Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.278
Filtrar
1.
Ophthalmic Genet ; : 1-6, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092760

RESUMEN

BACKGROUND: Biallelic pathogenic variants in CDH23 can cause Usher syndrome type I (USH1), typically characterized by sensorineural hearing loss, variable vestibular areflexia, and a progressive form of rod-cone dystrophy. While missense variants in CDH23 can cause DFNB12 deafness, other variants can affect the cadherin 23 function, more severely causing Usher syndrome type I D. The main purpose of our study is to describe the genotypes and phenotypes of patients with mild retinitis pigmentosa (RP), including sector RP with two pathogenic variants in CDH23. MATERIALS AND METHODS: Clinical examination included medical history, comprehensive ophthalmologic examination, and multimodal retinal imaging, and in case 1 and 2, full-field electroretinography (ERG). Genetic analysis was performed in all cases, and segregation testing of proband relatives was performed in case 1 and 3. RESULTS: Three unrelated cases presented with variable clinical phenotype for USH1 and were found to have two pathogenic variants in CDH23, with missense variant, c.5237 G > A: p.Arg1746Gln being common to all. All probands had mild to profound hearing loss. Case 1 and 3 had mild RP with mid peripheral and posterior pole sparing, while case 2 had sector RP. ERG results were consistent with the marked loss of retinal function in both eyes at the level of photoreceptor in case 1 and case 2, with normal peak time in the former. CONCLUSION: Patients harbouring c.5237 G > A: p.Arg1746Gln variants in CDH23 can present with a mild phenotype including sector RP. This can aid in better genetic counselling and in prognostication.

2.
Endocrine ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112918

RESUMEN

PURPOSE: Multiple Endocrine Neoplasia (MEN) is a group of familial cancer syndromes that encompasses several types of endocrine tumors differentiated by genetic mutations in RET, MEN1 and CDKN1B genes. Accurate diagnosis of MEN subtypes can thus be performed through genetic testing. However, MEN variants remain largely understudied in Indian populations. Additionally, few dedicated resources to understand these disorders currently exist. METHODS: Using the gold-standard ACMG/AMP guidelines, we systematically classified variants reported across the three genes in the IndiGen dataset, and established the genetic epidemiology of MEN in the Indian population. We further classified ClinVar and Mastermind variants and compiled all into a database. Finally, we designed a multiplex primer panel for rapid variant identification. RESULTS: We have established the genetic prevalence of MEN as the following: 1 in 1026 individuals is likely to be afflicted with MEN linked with pathogenic RET mutations. We have further created the MAPVar database containing 3280 ACMG-classified variants freely accessible at: https://clingen.igib.res.in/MAPVar/ . Finally, our NGS primer panel covers 33 exonic regions across two pools through 38 amplicons with a total amplified region of 65 kb. CONCLUSION: Our work establishes that MEN is a prevalent disorder in India. The rare nature of Indian variants underscores the need of genomic and functional studies to establish a more comprehensive variant landscape. Additionally, our panel offers a means of cost-effective genetic testing, and the MAPVar database a ready reference to aid in a better understanding of variant pathogenicity in clinical as well as research settings.

3.
Clin Ophthalmol ; 18: 2217-2224, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39131545

RESUMEN

Purpose: To map the existing genomic services available for patients with IRDs across Europe. Methods: A survey was conducted to 24 ophthalmic and/or genetic specialists across 19 European countries. The survey was conducted in an interview style via zoom for participants from 17 out of 19 countries. Interviewees were clinical/medical/ophthalmic geneticists, ophthalmologists/retina specialists and internal medicine specialists. The survey focused on referral pathways, genetic counseling, insurance coverage, awareness of genetic testing and counseling for IRDs among practitioners and patients, and preferred testing methodologies. Results: Genomic services (testing and counselling) for IRDs vary among countries from an awareness, availability and insurance coverage perspective. Affordability could be a barrier for patients in countries without any payment scheme (eg, Poland) and in countries where only a targeted population is covered (eg, Bulgaria). Genetic counseling via qualified genetic counsellors did not exist in many countries. The level of awareness regarding the benefits of genetic testing in IRDs among healthcare professionals (HCPs) and patients was perceived as low in some countries. Panel-based next-generation sequencing (NGS) was the first test of choice for genetic testing in 68% of the studied countries. Conclusion: There is some disparity in the approach to genetic testing for IRDs across Europe. Greater awareness of genetic testing services is required among the eye care professional community. A revised approach to the provision of genetic testing services such as centralized free genetic testing with associated interpretation and genetic counselling may help in ensuring equitable access and reimbursement, which will empower patients through improved access to clinical trials, expedite innovation, improve access to therapy and the delivery of care.

