Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros










Intervalo de año de publicación
1.
Antiviral Res ; : 105960, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986872

RESUMEN

Respiratory syncytial virus is the major cause of respiratory viral infections, particularly in infants, immunocompromised populations, and the elderly (over 65 years old), the prevention of RSV infection has become a priority. In this study, we generated a chimeric influenza virus, termed LAIV/RSV/HA-3F, using reverse genetics technology which contained three repeats of the RSV fusion protein neutralizing epitope site II to the N terminal in the background of the hemagglutinin (HA) gene of cold adapted influenza vaccine A/California/7/2009 ca. LAIV/RSV/HA-3F exhibited cold-adapted (ca) and attenuated (att) phenotype. BALB/c mice immunized intranasally with LAIV/RSV/HA-3F showed robust immunogenicity, inducing viral-specific antibody responses against both influenza and RSV, eliciting RSV-specific humoral, cellular and mucosal immune responses. LAIV/RSV/HA-3F also conferred protection as indicated by reduced viral titers and improved lung histopathological alterations against live RSV virus challenge. Mechanismly, single-cell RNA sequencing (scRNA-seq) and single-cell T cell antigen receptor (TCR) sequencing were employed to characterize the immune responses triggered by chimeric RSV vaccine, displaying that LAIV/RSV/HA-3F provided protection mainly via interferon-γ (IFN-γ). Moreover, we found that LAIV/RSV/HA-3F significantly inhibited viral replication in the challenged mouse lung and protected against subsequent RSV challenge in cotton rats without causing lung disease. Taken together, our findings demonstrated that LAIV/RSV/HA-3F has potential as a promising bivalent vaccine with dual purpose candidate for the prevention of influenza and RSV, and preclinical and clinical studies warrant further investigations.

2.
ACS Appl Bio Mater ; 7(6): 4133-4141, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38812435

RESUMEN

The ultimate vaccine against infections caused by Nipah virus should be capable of providing protection at the respiratory tract─the most probable port of entry for this pathogen. Intranasally delivered vaccines, which target nasal-associated lymphoid tissue and induce both systemic and mucosal immunity, are attractive candidates for enabling effective vaccination against this lethal disease. Herein, the water-soluble polyphosphazene delivery vehicle assembles into nanoscale supramolecular constructs with the soluble extracellular portion of the Hendra virus attachment glycoprotein─a promising subunit vaccine antigen against both Nipah and Hendra viruses. These supramolecular constructs signal through Toll-like receptor 7/8 and promote binding interactions with mucin─an important feature of effective mucosal adjuvants. High mass contrast of phosphorus-nitrogen backbone of the polymer enables a successful visualization of nanoconstructs in their vitrified state by cryogenic electron microscopy. Here, we characterize the self-assembly of polyphosphazene macromolecule with biologically relevant ligands by asymmetric flow field flow fractionation, dynamic light scattering, fluorescence spectrophotometry, and turbidimetric titration methods. Furthermore, a polyphosphazene-enabled intranasal Nipah vaccine candidate demonstrates the ability to induce immune responses in hamsters and shows superiority in inducing total IgG and neutralizing antibodies when benchmarked against the respective clinical stage alum adjuvanted vaccine. The results highlight the potential of polyphosphazene-enabled nanoassemblies in the development of intranasal vaccines.


Asunto(s)
Administración Intranasal , Virus Nipah , Compuestos Organofosforados , Polímeros , Vacunas de Subunidad , Vacunas Virales , Compuestos Organofosforados/química , Compuestos Organofosforados/administración & dosificación , Polímeros/química , Virus Nipah/inmunología , Animales , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/química , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/química , Vacunas de Subunidad/administración & dosificación , Tamaño de la Partícula , Ensayo de Materiales , Materiales Biocompatibles/química , Nanopartículas/química , Inmunización
3.
Genes Dis ; 11(4): 101066, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38550714

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has decreased the efficacy of SARS-CoV-2 vaccines in containing coronavirus disease 2019 (COVID-19) over time, and booster vaccination strategies are urgently necessitated to achieve sufficient protection. Intranasal immunization can improve mucosal immunity, offering protection against the infection and sustaining the spread of SARS-CoV-2. In this study, an intranasal booster of the RBD-HR vaccine after two doses of the mRNA vaccine significantly increased the levels of specific binding antibodies in serum, nasal lavage fluid, and bronchoalveolar lavage fluid compared with only two doses of mRNA vaccine. After intranasal boosting with the RBD-HR vaccine, the levels of serum neutralizing antibodies against prototype and variant strains of SARS-CoV-2 pseudoviruses were markedly higher than those in mice receiving mRNA vaccine alone, and intranasal boosting with the RBD-HR vaccine also inhibited the binding of RBD to hACE2 receptors. Furthermore, the heterologous intranasal immunization regimen promoted extensive memory T cell responses and activated CD103+ dendritic cells in the respiratory mucosa, and potently enhanced the formation of T follicular helper cells and germinal center B cells in vital immune organs, including mediastinal lymph nodes, inguinal lymph nodes, and spleen. Collectively, these data infer that heterologous intranasal boosting with the RBD-HR vaccine elicited broad protective immunity against SARS-CoV-2 both locally and systemically.

4.
J Virol ; 98(3): e0112923, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38305155

RESUMEN

The global circulation of clade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) in poultry and wild birds, increasing mammal infections, continues to pose a public health threat and may even form a pandemic. An efficacious vaccine against H5Ny HPAIVs is crucial for emergency use and pandemic preparedness. In this study, we developed a parainfluenza virus 5 (PIV5)-based vaccine candidate expressing hemagglutinin (HA) protein of clade 2.3.4.4b H5 HPAIV, termed rPIV5-H5, and evaluated its safety and efficacy in mice and ferrets. Our results demonstrated that intranasal immunization with a single dose of rPIV5-H5 could stimulate H5-specific antibody responses, moreover, a prime-boost regimen using rPIV5-H5 stimulated robust humoral, cellular, and mucosal immune responses in mice. Challenge study showed that rPIV5-H5 prime-boost regimen provided sterile immunity against lethal clade 2.3.4.4b H5N1 virus infection in mice and ferrets. Notably, rPIV5-H5 prime-boost regimen provided protection in mice against challenge with lethal doses of heterologous clades 2.2, 2.3.2, and 2.3.4 H5N1, and clade 2.3.4.4h H5N6 viruses. These results revealed that rPIV5-H5 can elicit protective immunity against a diverse clade of highly pathogenic H5Ny virus infection in mammals, highlighting the potential of rPIV5-H5 as a pan-H5 influenza vaccine candidate for emergency use.IMPORTANCEClade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) have been widely circulating in wild birds and domestic poultry all over the world, leading to infections in mammals, including humans. Here, we developed a recombinant PIV5-vectored vaccine candidate expressing the HA protein of clade 2.3.4.4b H5 virus. Intranasal immunization with rPIV5-H5 in mice induced airway mucosal IgA responses, high levels of antibodies, and robust T-cell responses. Importantly, rPIV5-H5 conferred complete protection in mice and ferrets against clade 2.3.4.4b H5N1 virus challenge, the protective immunity was extended against heterologous H5Ny viruses. Taken together, our data demonstrate that rPIV5-H5 is a promising vaccine candidate against diverse H5Ny influenza viruses in mammals.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N6 del Virus de la Influenza A , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Virus de la Parainfluenza 5 , Animales , Humanos , Ratones , Hurones/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunidad Celular , Inmunidad Humoral , Inmunidad Mucosa , Subtipo H5N1 del Virus de la Influenza A/química , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N6 del Virus de la Influenza A/química , Subtipo H5N6 del Virus de la Influenza A/clasificación , Subtipo H5N6 del Virus de la Influenza A/genética , Subtipo H5N6 del Virus de la Influenza A/inmunología , Gripe Aviar/inmunología , Gripe Aviar/prevención & control , Gripe Aviar/transmisión , Gripe Aviar/virología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Preparación para una Pandemia/métodos , Virus de la Parainfluenza 5/genética , Virus de la Parainfluenza 5/inmunología , Virus de la Parainfluenza 5/metabolismo , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Administración Intranasal , Aves de Corral/virología , Inmunoglobulina A/inmunología , Linfocitos T/inmunología
5.
Heliyon ; 10(3): e25733, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38352762

RESUMEN

Drug-resistant N. gonorrhoeae is an urgent threat to global public health, and vaccine development is the best long-term strategy for controlling gonorrhea. We have previously shown that adhesion and penetration protein (App) play a role in the adhesion, invasion, and reproductive tract colonization of N. gonorrhoeae. Here, we describe the immune response induced by intranasal immunization with passenger and translocator fragments of App. The recombinant App passenger and translocator fragments induced high titers of IgG and IgA antibodies in serum and vaginal washes. Antibodies produced by App passenger and the combination of passenger and translocator mediated the killing of N. gonorrhoeae via serum bactericidal activity and opsonophagocytic activity, whereas antisera from translocator-immunized groups had lower bactericidal activity and opsonophagocytic activity. The antisera of the App passenger and translocator, alone and in combination, inhibited the adhesion of N. gonorrhoeae to cervical epithelial cells in a concentration-dependent manner. Nasal immunization with App passenger and translocator fragments alone or in combination induced high levels of IgG1, IgG2a, and IgG2b antibodies and stimulated mouse splenocytes to secrete cytokines IFN-γ and IL-17A, suggesting that Th1 and Th17 cellular immune responses were activated. In vivo experiments have shown that immune App passenger and transporter fragments can accelerate the clearance of N. gonorrhoeae in the vagina of mice. These data suggest that the App protein is a promising N. gonorrhoeae vaccine antigen.

6.
Auris Nasus Larynx ; 51(1): 221-229, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37532644

RESUMEN

OBJECTIVE: A phosphorylcholine (PC)-derivative with high binding ability (PCDB) was intranasally administered to mice with ovalbumin (OVA), and immune responses were investigated to determine whether PCDB has antigenicity and adjuvanticity. METHODS: BALB/c mice were intranasally immunized with PCDB coupled with OVA, unbound PCDB plus OVA, cholera toxin (CT) plus OVA, OVA alone, and PCDB alone. Then, the production of OVA- and PC-specific antibodies in external secretions and serum, and the secretion of cytokines such as IL-4 and IFN-γ from splenic mononuclear cells by stimulation with PCDB and OVA were examined. Furthermore, the secretion of IL-12p40 from CD11c+ cells following stimulation with PCDB was observed to clarify the adjuvant effect of PCDB through TLR4. RESULTS: Intranasal immunization with PCDB plus OVA increased OVA- and PC-specific IgA in external secretions and OVA- and PC-specific antibodies in the serum. The analysis of IgG subclasses specific to OVA and PC showed a higher production of IgG1 than IgG2, and the secretion of both IL-4 and IFN-γ was enhanced. However, IL-12p40 secretion from CD11c+ cells was increased and OVA-specific IgE production was not promoted by PCDB stimulation. CONCLUSION: Intranasal administration of the protein antigen with PCDB enhanced immune responses specific to the mixed antigen and PC. Although PCDB acted to bias the immune response toward the Th2-type, antigen-specific IgE production did not increase. These findings suggest that PCDB has the potential to be a mucosal vaccine with both adjuvanticity and antigenicity without causing side effects due to type I allergy.


Asunto(s)
Inmunidad Mucosa , Fosforilcolina , Ratones , Animales , Subunidad p40 de la Interleucina-12/farmacología , Interleucina-4 , Adyuvantes Inmunológicos/farmacología , Toxina del Cólera/farmacología , Administración Intranasal , Nariz , Inmunoglobulina G , Inmunoglobulina E , Ratones Endogámicos BALB C
7.
Antiviral Res ; 220: 105757, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37984567

RESUMEN

Despite global vaccination efforts, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread globally. Currently, the development of affordable vaccine against Omicron variant of concern (VOC) is necessary. Here, we assessed the safety and immunogenicity of a SARS-CoV-2 vaccine consisting of a live Newcastle disease virus vector expressing the spike (S) protein of Omicron BA.1 administrated intranasally (IN) or intramuscularly (IM) in Golden Syrian hamster model. Immunogenicity studies showed that the prime-boost regimen elicited high antibody titers and the modified S antigen (Sm-F) could induce robust antibody response in low dosage immunization through IN route. Sera of the immunized hamsters provided effective cross-neutralizing activity against different Omicron variants, the prototype and delta strains of SARS-CoV-2. Moreover, the vaccine could provide complete immunoprotection in hamsters against the Omicron BA.1 challenge by either intranasal or intramuscular immunization. Overall, our study provides an alternative nasal vaccine against the SARS-CoV-2 Omicron variants.


Asunto(s)
Antígenos de Grupos Sanguíneos , COVID-19 , Vacunas , Animales , Cricetinae , Humanos , Virus de la Enfermedad de Newcastle/genética , SARS-CoV-2 , Vacunas contra la COVID-19 , COVID-19/prevención & control , Vacunación , Inmunización , Mesocricetus , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales
8.
Microbiol Spectr ; 11(6): e0179423, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37877750

RESUMEN

IMPORTANCE: The essential goal of vaccination is to generate potent and long-term protection against diseases. Several factors including vaccine vector, delivery route, and boosting regimen influence the outcome of prime-boost immunization approaches. The immunization regimens by constructing a novel simian adenovirus-vectored COVID-19 vaccine and employing combination of intranasal and intramuscular inoculations could elicit mucosal neutralizing antibodies against five mutant strains in the respiratory tract and strong systemic immunity. Immune protection could last for more than 32 weeks. Vectored vaccine construction and immunization regimens have positively impacted respiratory disease prevention.


Asunto(s)
Adenovirus de los Simios , COVID-19 , Humanos , Animales , Ratones , Vacunas contra la COVID-19 , Vectores Genéticos , COVID-19/prevención & control , Vacunación , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Inmunidad Mucosa , Adenoviridae/genética
9.
Vaccines (Basel) ; 11(9)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37766135

RESUMEN

Group B streptococcus (GBS) commonly colonizes the vaginal tract and is a leading cause of life-threatening neonatal infections and adverse pregnancy outcomes. No effective vaccine is clinically available. Conserved bacterial virulence factors, including those of GBS, have been employed as vaccine components. We investigated serotype-independent protection against GBS by intranasal immunization with six conserved GBS virulence factors (GBSV6). GBSV6 induced systemic and vaginal antibodies and T cell responses in mice. The immunity reduced mouse mortality and vaginal colonization by various GBS serotypes and protected newborn mice of immunized dams against GBS challenge. Intranasal GBSV6 immunization also provided long-lasting protective immunity and had advantages over intramuscular GBSV6 immunization regarding restricting vaginal GBS colonization. Our findings indicate that intranasal immunization targeting multiple conserved GBS virulence factors induces serotype-independent immunity, which protects against GBS infection systemically and vaginally in dams and prevents newborn death. The study presents valuable strategies for GBS vaccine development.

10.
ACS Infect Dis ; 9(8): 1570-1581, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37489053

RESUMEN

Untreated group A Streptococcus (GAS) can lead to a range of life-threatening diseases, including rheumatic heart disease. To date, no therapeutic or prophylactic vaccines are commercially available to treat or prevent GAS infection. Development of a peptide-based subunit vaccine offers a promising solution, negating the safety issues of live-attenuated or inactive vaccines. Subunit vaccines administer small peptide fragments (antigens), which are typically poorly immunogenic. Therefore, these peptide antigens require formulation with an immune stimulant and/or vaccine delivery platform to improve their immunogenicity. We investigated polyelectrolyte complexes (PECs) and polymer-coated liposomes as self-adjuvanting delivery vehicles for a GAS B cell peptide epitope conjugated to a universal T-helper epitope and a synthetic toll-like receptor 2-targeting moiety lipid core peptide-1 (LCP-1). A structure-activity relationship of cationic PEC vaccines containing different external PEI-coatings (poly(ethylenimine); 10 kDa PEI, 25 kDa PEI, and a synthetic mannose-functionalized 25 kDa PEI) formed vaccines PEC-1, PEC-2, and PEC-3, respectively. All three PEC vaccines induced J8-specific systemic immunoglobulin G (IgG) antibodies when administered intranasally to female BALB/c mice without the use of additional adjuvants. Interestingly, PEC-3 induced the highest antibody titers among all tested vaccines, with the ability to effectively opsonize two clinically isolated GAS strains. A comparative study of PEC-2 and PEC-3 with liposome-based delivery systems was performed subcutaneously. LCP-1 was incorporated into a liposome formulation (DPPC, DPPG and cholesterol), and the liposomes were externally coated with PEI (25 kDa; Lip-2) or mannosylated PEI (25 kDa; Lip-3). All liposome vaccines induced stronger humoral immune responses compared to their PEC counterparts. Notably, sera of mice immunized with Lip-2 and Lip-3 produced significantly higher opsonic activity against clinically isolated GAS strains compared to the positive control, P25-J8 emulsified with the commercial adjuvant, complete Freund's adjuvant (CFA). This study highlights the capability of a PEI-liposome system to act as a self-adjuvanting vehicle for the delivery of GAS peptide antigens and protection against GAS infection.


Asunto(s)
Infecciones Estreptocócicas , Vacunas Estreptocócicas , Femenino , Animales , Ratones , Liposomas/farmacología , Polietileneimina , Streptococcus pyogenes , Péptidos/farmacología , Adyuvantes Inmunológicos/química , Infecciones Estreptocócicas/prevención & control , Epítopos/farmacología
11.
Vaccines (Basel) ; 11(2)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36851088

RESUMEN

Staphylococcus aureus is regarded as a threatening bacterial pathogen causing invasive pneumonia in healthcare settings and in the community. The continuous emergence of multidrug resistant strains is narrowing the treatment options for these infections. The development of an effective S. aureus vaccine is, therefore, a global priority. We have previously developed a vaccine candidate, 132 ΔmurI Δdat, which is auxotrophic for D-glutamate, and protects against sepsis caused by S. aureus. In the present study, we explored the potential of this vaccine candidate to prevent staphylococcal pneumonia, by using an acute lung infection model in BALB/c mice. Intranasal inoculation of the vaccine strain yielded transitory colonization of the lung tissue, stimulated production of relevant serum IgG and secretory IgA antibodies in the lung and distal vaginal mucosa and conferred cross-protection to acute pneumonia caused by clinically important S. aureus strains. Although these findings are promising, additional research is needed to minimize dose-dependent toxicity for safer intranasal immunization with this vaccine candidate.

12.
Eur J Pharm Biopharm ; 182: 1-11, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36455784

RESUMEN

The relationship between the chemical structure, physicochemical properties, and mucosal adjuvanticity of sugar-based surfactants (SBSs) has not been sufficiently elucidated. Thus, in the present study, we systematically analyzed 11 SBSs for mucosal adjuvanticity. Ovalbumin (OVA)-specific antibody titers were measured in mice immunized intranasally with OVA plus SBS. We found that four SBSs (trehalose monododecanoate, sucrose monododecanoate, n-dodecyl-α-d-maltopyranoside, and n-dodecyl-ß-d-maltopyranoside) exhibited the most potent adjuvanticity. We identified the following associations between chemical structure and adjuvanticity: 1) OVA-specific antibody titer increased with an increasing number of carbon atoms in the alkyl chain; 2) the adjuvanticity was not affected by the type of sugar or bond between the sugar and alkyl chain; and 3) SBSs with rigid structures exhibited less adjuvanticity. The relationship between physicochemical properties and adjuvanticity was as follows: 1) SBSs exhibited adjuvanticity above the critical micelle concentration and 2) in the SBSs with potent adjuvanticity, the diameter of the SBS-OVA complex was 70-75 nm. Our study indicates evidence for the direct involvement of chemical structure and physicochemical properties in determining adjuvanticity in SBSs.


Asunto(s)
Adyuvantes Inmunológicos , Azúcares , Ratones , Animales , Adyuvantes Inmunológicos/química , Anticuerpos , Membrana Mucosa , Ovalbúmina , Ratones Endogámicos BALB C , Administración Intranasal
13.
Front Microbiol ; 13: 1041338, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466668

RESUMEN

Human respiratory syncytial virus (RSV) is a ubiquitous pediatric pathogen causing serious lower respiratory tract disease worldwide. No licensed vaccine is currently available. In this work, the coding gene for mDS-Dav1, the full-length and prefusion conformation RSV fusion glycoprotein (F), was designed by introducing the stabilized prefusion F (preF) mutations from DS-Cav1 into the encoding gene of wild-type RSV (wtRSV) F protein. The recombinant adenovirus encoding mDS-Cav1, rChAd63-mDS-Cav1, was constructed based on serotype 63 chimpanzee adenovirus vector and characterized in vitro. After immunizing mice via intranasal route, the rChAd63-mDS-Cav1 induced enhanced neutralizing antibody and F-specific CD8+ T cell responses as well as good immune protection against RSV challenge with the absence of enhanced RSV disease (ERD) in BALB/c mice. The results indicate that rChAd63-mDS-Cav1 is a promising mucosal vaccine candidate against RSV infection and warrants further development.

14.
Vaccine ; 40(47): 6830-6838, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36253219

RESUMEN

Human respiratory syncytial virus (HRSV) is a leading cause of lower respiratory tract infections in elderly individuals and young children/infants and can cause bronchiolitis and even death. There is no licensed HRSV vaccine. An ideal vaccine should induce high titers of neutralizing antibodies and a Th1-biased immune response. In this study, we used EXPI293 cells to express the fusion (F) protein with a prefusion conformation (PrF) and compared the safety and efficacy of intranasal immunization with PrF in combination with two mucosal adjuvants (CpG ODN and liposomes) in mice. After two intranasal administrations, mice in the PrF + CpG group produced high titers of neutralizing antibodies (4961) and a Th1-biased immune response compared with the PrF + Lipo group. The lung viral load of mice in the PrF + CpG group was significantly reduced (3.5 log) compared with that in the adjuvant control group, and the survival rate was 100 %, while the survival rate of mice in the PrF + Lipo group was only 67 %. At the same time, this immunization strategy reduced the pathological damage to the lungs in mice. In conclusion, the combination of PrF and CpG adjuvant is immunogenic, elicits a Th1 type immune response, and completely protects mice from a lethal HRSV challenge. It is worthy of further evaluation as an HRSV vaccine in clinical trials. Clinical trial registration. This study was not related to human participation or experimentation.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Niño , Ratones , Humanos , Animales , Preescolar , Anciano , Administración Intranasal , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Inmunización , Adyuvantes Inmunológicos , Ratones Endogámicos BALB C
15.
Cell Mol Immunol ; 19(11): 1279-1289, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220993

RESUMEN

The rapid mutation and spread of SARS-CoV-2 variants urge the development of effective mucosal vaccines to provide broad-spectrum protection against the initial infection and thereby curb the transmission potential. Here, we designed a chimeric triple-RBD immunogen, 3Ro-NC, harboring one Delta RBD and two Omicron RBDs within a novel protein scaffold. 3Ro-NC elicits potent and broad RBD-specific neutralizing immunity against SARS-CoV-2 variants of concern. Notably, intranasal immunization with 3Ro-NC plus the mucosal adjuvant KFD (3Ro-NC + KFDi.n) elicits coordinated mucosal IgA and higher neutralizing antibody specificity (closer antigenic distance) against the Omicron variant. In Omicron-challenged human ACE2 transgenic mice, 3Ro-NC + KFDi.n immunization significantly reduces the tissue pathology in the lung and lowers the viral RNA copy numbers in both the lung (85.7-fold) and the nasal turbinate (13.6-fold). Nasal virologic control is highly correlated with RBD-specific secretory IgA antibodies. Our data show that 3Ro-NC plus KFD is a promising mucosal vaccine candidate for protection against SARS-CoV-2 Omicron infection, pathology and transmission potential.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Humanos , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas contra la COVID-19/inmunología , Inmunidad Mucosa , Administración Intranasal
16.
Vaccines (Basel) ; 10(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36298487

RESUMEN

Pseudomonas aeruginosa is an opportunistic nosocomial pathogen that causes serious infections in the respiratory tract of immunocompromised or critically ill patients, and it is also a significant source of bacteremia. Treatment of these infections can be complicated due to the emergence of multidrug-resistant P. aeruginosa strains worldwide. Hence, the development of prophylactic vaccines is a priority for at-risk patients. We have previously developed a vaccine candidate with a single auxotrophy for D-glutamate, PAO1 ΔmurI, which protects against sepsis and acute pneumonia caused by P. aeruginosa. Given the paramount importance of safety in the development of live attenuated vaccines, we have improved the safety of the vaccine candidate by reducing the probability of a reversion to virulence by the inclusion of an additional auxotrophy for D-alanine. Single and double auxotrophs behaved in a similar manner in relation to the attenuation level, immunogenicity and protective efficacy, but the double auxotroph has the advantage of being more stable and safer as a candidate vaccine against respiratory infections caused by P. aeruginosa.

17.
Microb Cell Fact ; 21(1): 185, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085207

RESUMEN

BACKGROUND: Swine influenza A virus (swIAV) is a major concern for the swine industry owing to its highly contagious nature and acute viral disease. Currently, most commercial swIAV vaccines are traditional inactivated virus vaccines. The Lactobacillus plantarum-based vaccine platform is a promising approach for mucosal vaccine development. Oral and intranasal immunisations have the potential to induce a mucosal immune response, which confers protective immunity. The aim of this study was to evaluate the probiotic potential and adhesion ability of three L. plantarum strains. Furthermore, a recombinant L. plantarum strain expressing the head domain of swIAV antigen HA1 was constructed and evaluated for its ability to prevent swIAV infection. RESULTS: The three L. plantarum strains isolated from healthy pig faecal samples maintained the highest survival rate when incubated at pH 3 and at bile salt concentration of 0.3%. They also showed high adherence to intestinal cells. All three L. plantarum strains were monitored in live mice, and no major differences in transit time were observed. Recombinant L. plantarum expressed swIAV HA1 protein (pSIP401-HA1-ZN-3) and conferred effective mucosal, cellular and systemic immune responses in the intestine as well as in the upper respiratory airways of mice. In conclusion, the oral and intranasal administration of L. plantarum strain pSIP401-HA1-ZN-3 in mice induced mucosal immunity and most importantly, provided protection against lethal influenza virus challenge. CONCLUSION: In summary, these findings suggest that the engineered L. plantarum strain pSIP401-HA1-ZN-3 can be considered as an alternative approach for developing a novel vaccine during an swine influenza A pandemic.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Vacunas contra la Influenza , Lactobacillus plantarum , Infecciones por Orthomyxoviridae , Administración Intranasal , Animales , Anticuerpos Antivirales , Hemaglutininas , Hemaglutininas Virales , Lactobacillus plantarum/genética , Ratones , Infecciones por Orthomyxoviridae/prevención & control , Porcinos , Vacunación , Vacunas de Productos Inactivados
18.
Microb Pathog ; 172: 105779, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36116609

RESUMEN

Nicotinamide Adenine Dinucleotide-Dependent (NADH) flavin oxidoreductase and NADH oxidase (NOX) are important virulence factors of Mycoplasma hyopneumoniae (Mhp), which are devoted to the function of adhesion, oxidative stress damage and apoptosis to host cells in our previous studies. Here, immune responses of NADH flavin oxidoreductase (NFOR) and NOX in mice and immune efficacy inoculated with intramuscular (IM), intranasal (IN), intramuscular unite intranasal (IM + IN) approaches were evaluated and compared. Cellular immunity levels, systemic immune and local mucosal immune responses were investigated by indirect enzyme-linked immunosorbent assay (iELISA) and quantitative reverse transcription PCR (qRT-PCR). Mice inoculated with NFOR and NOX by IM and IN or IM + IN could induce obvious secretion of specific immunoglobulin G (IgG) and secretory immunoglobulin A antibodies (sIgA) compared to those in negative control group. IM + IN inoculation resulted in systemic and local mucosal immune responses that were strongly produced. Moreover, Mhp NFOR and NOX could activate local mucosal immune responses mediated by Th1 and Th17 cells by IN. Our finding supported the notion that IM + IN was an effective immunization route for Mhp, which lays a foundation for more effective prevention of Mhp, and provides theoretical basis for the development of new subunit vaccines of Mhp.


Asunto(s)
Mycoplasma hyopneumoniae , Ratones , Animales , Inmunidad Mucosa , NAD , Factores de Virulencia , Células Th17 , FMN Reductasa , Vacunas Bacterianas , Inmunoglobulina G , Vacunas de Subunidad , Inmunoglobulina A Secretora , Flavinas , Ratones Endogámicos BALB C
19.
Cell Rep ; 40(4): 111142, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35905717

RESUMEN

Lentiviral vectors (LVs) are highly efficient at inducing CD8+ T cell responses. However, LV-encoded antigens are processed inside the cytosol of antigen-presenting cells, which does not directly communicate with the endosomal major histocompatibility complex class II (MHC-II) presentation pathway. LVs are thus poor at inducing CD4+ T cell response. To overcome this limitation, we devised a strategy whereby LV-encoded antigens are extended at their N-terminal end with the MHC-II-associated light invariant chain (li), which contains an endosome-targeting signal sequence. When evaluated with an LV-encoded polyantigen composed of CD4+ T cell targets from Mycobacterium tuberculosis, intranasal vaccination in mice triggers pulmonary polyfunctional CD4+ and CD8+ T cell responses. Adjuvantation of these LVs extends the mucosal immunity to Th17 and Tc17 responses. A systemic prime and an intranasal boost with one of these LV induces protection against M. tuberculosis. This strategy improves the protective power of LVs against infections and cancers, where CD4+ T cell immunity plays an important role.


Asunto(s)
Antígenos de Histocompatibilidad Clase II , Mycobacterium tuberculosis , Animales , Antígenos Bacterianos , Antígenos de Diferenciación de Linfocitos B , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Vectores Genéticos , Lentivirus , Ratones , Ratones Endogámicos C57BL , Mycobacteriaceae
20.
Res Vet Sci ; 150: 204-212, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-35849881

RESUMEN

Transmission of African swine fever virus (ASFV) in domestic swine occurs mainly via contact with mucosal surfaces. In this study, we constructed a pseudotyped surface-displaying BacMam-F1 vector expressing ASFV CD2v-p30-p54 fusion antigen, and compared its mucosal responses in pigs with that of rAd-F1 vector expressing the same antigen. From day 21 after intranasal immunization, the antigen-specific IgG and intranasal secretory IgA (S-IgA) antibody responses induced by BacMam-F1 were significantly stronger than that by rAd-F1. The significantly different S-IgA antibody responses were also detected in their tracheal washes and lung lavages. After stimulation with ASFV antigens, 4/6 S-IgA-promoting cytokine responses in porcine alveolar macrophages (PAMs) from BacMam-F1-immunized pigs were significantly stronger than that from rAd-F1-immunized pigs. The similar expression patterns of S-IgA-promoting cytokines were also detected in their lung lavages. After pretreating ASFV with different samples from immunized pigs, significant inhibitory effects were detected in tracheal washes, lung lavages and PAM cultures, but not serum samples with slight inter-group difference. These data suggest that the pseudotyped surface-displaying BacMam vector is more suitable for swine mucosal immunization.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Fiebre Porcina Africana/prevención & control , Animales , Anticuerpos Antivirales , Antígenos Virales , Vectores Genéticos , Inmunidad Mucosa , Inmunoglobulina A Secretora , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA