mice were subjected to a controlled cortical impact (CCI) model of TBI or sham surgery. The mice were tested for behavioral impairment at 24 h post-TBI thereafter, mice were anesthetized, and their brains were quickly removed for histological and biochemical evaluation. In vitro we investigated inflammasome activation in mixed glial cells stimulated with lipopolysaccharides+ Interferon-gamma (LI) (0.1 µg/20 ng/ml LPS/IFNg) for 6 h to induce an inflammatory response. Estimating the nucleotide-binding domain, leucine-rich-containing family pyrin domain containing western blotting ELISA and qRT-PCR performed 3 (NLRP3) inflammasome activation and cytokine production. Our findings suggest that TBI leads to reduced AMPK phosphorylation in WT mice and that the loss of AMPK correlates with worsened behavioral deficits at 24 h post-TBI in AMPK-KO mice as compared to WT mice. Moreover compared with the WT mice AMPK-KO mice exhibit exacerbated NLRP3 inflammasome activation and increased expression of proinflammatory mediators such as IL-1b IL-6 TNF-a iNOS and Cox 2. These results align with the in vitro studies using brain glial cells under inflammatory conditions, demonstrating greater activation of inflammasome components in AMPK-KO mice than in WT mice. Our results highlighted the critical role of AMPK in TBI outcomes. We found that the absence of AMPK worsens behavioral deficits and heightens inflammasome-mediated inflammation thereby exacerbating brain injury after TBI. Restoring AMPK activity after TBI could be a promising therapeutic approach for alleviating TBI-related damage.

18.
Artículo en Inglés | MEDLINE | ID: mdl-38981609

RESUMEN

Cancer cachexia, or the unintentional loss of body weight in cancer patients, is a multi-organ and multi-factorial syndrome with a complex and largely unknown etiology; however, metabolic dysfunction and inflammation remain hallmarks of cancer-associated wasting. While cachexia manifests with muscle and adipose tissue loss, perturbations to the gastrointestinal tract may serve as the front line for both impaired nutrient absorption and immune activating gut dysbiosis. Investigations into the gut microbiota have exploded within the past 2 decades, demonstrating multiple gut-tissue axes; however, the link between adipose and skeletal muscle wasting and the gut microbiota with cancer is only beginning to be understood. Further, the most used anti-cancer drugs (e.g. chemotherapy, immune checkpoint inhibitors) negatively impact gut homeostasis, potentially exacerbating wasting and contributing to poor patient outcomes and survival. In this current review, we 1) highlight our current understanding of the microbial changes that occur with cachexia, 2) discuss how microbial changes may contribute to adipose and skeletal muscle wasting, and 3) outline study design considerations needed when examining the role of the microbiota in cancer-induced cachexia.

19.
J Ethnopharmacol ; 334: 118567, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38996951

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Euonymus alatus (Thunb.) Siebold. (EA), a traditional Chinese medicine, is widely used in the treatment of diabetes. Our group has previously found that EA could treat diabetic retinopathy (DR) and stigmast-4-en-3-one (Numbered E6) is the active substance responsible for inhibiting angiogenesis in vitro by EA. However, the effects and mechanisms of E6 in the treatment of DR is still unknown. AIM OF THE STUDY: The aim of this study was to investigate the effects and mechanisms of E6 in EA on DR. Additionally, a comparison was made between the effects of E6 and triamcinolone acetonide (TA), as well as the side effects of E6 and dexamethasone. MATERIALS AND METHODS: Ocular affinity assessment and pharmacokinetic parameter prediction were conducted to evaluate the potential of E6 to treat DR. Retinal endothelial cells were used to investigate the in vitro inhibitory effect of E6 on vascular proliferation. Additionally, chicken embryos, zebrafish, and mice were used to investigate the in vivo anti-vascular proliferation effect of E6. Finally, diabetic mice were used to investigate whether E6 improves diabetic retinopathy and to compare its efficacy with that of TA. We then used network pharmacology to study the targets of E6 and performed molecular docking; followed by immunofluorescence experiments, ELISA, Western blot, and tube formation experiments to further investigate its mechanism. Finally, we compared the side effects of E6 with those of dexamethasone. RESULTS: E6 was found to have an affinity for the eye and to inhibit vascular proliferation both in vivo and in vitro. Moreover, E6 was found to be more efficacious than TA in the treatment of DR. Molecular docking experiments predicted that the glucocorticoid receptor (GR) is a potential target of E6, and immunofluorescence analyses confirmed that E6 upregulated the expression of the GR in the retina of hyperglycemic mice. In addition, western blotting results and tube formation experiments showed that E6 also attenuated angiogenesis by inhibiting the Hippo and VEGF pathways. Finally, by comparing the effects of E6 and dexamethasone on glucose regulation and osteoporosis, E6 was found to have fewer side effects. CONCLUSIONS: E6 is a highly effective drug for the treatment of DR, superior to TA and with fewer side effects than dexamethasone. Its mechanism involves the activation of glucocorticoid receptor and inhibition of Hippo and VEGF pathways to alleviate angiogenesis and inflammation. This study is the first to investigate the role and mechanism of E6 in improving DR. The findings suggest that E6 has unique advantages in the treatment of DR.

20.
Am J Reprod Immunol ; 92(1): e13895, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39001587

RESUMEN

PROBLEM: Preeclampsia (PE) is a hypertensive pregnancy disorder that is a leading cause of maternal and fetal morbidity and mortality characterized by maternal vascular dysfunction, oxidative stress, chronic immune activation, and excessive inflammation. No cure exists beyond delivery of the fetal-placental unit and the mechanisms driving pathophysiology are not fully understood. However, aberrant immune responses have been extensively characterized in clinical studies and shown to mediate PE pathophysiology in animal studies. One pathway that may mediate aberrant immune responses in PE is deficiencies in the IL-33 signaling pathway. In this study, we aim to investigate the impact of IL-33 signaling inhibition on cNK, TH17, and TReg populations, vascular function, and maternal blood pressure during pregnancy. METHOD OF STUDY: In this study, IL-33 signaling was inhibited using two different methods: intraperitoneal administration of recombinant ST2 (which acts as a decoy receptor for IL-33) and administration of a specific IL-33 neutralizing antibody. Maternal blood pressure, uterine artery resistance index, renal and placental oxidative stress, cNK, TH17, and TReg populations, various cytokines, and pre-proendothelin-1 levels were measured. RESULTS: IL-33 signaling inhibition increased maternal blood pressure, uterine artery resistance, placental and renal oxidative stress. IL-33 signaling inhibition also increased placental cNK and TH17 and renal TH17 cells while decreasing placental TReg populations. IL-33 neutralization increased circulating cNK and TH17s and decreased circulating TRegs in addition to increasing pre-proendothelin-1 levels. CONCLUSIONS: Data presented in this study demonstrate a role for IL-33 signaling in controlling vascular function and maternal blood pressure during pregnancy possibly by mediating innate and adaptive immune inflammatory responses, identifying the IL-33 signaling pathway as a potential therapeutic target for managing preeclampsia.


Asunto(s)
Interleucina-33 , Preeclampsia , Transducción de Señal , Femenino , Embarazo , Interleucina-33/metabolismo , Preeclampsia/inmunología , Animales , Ratas , Ratas Sprague-Dawley , Células Th17/inmunología , Modelos Animales de Enfermedad , Linfocitos T Reguladores/inmunología , Humanos , Estrés Oxidativo , Placenta/inmunología , Placenta/metabolismo , Presión Sanguínea , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...