4.
Intern Med J ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132981

RESUMEN

Inherited metabolic diseases, as a first presentation in adults, are an under-recognised condition associated with significant morbidity and mortality. Diagnosis is challenging because of non-specific clinical and biochemical findings, resemblance to common conditions such as neuropsychiatric disorders and the misconception that these disorders predominantly affect paediatric populations. We describe a series of patients with multiple acyl-CoA dehydrogenase deficiency (MADD)/MADD-like disorders to highlight these diagnostic challenges.

5.
J Inherit Metab Dis ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135340

RESUMEN

Acute rhabdomyolysis (RM) constitutes a life-threatening emergency resulting from the (acute) breakdown of skeletal myofibers, characterized by a plasma creatine kinase (CK) level exceeding 1000 IU/L in response to a precipitating factor. Genetic predisposition, particularly inherited metabolic diseases, often underlie RM, contributing to recurrent episodes. Both sporadic and congenital forms of RM share common triggers. Considering the skeletal muscle's urgent need to rapidly adjust to environmental cues, sustaining sufficient energy levels and functional autophagy and mitophagy processes are vital for its preservation and response to stressors. Crucially, the composition of membrane lipids, along with lipid and calcium transport, and the availability of adenosine triphosphate (ATP), influence membrane biophysical properties, membrane curvature in skeletal muscle, calcium channel signaling regulation, and determine the characteristics of autophagic organelles. Consequently, a genetic defect involving ATP depletion, aberrant calcium release, abnormal lipid metabolism and/or lipid or calcium transport, and/or impaired anterograde trafficking may disrupt autophagy resulting in RM. The complex composition of lipid membranes also alters Toll-like receptor signaling and viral replication. In response, infections, recognized triggers of RM, stimulate increased levels of inflammatory cytokines, affecting skeletal muscle integrity, energy metabolism, and cellular trafficking, while elevated temperatures can reduce the activity of thermolabile enzymes. Overall, several mechanisms can account for RMs and may be associated in the same disease-causing RM.

6.
Sci Rep ; 14(1): 18580, 2024 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127808

RESUMEN

Sequence variants in Eyes Shut Homolog (EYS) gene are one of the most frequent causes of autosomal recessive retinitis pigmentosa (RP). Herein, we describe an Italian RP family characterized by EYS-related pseudodominant inheritance. The female proband, her brother, and both her sons showed typical RP, with diminished or non-recordable full-field electroretinogram, narrowing of visual field, and variable losses of central vision. To investigate this apparently autosomal dominant pedigree, next generation sequencing (NGS) of a custom panel of RP-related genes was performed, further enhanced by bioinformatic detection of copy-number variations (CNVs). Unexpectedly, all patients had a compound heterozygosity involving two known pathogenic EYS variants i.e., the exon 33 frameshift mutation c.6714delT and the exon 29 deletion c.(5927þ1_5928-1)_(6078þ1_6079-1)del, with the exception of the youngest son who was homozygous for the above-detailed frameshift mutation. No pathologic eye conditions were instead observed in the proband's husband, who was a heterozygous healthy carrier of the same c.6714delT variant in exon 33 of EYS gene. These findings provide evidence that pseudodominant pattern of inheritance can hide an autosomal recessive RP partially or totally due to CNVs, recommending CNVs study in those pedigrees which remain genetically unsolved after the completion of NGS or whole exome sequencing analysis.


Asunto(s)
Variaciones en el Número de Copia de ADN , Proteínas del Ojo , Linaje , Retinitis Pigmentosa , Humanos , Retinitis Pigmentosa/genética , Femenino , Masculino , Proteínas del Ojo/genética , Adulto , Persona de Mediana Edad , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Mutación del Sistema de Lectura , Genes Dominantes , Exones/genética , Heterocigoto
7.
Cells ; 13(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39120292

RESUMEN

Biallelic variants in USH2A are associated with retinitis pigmentosa (RP) and Type 2 Usher Syndrome (USH2), leading to impaired vision and, additionally, hearing loss in the latter. Although the introduction of next-generation sequencing into clinical diagnostics has led to a significant uplift in molecular diagnostic rates, many patients remain molecularly unsolved. It is thought that non-coding variants or variants of uncertain significance contribute significantly to this diagnostic gap. This study aims to demonstrate the clinical utility of the reverse transcription-polymerase chain reaction (RT-PCR)-Oxford Nanopore Technology (ONT) sequencing of USH2A mRNA transcripts from nasal epithelial cells to determine the splice-altering effect of candidate variants. Five affected individuals with USH2 or non-syndromic RP who had undergone whole genome sequencing were recruited for further investigation. All individuals had uncertain genotypes in USH2A, including deep intronic rare variants, c.8682-654C>G, c.9055+389G>A, and c.9959-2971C>T; a synonymous variant of uncertain significance, c.2139C>T; p.(Gly713=); and a predicted loss of function duplication spanning an intron/exon boundary, c.3812-3_3837dup p.(Met1280Ter). In silico assessment using SpliceAI provided splice-altering predictions for all candidate variants which were investigated using ONT sequencing. All predictions were found to be accurate; however, in the case of c.3812-3_3837dup, the outcome was a complex cryptic splicing pattern with predominant in-frame exon 18 skipping and a low level of exon 18 inclusion leading to the predicted stop gain. This study detected and functionally characterised simple and complex mis-splicing patterns in USH2A arising from previously unknown deep intronic variants and previously reported variants of uncertain significance, confirming the pathogenicity of the variants.


Asunto(s)
Proteínas de la Matriz Extracelular , Empalme del ARN , Síndromes de Usher , Humanos , Proteínas de la Matriz Extracelular/genética , Síndromes de Usher/genética , Femenino , Masculino , Empalme del ARN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Exones/genética , Mutación/genética , Retinitis Pigmentosa/genética , Adulto , ARN Mensajero/genética , ARN Mensajero/metabolismo , Intrones/genética , Persona de Mediana Edad
8.
Sci China Life Sci ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39126614

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with high genetic heritability but heterogeneity. Fully understanding its genetics requires whole-genome sequencing (WGS), but the ASD studies utilizing WGS data in Chinese population are limited. In this study, we present a WGS study for 334 individuals, including 112 ASD patients and their non-ASD parents. We identified 146 de novo variants in coding regions in 85 cases and 60 inherited variants in coding regions. By integrating these variants with an association model, we identified 33 potential risk genes (P<0.001) enriched in neuron and regulation related biological process. Besides the well-known ASD genes (SCN2A, NF1, SHANK3, CHD8 etc.), several high confidence genes were highlighted by a series of functional analyses, including CTNND1, DGKZ, LRP1, DDN, ZNF483, NR4A2, SMAD6, INTS1, and MRPL12, with more supported evidence from GO enrichment, expression and network analysis. We also integrated RNA-seq data to analyze the effect of the variants on the gene expression and found 12 genes in the individuals with the related variants had relatively biased expression. We further presented the clinical phenotypes of the proband carrying the risk genes in both our samples and Caucasian samples to show the effect of the risk genes on phenotype. Regarding variants in non-coding regions, a total of 74 de novo variants and 30 inherited variants were predicted as pathogenic with high confidence, which were mapped to specific genes or regulatory features. The number of de novo variants found in patient was significantly associated with the parents' ages at the birth of the child, and gender with trend. We also identified small de novo structural variants in ASD trios. The results in this study provided important evidence for understanding the genetic mechanism of ASD.

9.
Prog Retin Eye Res ; : 101289, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39127142

RESUMEN

Conventional gene therapy involving supplementation only treats loss-of-function diseases and is limited by viral packaging sizes, precluding therapy of large genes. The discovery of CRISPR/Cas has led to a paradigm shift in the field of genetic therapy, with the promise of precise gene editing, thus broadening the range of diseases that can be treated. The initial uses of CRISPR/Cas have focused mainly on gene editing or silencing of abnormal variants via utilising Cas endonuclease to trigger the target cell endogenous non-homologous end joining. Subsequently, the technology has evolved to modify the Cas enzyme and even its guide RNA, leading to more efficient editing tools in the form of base and prime editing. Further advancements of this CRISPR/Cas technology itself have expanded its functional repertoire from targeted editing to programmable transactivation, shifting the therapeutic focus to precise endogenous gene activation or upregulation with the potential for epigenetic modifications. In vivo experiments using this platform have demonstrated the potential of CRISPR-activators (CRISPRa) to treat various loss-of-function diseases, as well as in regenerative medicine, highlighting their versatility to overcome limitations associated with conventional strategies. This review summarises the molecular mechanisms of CRISPRa platforms, the current applications of this technology in vivo, and discusses potential solutions to translational hurdles for this therapy, with a focus on ophthalmic diseases.

10.
Am J Ophthalmol ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39127396

RESUMEN

PURPOSE: This study aims to explore genetic variants that potentially lead to outer retinal tubulation (ORT), estimate the prevalence of ORT in these candidate genes, and investigate the clinical etiology of ORT in patients with inherited retinal diseases (IRDs), with respect to each gene. DESIGN: Retrospective cohort study. METHODS: A retrospective cross-sectional review was conducted on 565 patients with molecular diagnoses of IRD, confirming the presence of ORT as noted in each patient's respective spectral-domain optical coherence tomography (SD-OCT) imaging. Using SD-OCT imaging, the presence of ORT was analyzed in relation to specific genetic variants and phenotypic characteristics. Outcomes included the observed ORT frequencies across two gene-specific cohorts: non- retinal pigment epithelium (RPE)-specific genes, and RPE-specific genes; and to investigate the analogous characteristics caused by variants in these genes. RESULTS: Among the 565 patients included in this study, 104 exhibited ORT on SD-OCT. We observed ORT frequencies among the following genes from our patient cohort: 100% (23/23) forCHM, 100%(2/2) forPNPLA6, 100% (4/4) forRCBTB1, 100% formtDNA[100% (4/4) forMT-TL1and 100% (1/1) formtDNAdeletion], 100% (1/1) forOAT, 95.2% (20/21) forCYP4V2, 72.7% (8/11) forCHMfemale carriers, 66.7% (2/3) forC1QTNF5, 57.1% (8/14) forPROM1, 53.8% (7/13) forPRPH2, 42.9% (3/7) forCERKL, 28.6% (2/7) forCDHR1, 20% (1/5) forRPE65, 4% (18/445) forABCA4.In contrast, ORT was not observed in any patients with photoreceptor-specific gene variants, such asRHO(n=13),USH2A(n=118),EYS(n=70),PDE6B(n=10),PDE6A(n=4),and others. CONCLUSION: These results illustrate a compelling association between the presence of ORT and IRDs caused by variants in RPE-specific genes, as well as non-RPE-specific genes. In contrast, IRDs caused by photoreceptor-specific genes are typically not associated with ORT occurrence. Further analysis revealed that ORT tends to manifest in IRDs with milder intraretinal pigment migration (IPM), a finding that is typically associated with RPE-specific genes. These findings regarding ORT, genetic factors, atrophic patterns in the fundus, and IPM provide valuable insight into the complex etiology of IRDs. Future prospective studies are needed to further explore the association and underlying mechanisms of ORT in these contexts.

11.
J Am Dent Assoc ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39127957

RESUMEN

BACKGROUND: Mineral metabolism is critical for proper development of hard tissues of the skeleton and dentition. The dentoalveolar complex includes the following 4 mineralized tissues: enamel, dentin, cementum, and alveolar bone. Developmental processes of these tissues are affected by inherited disorders that disrupt phosphate and pyrophosphate homeostasis, although manifestations are distinct from those in the skeleton. TYPES OF STUDIES REVIEWED: The authors discuss original data from experiments and comparative analyses and review articles describing effects of inherited phosphate and pyrophosphate disorders on dental tissues. A particular emphasis is placed on how new therapeutic approaches for these conditions may affect oral health and dental treatments of affected patients. RESULTS: Disorders of phosphate and pyrophosphate metabolism can lead to reduced mineralization (hypomineralization) or inappropriate (ectopic) calcification of soft tissues. Disruptions in phosphate levels in X-linked hypophosphatemia and hyperphosphatemic familial tumoral calcinosis and disruptions in pyrophosphate levels in hypophosphatasia and generalized arterial calcification of infancy contribute to dental mineralization defects. Traditionally, there have been few options to ameliorate dental health problems arising from these conditions. New antibody and enzyme replacement therapies bring possibilities to improve oral health in affected patients. PRACTICAL IMPLICATIONS: Research over the past 2 decades has exponentially expanded the understanding of mineral metabolism, and has led to novel treatments for mineralization disorders. Newly implemented and emerging therapeutic strategies affect the dentoalveolar complex and interact with aspects of oral health care that must be considered for dental treatment, clinical trial design, and coordination of multidisciplinary care teams.

12.
Artículo en Inglés | MEDLINE | ID: mdl-39096159

RESUMEN

Monogenic kidney diseases result from an abundance of potential genes carrying pathogenic variants. These conditions are primarily recognized for manifesting as kidney disorders, defined as an impairment of the structure and/or function of the kidneys. However, the impact of these genetic disorders extends far beyond the kidneys, giving rise to a diverse spectrum of extrarenal manifestations. These manifestations can affect any organ system throughout the body, leading to a complex clinical presentation that demands a comprehensive understanding and interdisciplinary management of affected persons. The intricate interplay between genetic variants, molecular pathways, and systemic interactions underscores the importance of exploring the extrarenal aspects of inherited kidney diseases. This exploration not only deepens our comprehension of the diseases themselves but also opens avenues for more holistic diagnostics, treatment strategies, and improved interdisciplinary patient care. This article delves into the intricate realm of extrarenal manifestations in inherited kidney diseases, shedding light on the far-reaching impacts that these genetic conditions can exert beyond the confines of the kidney system.

13.
Clin Genet ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39099467

RESUMEN

There are few cerebrotendineous xanthomatosis (CTX) case series and observational studies including a significant number of Latin American patients. We describe a multicenter Brazilian cohort of patients with CTX highlighting their clinical phenotype, recurrent variants and assessing possible genotype-phenotype correlations. We analyzed data from all patients with clinical and molecular or biochemical diagnosis of CTX regularly followed at six genetics reference centers in Brazil between March 2020 and August 2023. We evaluated 38 CTX patients from 26 families, originating from 4 different geographical regions in Brazil. Genetic analysis identified 13 variants in the CYP27A1 gene within our population, including 3 variants that had not been previously described. The most frequent initial symptom of CTX in Brazil was cataract (27%), followed by xanthomas (24%), chronic diarrhea (13.5%), and developmental delay (13.5%). We observed that the median age at loss of ambulation correlates with the age of onset of neurological symptoms, with an average interval of 10 years (interquartile range 6.9 to 11 years). This study represents the largest CTX case series ever reported in South America. We describe phenotypic characteristics and report three new pathogenic or likely pathogenic variants.

14.
Curr Oncol Rep ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115678

RESUMEN

PURPOSE OF REVIEW: To describe current and future strategies to reduce the burden of ovarian cancer through prevention. RECENT FINDINGS: Current strategies in genetic testing are missing a substantial number of individuals at risk, representing a missed opportunity for ovarian cancer prevention. Past efforts at screening and early detection have thus far failed to improve ovarian cancer mortality, and novel techniques are needed. Surgical prevention is highly effective, but surgical menopause from oophorectomy has significant side effects. Novel surgical strategies aimed at reducing risk while minimizing these harms are currently being studied. To maximize ovarian cancer prevention, a multi-pronged approach is needed. We propose that more inclusive and accurate genetic testing to identify more individuals at risk, novel molecular screening and early detection, surgical prevention that maximizes quality of life while reducing risk, and broader adoption of targeted and opportunistic salpingectomy will together reduce the burden of ovarian cancer.

15.
Am J Med Genet A ; : e63833, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119839

RESUMEN

Glycosylphosphatidylinositols (GPIs) are a type of glycolipid responsible for anchoring many important proteins to the cell membrane surface. Defects in the synthesis of GPIs can lead to a group of multisystem disorders known as the inherited GPI deficiencies (IGDs). Homozygosity for the c.-270C > G variant in the promoter of PIGM has been associated with a IGD subtype known as glycosylphosphatidylinositol biosynthesis defect-1 (GPIBD1). The several cases reported in the literature have been described to have a milder neurologic phenotype in comparison to the other IGDs and have been treated with sodium phenylbutyrate with some degree of success. These patients typically present with portal and hepatic vein thrombosis and mostly develop absence seizures. Here we describe a patient homozygous for a nonsynonymous variant in PIGM who deceased at 9 weeks of life and had multiple physical dysmorphisms (rocker bottom feet, midline cleft palate, thickened and lichenified skin), portal vein thrombosis, CNS structural anomalies (progressive multicystic encephalomalacia and ventriculomegaly), and a neurological phenotype of a diffuse encephalopathy. This is the first known case report of a PIGM-related IGD/CDG due to a coding variant.

16.
Front Cardiovasc Med ; 11: 1384736, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39049954

RESUMEN

Background: Data on the use of the wearable cardioverter defibrillator in patients suffering from inherited and congenital heart disease are limited. Consequently, evidence for guideline recommendations in this patient population is lacking. Methods: In total 1,675 patients were included in a multicenter registry of eight European centers. In the present cohort, we included 18 patients suffering from congenital and inherited heart disease. Results: Nine patients (50%) were male with a mean age of 41.3 ± 16.4 years. Four patients suffered from hypertrophic cardiomyopathy (HCM), four patients suffered from non-compaction cardiomyopathy (NCCM), two patients were diagnosed with arrhythmogenic right ventricular cardiomyopathy (ARVC) and one patient suffered from muscular dystrophy of the limb-girdle type with cardiac involvement, secondary cardiomyopathy. Three patients presented with Brugada syndrome (BrS). One patient suffered from long-QT syndrome type 1 (LQTS1). Furthermore, two patients had congenital heart defects and one patient suffered from cardiac sarcoidosis (CS). There were no appropriate/inappropriate shocks with the WCD in this cohort. One patient had recurrent self-limiting sustained ventricular tachycardia during the wear time, but actively inhibited a shock and was hospitalized. The compliance rate in this cohort was 77.8% with a mean wear time of 45.3 ± 26.9 days with a mean follow-up time of 570 ± 734 days. 55.6% (10/18) of the patients received an ICD after WCD wear time. Conclusions: This retrospective study of patients with inherited and congenital heart disease shows that WCD use is not beneficial in the majority of patients with inherited and congenital heart disease.

17.
Mol Genet Metab ; 143(1-2): 108531, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39053125

RESUMEN

PMM2-CDG is the most common congenital disorder of glycosylation (CDG). Patients with this disease often carry compound heterozygous mutations of the gene encoding the phosphomannomutase 2 (PMM2) enzyme. PMM2 converts mannose-6-phosphate (M6P) to mannose-1-phosphate (M1P), which is a critical upstream metabolite for proper protein N-glycosylation. Therapeutic options for PMM2-CDG patients are limited to management of the disease symptoms, as no drug is currently approved to treat this disease. GLM101 is a M1P-loaded liposomal formulation being developed as a candidate drug to treat PMM2-CDG. This report describes the effect of GLM101 treatment on protein N-glycosylation of PMM2-CDG patient-derived fibroblasts. This treatment normalized intracellular GDP-mannose, increased the relative glycoprotein mannosylation content and TNFα-induced ICAM-1 expression. Moreover, glycomics profiling revealed that GLM101 treatment of PMM2-CDG fibroblasts resulted in normalization of most high mannose glycans and partial correction of multiple complex and hybrid glycans. In vivo characterization of GLM101 revealed its favorable pharmacokinetics, liver-targeted biodistribution, and tolerability profile with achieved systemic concentrations significantly greater than its effective in vitro potency. Taken as a whole, the results described in this report support further exploration of GLM101's safety, tolerability, and efficacy in PMM2-CDG patients.

18.
Res Pract Thromb Haemost ; 8(4): 102477, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39076726

RESUMEN

Background: Rare coagulation factor deficiencies and disorders of fibrinolysis (defined as rare bleeding disorders [RBDs]) present with a heterogeneous bleeding phenotype, and bleeding severity is difficult to predict. Objectives: Describe underlying rare genetic variants in the Dutch RBD population and investigate the relationship between genotype, laboratory phenotype, and clinical phenotype. Methods: The Rare Bleeding Disorders in the Netherlands is a cross-sectional, nationwide study conducted between October 1, 2017, and November 30, 2019. Bleeding scores and blood samples were collected during a single study visit. Coagulation factor levels were measured centrally, and targeted exome analysis was performed on 156 genes involved in thrombosis and hemostasis. Pathogenicity was assigned according to the Association for Clinical Genetic Science guidelines. Results: Rare genetic variants specific to the diagnosed RBD were found in 132 of 156 patients (85%). Of the 214 rare genetic variants identified, 57% (n = 123) were clearly pathogenic, 19% (n = 40) were likely pathogenic, and 24% (n = 51) were variants of unknown significance. No explanatory genetic variants were found in patients with plasminogen activator inhibitor type 1 deficiency or hyperfibrinolysis. A correlation existed between factor activity levels and the presence of a genetic variant in the corresponding gene in patients with rare coagulation factor deficiencies and alpha-2-antiplasmin deficiency. Co-occurrence of multiple genetic variants was present in a quarter of patients, but effect on phenotype remains unclear. Conclusion: Targeted exome analysis may offer advantages over single-gene analysis, emphasized by a number of combined deficiencies in this study. Further studies are required to determine the role of co-occurring hemostasis gene variants on the bleeding phenotype in RBDs.

19.
FEBS Lett ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39079936

RESUMEN

The deliberate and precise modification of the host genome using engineered nucleases represents a groundbreaking advancement in modern medicine. Several clinical trials employing these approaches to address metabolic liver disorders have been initiated, with recent remarkable outcomes observed in patients with transthyretin amyloidosis, highlighting the potential of these therapies. Recent technological improvements, particularly CRISPR Cas9-based technology, have revolutionized gene editing, enabling in vivo modification of the cellular genome for therapeutic purposes. These modifications include gene supplementation, correction, or silencing, offering a wide range of therapeutic possibilities. Moving forward, we anticipate witnessing the unfolding therapeutic potential of these strategies in the coming years. The aim of our review is to summarize preclinical data on gene editing in animal models of inherited liver diseases and the clinical data obtained thus far, emphasizing both therapeutic efficacy and potential limitations of these medical interventions.

20.
Artículo en Inglés | MEDLINE | ID: mdl-39081219

RESUMEN

Glycosylphosphatidylinositol (GPI) is a highly conserved post-translational modification in eukaryotes, which is essential for anchoring various proteins to the cell surface. Dysfunction of GPI biogenesis leads to human diseases, such as inherited GPI deficiency (IGD) caused by germline mutations in GPI-related genes. With accumulating reports on individuals with IGD, there has been increasing interest and studies on disease mechanism, diagnosis, and therapy. This review outlines the biosynthetic pathway of GPI-anchored proteins (GPI-APs) and summarizes clinical IGD cases from a molecular perspective. We also review current diagnostic and therapeutic approaches for IGD. Finally, we discuss future research directions to facilitate the understanding and treatment of GPI-related disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA