Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59.673
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2403917121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38980903

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is a potentially lethal disease lacking effective treatments. Its immunosuppressive tumor microenvironment (TME) allows it to evade host immunosurveillance and limits response to immunotherapy. Here, using the mouse KRT19-deficient (sgKRT19-edited) PDA model, we find that intratumoral accumulation of natural killer T (NKT) cells is required to establish an immunologically active TME. Mechanistically, intratumoral NKT cells facilitate type I interferon (IFN) production to initiate an antitumor adaptive immune response, and orchestrate the intratumoral infiltration of T cells, dendritic cells, natural killer cells, and myeloid-derived suppressor cells. At the molecular level, NKT cells promote the production of type I IFN through the interaction of their CD40L with CD40 on myeloid cells. To evaluate the therapeutic potential of these observations, we find that administration of folinic acid to mice bearing PDA increases NKT cells in the TME and improves their response to anti-PD-1 antibody treatment. In conclusion, NKT cells have an essential role in the immune response to mouse PDA and are potential targets for immunotherapy.


Asunto(s)
Carcinoma Ductal Pancreático , Células T Asesinas Naturales , Neoplasias Pancreáticas , Microambiente Tumoral , Animales , Ratones , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/terapia , Células T Asesinas Naturales/inmunología , Microambiente Tumoral/inmunología , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/patología , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Inmunoterapia/métodos , Ratones Endogámicos C57BL , Leucovorina/administración & dosificación , Leucovorina/uso terapéutico , Humanos , Células Supresoras de Origen Mieloide/inmunología
3.
Artículo en Inglés | MEDLINE | ID: mdl-38975704

RESUMEN

Microfluidics have been widely used for cell sorting and capture. In this work, numerical simulations of cell transport in microfluidic devices were studied considering cell sizes, deformability, and five different device designs. Among these five designs, deterministic lateral displacement device (DLD) and hyperuniform device (HU) performed better in promoting cell-micropost collision due to the continuously shifted micropost positions as compared with regular grid, staggered, and hexagonal layout designs. However, the grid and the hexagonal layouts showed best in differentiating cells by their size dependent velocity due to the size exclusion effect for cell transport in clear and straight paths in the flow direction. A systematic study of the velocity differentiation under different dimensionless groups was performed showing that the velocity difference is dominated by the micropost separation distance perpendicular to the direction of flow. Microfluidic experiments also confirmed the velocity differentiation results. The study can provide guiding principles for microfluidic design.

4.
J Comput Biol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975725

RESUMEN

Pseudoprogression (PSP) is a related reaction of glioblastoma treatment, and misdiagnosis can lead to unnecessary intervention. Magnetic resonance imaging (MRI) provides cross-modality images for PSP prediction studies. However, how to effectively use the complementary information between the cross-modality MRI to improve PSP prediction is still a challenging task. To address this challenge, we propose a cross-modality feature interaction network for PSP prediction. Firstly, we propose a triple-branch multi-scale module to extract low-order feature representations and a skip-connection multi-scale module to extract high-order feature representations. Then, a cross-modality interaction module based on attention mechanism is designed to make the complementary information between cross-modality MRI fully interact. Finally, the high-order cross-modality interaction information is fed into a multi-layer perceptron to achieve the PSP prediction task. We evaluate the proposed network on a private dataset with 52 subjects from Hunan Cancer Hospital and validate it on a private dataset with 30 subjects from Xiangya Hospital. The accuracy of our proposed network on the datasets is 0.954 and 0.929, respectively, which is better than most typical convolutional neural network and interaction methods.

5.
FEBS J ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975839

RESUMEN

The protein-protein interaction (PPI) network of the Mediator complex is very tightly regulated and depends on different developmental and environmental cues. Here, we present an interactive platform for comparative analysis of the Mediator subunits from humans, baker's yeast Saccharomyces cerevisiae, and model plant Arabidopsis thaliana in a user-friendly web-interface database called MediatorWeb. MediatorWeb provides an interface to visualize and analyze the PPI network of Mediator subunits. The database facilitates downloading the untargeted and unweighted network of Mediator complex, its submodules, and individual Mediator subunits to better visualize the importance of individual Mediator subunits or their submodules. Further, MediatorWeb offers network visualization of the Mediator complex and interacting proteins that are functionally annotated. This feature provides clues to understand functions of Mediator subunits in different processes. In an additional tab, MediatorWeb provides quick access to secondary and tertiary structures, as well as residue-level contact information for Mediator subunits in each of the three model organisms. Another useful feature of MediatorWeb is detection of interologs based on orthologous analyses, which can provide clues to understand the functions of Mediator complex in less explored kingdoms. Thus, MediatorWeb and its features can help the user to understand the role of Mediator complex and its subunits in the transcription regulation of gene expression.

6.
ACS Nano ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975953

RESUMEN

Tumor-stromal interactions and stromal heterogeneity in the tumor microenvironment are critical factors that influence the progression, metastasis, and chemoresistance of pancreatic ductal adenocarcinoma (PDAC). Here, we used spatial transcriptome technology to profile the gene expression landscape of primary PDAC and liver metastatic PDAC after bioactive black phosphorus nanomaterial (bioactive BP) treatment using a murine model of PDAC (LSL-KrasG12D/+; LSL-Trp53R172H/+; and Pdx-1-Cre mice). Bioinformatic and biochemical analyses showed that bioactive BP contributes to the tumor-stromal interplay by suppressing cancer-associated fibroblast (CAF) activation. Our results showed that bioactive BP contributes to CAF heterogeneity by decreasing the amount of inflammatory CAFs and myofibroblastic CAFs, two CAF subpopulations. Our study demonstrates the influence of bioactive BP on tumor-stromal interactions and CAF heterogeneity and suggests bioactive BP as a potential PDAC treatment.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38975964

RESUMEN

BACKGROUND: Patients with organic gastrointestinal (GI) diseases and diabetes mellitus (DM) can have concomitant disorders of gut-brain interaction (DGBI). OBJECTIVE: This study aimed to compare the global prevalence of DGBI-compatible symptom profiles in adults with and without self-reported organic GI diseases or DM. METHODS: Data were collected in a population-based internet survey in 26 countries, the Rome Foundation Global Epidemiology Study (n = 54,127). Individuals were asked if they had been diagnosed by a doctor with gastroesophageal reflux disease, peptic ulcer, coeliac disease, inflammatory bowel disease (IBD), diverticulitis, GI cancer or DM. Individuals not reporting the organic diagnosis of interest were included in the reference group. DGBI-compatible symptom profiles were based on Rome IV diagnostic questions. Odds ratios (ORs [95% confidence interval]) were calculated using mixed logistic regression models. RESULTS: Having one of the investigated organic GI diseases was linked to having any DGBI-compatible symptom profile ranging from OR 1.64 [1.33, 2.02] in GI cancer to OR 3.22 [2.80, 3.69] in IBD. Those associations were stronger than for DM, OR 1.26 [1.18, 1.35]. Strong links between organic GI diseases and DGBI-compatible symptom profiles were seen for corresponding (e.g., IBD and bowel DGBI) and non-corresponding (e.g., IBD and esophageal DGBI) anatomical regions. The strongest link was seen between fecal incontinence and coeliac disease, OR 6.94 [4.95, 9.73]. After adjusting for confounding factors, associations diminished, but persisted. CONCLUSION: DGBI-compatible symptom profiles are more common in individuals with self-reported organic GI diseases and DM compared to the general population. The presence of these concomitant DGBIs should be considered in the management of organic (GI) diseases.

8.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38980374

RESUMEN

Gene-environment (GE) interactions are essential in understanding human complex traits. Identifying these interactions is necessary for deciphering the biological basis of such traits. In this study, we review state-of-art methods for estimating the proportion of phenotypic variance explained by genome-wide GE interactions and introduce a novel statistical method Linkage-Disequilibrium Eigenvalue Regression for Gene-Environment interactions (LDER-GE). LDER-GE improves the accuracy of estimating the phenotypic variance component explained by genome-wide GE interactions using large-scale biobank association summary statistics. LDER-GE leverages the complete Linkage Disequilibrium (LD) matrix, as opposed to only the diagonal squared LD matrix utilized by LDSC (Linkage Disequilibrium Score)-based methods. Our extensive simulation studies demonstrate that LDER-GE performs better than LDSC-based approaches by enhancing statistical efficiency by ~23%. This improvement is equivalent to a sample size increase of around 51%. Additionally, LDER-GE effectively controls type-I error rate and produces unbiased results. We conducted an analysis using UK Biobank data, comprising 307 259 unrelated European-Ancestry subjects and 966 766 variants, across 217 environmental covariate-phenotype (E-Y) pairs. LDER-GE identified 34 significant E-Y pairs while LDSC-based method only identified 23 significant E-Y pairs with 22 overlapped with LDER-GE. Furthermore, we employed LDER-GE to estimate the aggregated variance component attributed to multiple GE interactions, leading to an increase in the explained phenotypic variance with GE interactions compared to considering main genetic effects only. Our results suggest the importance of impacts of GE interactions on human complex traits.


Asunto(s)
Interacción Gen-Ambiente , Desequilibrio de Ligamiento , Fenotipo , Humanos , Herencia Multifactorial , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Modelos Genéticos
9.
Br J Clin Pharmacol ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970468

RESUMEN

AIMS: Metamizole is quite an old drug with analgesic, antipyretic and spasmolytic properties. Recent findings have shown that it may induce several cytochrome P450 (CYP) enzymes, especially CYP3A4 and CYP2B6. The clinical relevance of these properties is uncertain. We aimed to unravel potential pharmacokinetic interactions between metamizole and the CYP3A4 substrate quetiapine. METHODS: Plasma concentrations of quetiapine from a large therapeutic drug monitoring database were analysed. Two groups of 33 patients, either receiving quetiapine as a monotherapy (without CYP modulating comedications) or with concomitantly applied metamizole, were compared addressing a potential impact of metamizole on the metabolism of quetiapine being reflected in differences of plasma concentrations of quetiapine and dose-adjusted plasma concentrations. RESULTS: Patients comedicated with metamizole showed >50% lower plasma concentrations of quetiapine (median 45.2 ng/mL, Q1 = 15.5; Q3 = 90.5 vs. 92.0 ng/mL, Q1 = 52.3; Q3 = 203.8, P = .003). The dose-adjusted plasma concentrations were 69% lower in the comedication group (P = .001). Subgroup analyses did not suggest a dose dependency of the metamizole effect or an influence of quetiapine formulation (immediate vs. extended release). Finally, the comedication group exhibited a significantly higher proportion of patients whose quetiapine concentrations were below the therapeutic reference range (78.8% in the metamizole group vs. 54.4% in the control group, P = .037) indicating therapeutically insufficient drug concentrations. CONCLUSION: The combination of metamizole and quetiapine leads to significantly lower drug concentrations of quetiapine, probably via an induction of CYP3A4. Clinicians must consider the risk of adverse drug reactions, especially treatment failure under quetiapine when adding metamizole.

10.
Autophagy ; : 1-2, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38950891

RESUMEN

In macroautophagy, lysosomes fuse with closed autophagosomes but not with unclosed ones. This is achieved, at least in part, by the temporally regulated recruitment of the autophagosomal SNARE STX17 (syntaxin 17) to only mature autophagosomes. However, the molecular mechanism by which STX17 recognizes autophagosomal maturation remains unknown. Our recent study revealed that STX17 recruitment is regulated by the electrostatic interaction between the positively charged C-terminal region of STX17 and the autophagosomal membrane, which becomes negatively charged during maturation due to the accumulation of phosphatidylinositol-4-phosphate (PtdIns4P). Here, we propose an electrostatic maturation model of the autophagosome.

11.
Plant Methods ; 20(1): 100, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956683

RESUMEN

BACKGROUND: Optimization of a highly efficient transient expression system is critical for the study of gene function, particularly in those plants in which stable transformation methods are not widely available. Agrobacterium tumefaciens­mediated transient transformation is a simple and low-cost method that has been developed and applied to a wide variety of plant species. However, the transient expression in spinach (Spinacia oleracea L.) is still not reported. RESULTS: We developed a transient expression system in spinach leaves of the Sp75 and Sp73 varieties. Several factors influencing the transformation efficiency were optimized such as Agrobacterium strain, spinach seedling stage, leaf position, and the expression time after injection. Agrobacterium strain GV3101 (pSoup-p19) was more efficient than AGL1 in expressing recombinant protein in spinach leaves. In general, Sp75 leaves were more suitable than Sp73 leaves, regardless of grow stage. At four-leaf stage, higher intensity and efficiency of transient expression were observed in group 1 (G1) of Sp75 at 53 h after injection (HAI) and in G1 of Sp73 at 64 HAI. At six-leaf stage of Sp75, group 3 (G3) at 72 HAI were the most effective condition for transient expression. Using the optimized expression system, we detected the subcellular localization of a transcriptional co-activator SoMBF1c and a NADPH oxidase SoRbohF. We also detected the interaction of the protein kinase SoCRK10 and the NADPH oxidase SoRbohB. CONCLUSION: This study established a method of highly efficient transient expression mediated by Agrobacterium in spinach leaves. The transient expression system will facilitate the analysis of gene function and lay a solid foundation for molecular design breeding of spinach.

12.
Beilstein J Org Chem ; 20: 1428-1435, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952957

RESUMEN

Halogen bonding permeates many areas of chemistry. A wide range of halogen-bond donors including neutral, cationic, monovalent, and hypervalent have been developed and studied. In this work we used density functional theory (DFT), natural bond orbital (NBO) theory, and quantum theory of atoms in molecules (QTAIM) to analyze aryl halogen-bond donors that are neutral, cationic, monovalent and hypervalent and in each series we include the halogens Cl, Br, I, and At. Within this diverse set of halogen-bond donors, we have found trends that relate halogen bond length with the van der Waals radii of the halogen and the non-covalent or partial covalency of the halogen bond. We have also developed a model to calculate ΔG of halogen-bond formation by the linear combination of the % p-orbital character on the halogen and energy of the σ-hole on the halogen-bond donor.

13.
Front Immunol ; 15: 1425938, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38953020

RESUMEN

Introduction: P2X receptors are a family of homo- and heterotrimeric cation channels gated by extracellular ATP. The P2X4 and P2X7 subunits show overlapping expression patterns and have been involved in similar physiological processes, such as pain and inflammation as well as various immune cell functions. While formation of P2X2/P2X3 heterotrimers produces a distinct pharmacological phenotype and has been well established, functional identification of a P2X4/P2X7 heteromer has been difficult and evidence for and against a physical association has been found. Most of this evidence stems, however, from in vitro model systems. Methods: Here, we used a P2X7-EGFP BAC transgenic mouse model as well as P2X4 and P2X7 knock-out mice to re-investigate a P2X4-P2X7 interaction in mouse lung by biochemical and immunohistochemical experiments as well as quantitative expression analysis. Results: No detectable amounts of P2X4 could be co-purified from mouse lung via P2X7-EGFP. In agreement with these findings, immuno-histochemical analysis using a P2X7-specific nanobody revealed only limited overlap in the cellular and subcellular localizations of P2X4 and P2X7 in both the native lung tissue and primary cells. Comparison of P2X4 and P2X7 transcript and protein levels in the respective gene-deficient and wild type mice showed no mutual interrelation between their expression levels in whole lungs. However, a significantly reduced P2rx7 expression was found in alveolar macrophages of P2rx4 -/- mice. Discussion: In summary, our detailed analysis of the cellular and subcellular P2X4 and P2X7 localization and expression does not support a physiologically relevant direct association of P2X4 and P2X7 subunits or receptors in vivo.


Asunto(s)
Pulmón , Ratones Noqueados , Ratones Transgénicos , Receptores Purinérgicos P2X4 , Receptores Purinérgicos P2X7 , Animales , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Ratones , Pulmón/metabolismo , Pulmón/inmunología , Ratones Endogámicos C57BL , Unión Proteica
14.
Biochem Genet ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955878

RESUMEN

The advent of the new coronavirus, leading to the SARS-CoV-2 pandemic, has presented a substantial worldwide health hazard since its inception in the latter part of 2019. The severity of the current pandemic is exacerbated by the occurrence of re-infection or co-infection with SARS-CoV-2. Hence, comprehending the molecular process underlying the pathophysiology of sepsis and discerning possible molecular targets for therapeutic intervention holds significant importance. For the first time, 31 metabolites were tentatively identified by GC-MS analysis from Alpinia malaccensis. On the other hand, five phenolic compounds were identified and quantified from the plant in HPLC-DAD analysis, including (-) epicatechin, rutin hydrate, rosmarinic acid, quercetin, and kaempferol. Nine GC-MS and five HPLC-identified metabolites had shown interactions with 45 and 30 COVID-19-associated human proteins, respectively. Among the proteins, PARP1, FN1, PRKCA, EGFR, ALDH2, AKR1C3, AHR, and IKBKB have been found as potential therapeutic targets to mitigate SARS-CoV-2 infection. KEGG pathway analysis also showed a strong association of FN1, EGFR, and IKBKB genes with SARS-CoV-2 viral replication and cytokine overexpression due to viral infection. Protein-protein interaction (PPI) analysis also showed that TP53, MMP9, FN1, EGFR, and NOS2 proteins are highly related to the genes involved in COVID-19 comorbidity. These proteins showed interaction with the plant phytoconstituents as well. As the study offers a robust network-based procedure for identifying biomolecules relevant to COVID-19 disease, A. malaccensis could be a good source of effective therapeutic agents against COVID-19 and related viral diseases.

15.
Chem Asian J ; : e202400554, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956446

RESUMEN

A six-cyclic crown ether-type pillar[5]arene was synthesized, and the five ethylene oxide loops were located outside the cavity and not affected by temperature changes which was confirmed by variable-temperature NMR experiment in DMSO-d6 and CDCl3 and 2D 1H-1H NOESY experiment in CDCl3. The six-cyclic pillar[5]-crown also showed greater binding ability of host-guest with bis(pyridinium) derivatives than conventional alkoxy pillar[5]arenes that illustrated through 1H NMR titration spectroscopic experiment in acetone-d6/CDCl3 (1:1) and UV-vis titration experiments in CHCl3 at room temperature. The five benzocrown ethers at the periphery were able to bind metal cations by 1H NMR titration spectroscopic experiment in CD2Cl2/methanol-d4(9:1).

16.
Am J Bot ; : e16363, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956859

RESUMEN

PREMISE: Legumes establish mutualistic interactions with pollinators and nitrogen (N)-fixing bacteria that are critical for plant reproduction and ecosystem functioning. However, we know little about how N-fixing bacteria and soil nutrient availability affect plant attractiveness to pollinators. METHODS: In a two-factorial greenhouse experiment to assess the impact of N-fixing bacteria and soil types on floral traits and attractiveness to pollinators in Chamaecrista latistipula (Fabaceae), plants were inoculated with N-fixing bacteria (NF+) or not (NF-) and grown in N-rich organic soil (+N organic soil) or N-poor sand soil (-N sand soil). We counted buds and flowers and measured plant size during the experiment. We also measured leaf, petal, and anther reflectance with a spectrophotometer and analyzed reflectance curves. Using the bee hexagon model, we estimated chromatic contrasts, a crucial visual cues for attracting bees that are nearby and more distant. RESULTS: NF+ plants in -N sand soil had a high floral display and color contrasts. On the other hand, NF- plants and/or plants in +N organic soil had severely reduced floral display and color contrasts, decreasing floral attractiveness to bee pollinators. CONCLUSIONS: Our findings indicate that the N-fixing bacteria positively impact pollination, particularly when nutrients are limited. This study provides insights into the dynamics of plant-pollinator interactions and underscores the significant influence of root symbionts on key floral traits within tropical ecosystems. These results contribute to understanding the mechanisms governing mutualisms and their consequences for plant fitness and ecological dynamics.

17.
Insect Mol Biol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956869

RESUMEN

Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are important metabolizing enzymes functioning by adding a sugar moiety to a small lipophilic substrate molecule and play critical roles in drug/toxin metabolism for all realms of life. In this study, the silkworm Bombyx mori UGT33D1 gene was characterized in detail. UGT33D1 was found localized in the endoplasmic reticulum (ER) compartment just like other animal UGTs and was mainly expressed in the silkworm midgut. We first reported that UGT33D1 was important to BmNPV infection, as silencing UGT33D1 inhibited the BmNPV infection in silkworm BmN cells, while overexpressing the gene promoted viral infection. The molecular pathways regulated by UGT33D1 were analysed via transcriptome sequencing upon UGT33D1 knockdown, highlighting the important role of the gene in maintaining a balanced oxidoreductive state of the organism. In addition, proteins that physically interact with UGT33D1 were identified through immunoprecipitation and mass spectrometry analysis, which includes tubulin, elongation factor, certain ribosomal proteins, histone proteins and zinc finger proteins that had been previously reported for human UGT-interacting proteins. This study provided preliminary but important functional information on UGT33D1 and is hoped to trigger deeper investigations into silkworm UGTs and their functional mechanisms.

18.
Plant Commun ; : 101012, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38956873

RESUMEN

High light stress in subtropical and tropical regions strongly limits agricultural production due to photo-oxidative damage, decreased growth and yield. Here, we investigated whether beneficial microbes can protect plants under high light stress. We found that Enterobacter sp. SA187 (SA187) supports Arabidopsis thaliana growth under high light stress by reducing the accumulation of reactive oxygen species (ROS) and maintaining photosynthesis. When subjected to high light stress, SA187 triggers dynamic changes in Arabidopsis gene expression related to fortified iron metabolism and redox regulation thereby enhancing the plant anti-oxidative glutathione/glutaredoxin redox system. Genetic analysis shows that SA187-enhanced iron and sulfur metabolism are coordinated by ethylene signaling. In summary, beneficial microbes could be an effective and inexpensive means for enhancing high light stress tolerance in plants.

19.
Braz J Microbiol ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963475

RESUMEN

Cryptococcus gattii, an environmental fungus, is one of the agents of cryptococcosis. The influence of agrochemicals on fungal resistance to antifungals is widely discussed. However, the effects of benomyl (BEN) on fungal interaction with different hosts is still to be understood. Here we studied the influence of adaptation to BEN in the interaction with a plant model, phagocytes and with Tenebrio molitor. First, the strain C. gattii L24/01 non-adapted (NA), adapted (A) to BEN, and adapted with further culture on drug-free media (10p) interact with Nicotiana benthamiana, with a peak in the yeast burden on the 7th day post-inoculation. C. gattii L24/01 A and 10p provided lower fungal burden, but these strains increased cell diameter and capsular thickness after the interaction, together with decreased fungal growth. The strains NA and A showed reduced ergosterol levels, while 10p exhibited increased activity of laccase and urease. L24/01 A recovered from N. benthamiana was less engulfed by murine macrophages, with lower production of reactive oxygen species. This phenotype was accompanied by increased ability of this strain to grow inside macrophages. Otherwise, L24/01 A showed reduced virulence in the T. molitor larvae model. Here, we demonstrate that the exposure to BEN, and interaction with plants interfere in the morphophysiology and virulence of the C. gattii.

20.
ArXiv ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38947915

RESUMEN

Background and Objective: Prosthetic heart valve interventions such as TAVR have surged over the past decade, but the associated complication of long-term, life-threatening thrombotic events continues to undermine patient outcomes. Thus, improving thrombogenic risk analysis of TAVR devices is crucial. In vitro studies for thrombogenicity are typically difficult to perform. However, revised ISO testing standards include computational testing for thrombogenic risk assessment of cardiovascular implants. We present a fluid-structure interaction (FSI) approach for assessing thrombogenic risk of prosthetic heart valves. Methods: An FSI framework was implemented via the incompressible computational fluid dynamics multi-physics solver of the Ansys LS-DYNA software. The numerical modeling approach for flow analysis was validated by comparing the derived flow rate of the 29-mm CoreValve device from benchtop testing and orifice areas of commercial TAVR valves in the literature to in silico results. Thrombogenic risk was analyzed by computing stress accumulation (SA) on virtual platelets seeded in the flow fields via Ansys EnSight. The integrated FSI-thrombogenicity methodology was subsequently employed to examine hemodynamics and thrombogenic risk of TAVR devices with two approaches: 1) engineering optimization and 2) clinical assessment. Results: The simulated effective orifice areas of the commercial devices were in the range reported in the literature. The flow rates from the in vitro flow testing matched well with the in silico results. The approach was used to analyze the effect of various TAVR leaflet designs on hemodynamics. Platelets experienced different magnitudes of SA along their trajectories as they flowed past each design. Post-TAVR deployment hemodynamics in patient-specific bicuspid aortic valve anatomies revealed varying degrees of thrombogenic risk for these patients, despite being clinically defined as "mild" paravalvular leak. Conclusions: Our methodology can be used to improve the thromboresistance of prosthetic valves from the initial design stage to the clinic. It allows for unparalleled optimization of devices, uncovering key TAVR leaflet design parameters that can be used to mitigate thrombogenic risk, in addition to patient-specific modeling to evaluate device performance. This work demonstrates the utility of advanced in silico analysis of TAVR devices that can be utilized for thrombogenic risk assessment of other blood recirculating devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...