Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 451
Filtrar
1.
J Parasitol ; 110(5): 428-439, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39266006

RESUMEN

This paper provides a summary of new and revised records of pentastomes published since 1985 and also presents a checklist of all pentastome records from Australian reptiles and amphibians. The need to identify pentastome species, through both morphological and molecular characterization, is highlighted to enable a determination of the true diversity of pentastome species and their distribution within amphibians and reptiles in Australia.


Asunto(s)
Anfibios , Enfermedades Parasitarias en Animales , Reptiles , Animales , Anfibios/parasitología , Australia/epidemiología , Lista de Verificación/historia , Lista de Verificación/estadística & datos numéricos , Reptiles/parasitología , Enfermedades Parasitarias en Animales/epidemiología , Enfermedades Parasitarias en Animales/historia , Historia del Siglo XX , Historia del Siglo XIX
2.
Mar Pollut Bull ; 208: 117045, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39332339

RESUMEN

This study documents the natural accumulation of mollusk shells on an elevated rocky shore carved into the calcareous rocks of the La Popa formation at Punta Roca (Atlántico), covering an estimated area of 0.35 km2. Hydrodynamic transport and differential exposure to environmental conditions are the primary factors contributing to shell deposition. A total of 58 mollusk species were identified, including 30 bivalves and 28 gastropods. The Veneridae was the most prominent, with the highest number of species (7) and shells comprising 64.22 % of the total. Key species contributing to the accumulation include the bivalves Anomalocardia cf. flexuosa, Polymesoda cf. arctata, Leukoma pectorina, Tivela mactroides, Crassostrea rhizophorae, and the gastropod Vitta virginea. These species are primarily characteristic of estuarine environments, with the exception of T. mactroides. Notably, the first recorded occurrence of the non-native gastropod Naria turdus (Cypraeidae) on the Colombian Caribbean coast was documented. The accumulations exhibit varying degrees of abrasion, fragmentation, encrustation, and bioerosion, with some shells appearing almost intact, indicating differences in origin and transport mechanisms. The extraction of shells for ornamental purposes poses a significant challenge to this natural accumulation.

3.
Sci Total Environ ; : 176536, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39332739

RESUMEN

Mangrove afforestation is usually thought to be beneficial to mitigate the degradation and loss of mangroves. In Southern China, planting mangroves with the introduced Sonneratia apetala is also supportive to remove the invasive Spartina alterniflora. However, the influence of mangrove afforestation dominated by introduced species on macrobenthos, a vital joint of energy flow and nutrient cycling in mangroves, remains unclear. We explored the linkage between the functional traits of macrobenthos and the physicochemical properties of sediments in a coastal continuum including the mudflat (MF), exotic Spartina alterniflora saltmarsh (SL), natural Avicennia marina forest (AM), and introduced S. apetala afforestation (SA) via a seasonal field survey. After removing the S. alterniflora invaded into mudflat via S. apetala afforestation, the sediment C/N ratio decreased compared to that of natural forest, while the concentrations of microphytobenthic chlorophyll-a increased. The macrobenthic inhabiting mode shifted from epifaunal to infaunal as well. The biomass and density of microbenthic community decreased along MF, SL, AM, and SA. SL had greater C/N ratio and smaller functional richness (FR) than MF. AM was characterized by similar functional diversities, and pH value and salinity of sediment to those of MF, and greater microphytobenthic chlorophyll-a was found in AM. Compared to AM, the introduced S. apetala substantially engineered the habitat due to its flourishing above-ground pneumatophore system which caused faster deposition process, subsequently changed the resource utilization strategies of macrobenthos considerably. Overall, the use of Sonneratia afforestation on Spartina removal could not replace the contribution of natural Avicennia forest with respect to the functional traits of macrobenthos. Careful consideration on ecosystem functionalities would be indispensable for conducting saltmarsh eradication and mangrove afforestation in the future.

4.
Trop Life Sci Res ; 35(2): 309-317, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39234472

RESUMEN

Neotropical cichlid possesses territorial aggression which explains their success as alien species that pose threats to local fauna. The feeding ecology of Midas cichlid, Amphilophus citrinellus species outside its native range had never been fully understood. We aim to determine the stomach content, length-weight relationship and condition factor of this non-native species in one of the agroecosystems in Malaysia. The fish was collected using a cast net, and the guts were dissected. The stomach content (n = 35) revealed Midas cichlids feed on a wide array of preys including fish, amphibian and gastropod. The b-value is 2.60 (negative allometric growth) and the relative condition factor, Kn is 1.04. This result represents an initial study on the feeding aspect of this cichlid. Subsequent and continued researches are needed to evaluate the feeding behaviour and prey preferences of this species in its introduced range.

5.
BMC Plant Biol ; 24(1): 769, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135189

RESUMEN

BACKGROUND: Japanese knotweed (Reynoutria japonica var. japonica), a problematic invasive species, has a wide geographical distribution. We have previously shown the potential for attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and chemometrics to segregate regional differentiation between Japanese knotweed plants. However, the contribution of environment to spectral differences remains unclear. Herein, the response of Japanese knotweed to varied environmental habitats has been studied. Eight unique growth environments were created by manipulation of the red: far-red light ratio (R: FR), water availability, nitrogen, and micronutrients. Their impacts on plant growth, photosynthetic parameters, and ATR-FTIR spectral profiles, were explored using chemometric techniques, including principal component analysis (PCA), linear discriminant analysis, support vector machines (SVM) and partial least squares regression. Key wavenumbers responsible for spectral differences were identified with PCA loadings, and molecular biomarkers were assigned. Partial least squared regression (PLSR) of spectral absorbance and root water potential (RWP) data was used to create a predictive model for RWP. RESULTS: Spectra from plants grown in different environments were differentiated using ATR-FTIR spectroscopy coupled with SVM. Biomarkers highlighted through PCA loadings corresponded to several molecules, most commonly cell wall carbohydrates, suggesting that these wavenumbers could be consistent indicators of plant stress across species. R: FR most affected the ATR-FTIR spectra of intact dried leaf material. PLSR prediction of root water potential achieved an R2 of 0.8, supporting the potential use of ATR-FTIR spectrometers as sensors for prediction of plant physiological parameters. CONCLUSIONS: Japanese knotweed exhibits environmentally induced phenotypes, indicated by measurable differences in their ATR-FTIR spectra. This high environmental plasticity reflected by key biomolecular changes may contribute to its success as an invasive species. Light quality (R: FR) appears critical in defining the growth and spectral response to environment. Cross-species conservation of biomarkers suggest that they could function as indicators of plant-environment interactions including abiotic stress responses and plant health.


Asunto(s)
Fenotipo , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Análisis de Componente Principal , Especies Introducidas , Hojas de la Planta/química , Fotosíntesis
6.
Ecol Lett ; 27(8): e14494, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39136244

RESUMEN

Introduction history, including propagule pressure and residence time, has been proposed as a primary driver of biological invasions. However, it is unclear whether introduction history increases the likelihood that a species will be invasive or only the likelihood that it will be established. Using a dataset of non-native species historically available as ornamental plants in the conterminous United States, we investigated how introduction history relates to these stages of invasion. Introduction history was highly significant and a strong predictor of establishment, but only marginally significant and a poor predictor of invasive success. Propagule pressure predicted establishment better than residence time, with species likely to be established if they were introduced to only eight locations. These findings suggest that ongoing plant introductions will lead to widespread establishment but may not directly increase invasive success. Instead, other characteristics, like plant traits and local scale processes, may better predict whether a species becomes invasive.


Asunto(s)
Especies Introducidas , Estados Unidos , Plantas
7.
Biology (Basel) ; 13(8)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39194509

RESUMEN

Invasive species are one of the five main causes of biodiversity loss, along with habitat destruction, overexploitation, pollution, and climate change. Numbers and species of invasive organisms represent one of the first barriers to overcome in ecological conservation programs since they are difficult to control and eradicate. Due to the lack of records of invasive exotic species in Panama, this study was necessary for identifying and registering the documented groups of invasive species of the Chordates and Arthropod groups in Panama. This exhaustive search for invasive species was carried out in different bibliographic databases, electronic portals, and scientific journals which addressed the topic at a global level. The results show that approximately 141 invasive exotic species of the Arthropoda and Chordata phyla have been reported in Panama. Of the 141 species, 50 species belonged to the Arthropoda phylum and 91 species belonged to the Chordate phylum. Panamanian economic activity could facilitate the introduction of alien species into the country. This study provides the first list of invasive exotic chordate and arthropod species reported for the Republic of Panama.

8.
Biology (Basel) ; 13(8)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39194548

RESUMEN

Freshwater crayfish are vital species in ecosystems where they naturally occur, as they hold keystone and ecological engineering positions in these systems. Non-native species are common and widely spread throughout Earth's freshwater ecosystems and can have severe impacts on native crayfish populations. There has yet to be a comprehensive global review of the impacts of non-native species on native crayfish. Two literature searches were conducted using Web of Science and Google Scholar to find articles to address four key aims: (1) summarise trends in the literature; (2) examine the mechanisms by which invasive crayfish impact native crayfish species; (3) examine the mechanisms by which other non-native species, such as fish, impact native crayfish species; and (4) identify gaps in knowledge and research priorities. This review highlights that a far greater amount of research has addressed the effects of invasive crayfish than other non-native species. The research on invasive crayfish focuses on four types of interactions with native crayfish: competition, predation, introduction of disease, and reproductive impacts. Studies addressing the impacts of other non-native species on crayfish indicate that predation and habitat destruction by these species are the key processes impacting native crayfish. It is evident that field-based research, particularly concerning competition between invasive and native crayfish, is limited. Therefore, further in situ research is needed to assess the validity of laboratory results in a natural setting. Additionally, in many cases, the impact of certain non-native species on native crayfish populations has gone unmonitored. For this reason, it is recommended that additional research focus on assessing the impact of these non-native species. To conclude, the impacts of invasive crayfish on native crayfish are profound and wide-ranging, often leading to population decline or extirpation. Further, other non-native species are also likely to have a highly deleterious impact on native crayfish populations; however, more research is required to understand the scope of this impact.

9.
Oecologia ; 205(3-4): 613-626, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048862

RESUMEN

An introduction to a novel habitat represents a challenge to plants because they likely would face new interactions and possibly different physical context. When plant populations arrive to a new region free from herbivores, we can expect an evolutionary change in their defense level, although this may be contingent on the type of defense, resistance or tolerance, and cost of defense. Here, we addressed questions on the evolution of tolerance to damage in non-native Spanish populations of Datura stramonium by means of two comparative greenhouse experiments. We found differences in seed production, specific leaf area, and biomass allocation to stems and roots between ranges. Compared to the Mexican native populations of this species, non-native populations produced less seeds despite damage and allocate more biomass to roots and less to stems, and had higher specific leaf area values. Plasticity to leaf damage was similar between populations and no difference in tolerance to damage between native and non-native populations was detected. Costs for tolerance were detected in both regions. Two plasticity traits of leaves were associated with tolerance and were similar between regions. These results suggest that tolerance remains beneficial to plants in the non-native region despite it incurs in fitness costs and that damage by herbivores is low in the non-native region. The study of the underlying traits of tolerance can improve our understanding on the evolution of tolerance in novel environments, free from plants' specialist herbivores.


Asunto(s)
Biomasa , Datura stramonium , Hojas de la Planta , Herbivoria , Especies Introducidas , Ecosistema , Adaptación Fisiológica , Semillas , España , Raíces de Plantas , México
10.
Dis Aquat Organ ; 159: 9-14, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989789

RESUMEN

Glypthelmins quieta is a frog trematode native to North and Central America. This trematode was recently detected in Japan in the American bullfrog Lithobates catesbeianus, which was introduced from North America to Japan. As the first intermediate host of G. quieta, typically a snail, has not yet been identified in Japan, we conducted a snail survey in eastern Japan to screen for an intermediate host using DNA barcoding based on the nuclear 28S ribosomal RNA and mitochondrial cytochrome c oxidase subunit 1. We sampled 3 different snail species, Orientogalba ollula, Physella acuta, and Sinotaia quadrata histrica (157 individuals in total), and only the freshwater snail Physella acuta, which is also believed to have been introduced from North America to Japan, had sporocysts of G. quieta in its hepatopancreas. The introduction of the intermediate and definitive hosts from North America may have facilitated the invasion of G. quieta into Japan.


Asunto(s)
Caracoles , Trematodos , Animales , Japón , Trematodos/genética , Caracoles/parasitología , Especies Introducidas , Interacciones Huésped-Parásitos , ARN Ribosómico 28S/genética
11.
J Wildl Dis ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39013547

RESUMEN

Chronic phalaris toxicity (CPT) is a neurological disease caused by animals ingesting toxins produced by early growth stages of Phalaris aquatica, a pasture plant introduced to the southeastern regions of Australia postcolonization. Little is known about the clinical progression of CPT in wildlife, as incidents are sporadic and predominantly reported when animals are in the end stages of disease and in a poor welfare state. We studied a cohort of 35 eastern gray kangaroos (Macropus giganteus) affected by CPT to clarify clinical prognosis and survival rates. Kangaroos were captured in May, June, and July of 2022 at Plenty Gorge Parklands, Victoria, Australia. Each animal was radiotracked for 180 d, clinical progression and disease outcomes monitored twice a week. By the conclusion of the study, 24 animals had died (19 by euthanasia due to deterioration, five found dead). Ten animals survived, with two demonstrating a reduction in clinical signs and eight showing full resolution of clinical signs. One animal was disqualified from the study. The overall survival rate was 29.4% (95% confidence interval 17.5-49.5%). The survival duration of animals that died ranged from 5 to 133 d. There was no difference in survival rate based on sex (P=0.2), age class (P=0.49) or the month of capture (P=0.49). These results suggest that CPT is an important health and welfare concern for at-risk macropod populations, with high case-fatality rates and prolonged clinical durations. Further research to manage the disease via methods such as reducing Phalaris aquatica plant coverage and preventative treatments for animals is warranted to reduce disease incidences and improve disease outcomes in wildlife populations.

12.
Plants (Basel) ; 13(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38999587

RESUMEN

Seed germination and dispersal have an important impact on the establishment and spread of invasive plants. Understanding the extent of intraspecific seed trait variations can enhance our understanding of how invasive plants respond to environmental change after introduction and help predict the dynamic of invasive species under future environmental conditions. However, less attention has been given to the variation in seed traits within species as opposed to among species. We compared seed production, seed morphological traits, dispersal ability, and seedling performance of Chromolaena odorata from 10 introduced populations in Asia and 12 native populations in America in a common garden. The results showed that range (introduced vs. native) and climate affected these traits. Compared with the native population, the introduced populations had higher seed numbers per capitula, lighter seeds, and higher potential dispersal ability seeds (lower terminal velocity) but lower germination rates and seedling lengths. Climatic clines in seed numbers per capitula and pappus length were observed; however, the clines in pappus length differed between the introduced and native populations. Trait covariation patterns were also different between both ranges. In the native populations, there was a trade-off between seed numbers per capitula and seed mass, while this relationship was not found for the introduced populations. These results indicate that C. odorata alters the ecological strategy of seed following invasion, which facilitates its establishment and fast dispersal and contributes to successful invasion in the introduced ranges.

13.
Sci Rep ; 14(1): 15465, 2024 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965394

RESUMEN

Cliffs contain one of the least known plant communities, which has been overlooked in biodiversity assessments due to the inherent inaccessibility. Our study adopted the unmanned aerial vehicle (UAV) with the telephoto camera to remotely clarify floristic variability across unreachable cliffs. Studied cliffs comprised 17 coastal and 13 inland cliffs in Gageodo of South Korea, among which 9 and 5 cliffs were grazed by the introduced cliff-dwelling goats. The UAV telephotography showed 154 and 166 plant species from coastal and inland cliffs, respectively. Inland cliffs contained more vascular plant species (P < 0.001), increased proportions of fern and woody species (P < 0.05), and decreased proportion of herbaceous species (P < 0.001) than coastal cliffs. It was also found that coastal and inland cliffs differed in the species composition (P < 0.001) rather than taxonomic beta diversity (P = 0.29). Furthermore, grazed coastal cliffs featured the elevated proportions of alien and annual herb species than ungrazed coastal cliffs (P < 0.05). This suggests that coastal cliffs might not be totally immune to grazing if the introduced herbivores are able to access cliff microhabitats; therefore, such anthropogenic introduction of cliff-dwelling herbivores should be excluded to conserve the native cliff plant communities.


Asunto(s)
Biodiversidad , Plantas , Animales , República de Corea , Islas , Dispositivos Aéreos No Tripulados , Herbivoria , Cabras , Ecosistema
14.
New Phytol ; 243(5): 1980-1990, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38952235

RESUMEN

Ectomycorrhizal (ECM) fungi distribute tree-derived carbon (C) via belowground hyphal networks in forest ecosystems. Here, we asked the following: (1) Is C transferred belowground to a neighboring tree retained in fungal structures or transported within the recipient tree? (2) Is the overlap of ectomycorrhizal fungi in mycorrhizal networks related to the amount of belowground C transfer? We used potted sapling pairs of European beech (Fagus sylvatica) and North-American Douglas-fir (Pseudotsuga menziesii) for 13CO2 pulse-labeling. We compared 13C transfer from beech (donor) to either beech or Douglas-fir (recipient) and identified the ECM species. We measured the 13C enrichment in soil, plant tissues, and ECM fractions of fungal-containing parts and plant transport tissues. In recipients, only fungal-containing tissue of ectomycorrhizas was significantly enriched in 13C and not the plant tissue. Douglas-fir recipients shared on average one ECM species with donors and had a lower 13C enrichment than beech recipients, which shared on average three species with donors. Our results support that recently assimilated C transferred belowground is shared among fungi colonizing tree roots but not among trees. In mixed forests with beech and Douglas-fir, the links for C movement might be hampered due to low mycorrhizal overlap with consequences for soil C cycling.


Asunto(s)
Isótopos de Carbono , Carbono , Fagus , Micorrizas , Pseudotsuga , Micorrizas/fisiología , Fagus/microbiología , Pseudotsuga/microbiología , Carbono/metabolismo , Suelo/química , Europa (Continente)
15.
Glob Chang Biol ; 30(6): e17375, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38895806

RESUMEN

Islands are biodiversity hotspots that host unique assemblages. However, a substantial proportion of island species are threatened and their long-term survival is uncertain. Identifying and preserving vulnerable species has become a priority, but it is also essential to combine this information with other facets of biodiversity like functional diversity, to understand how future extinctions might affect ecosystem stability and functioning. Focusing on mammals, we (i) assessed how much functional space would be lost if threatened species go extinct, (ii) determined the minimum number of extinctions that would cause a significant functional loss, (iii) identified the characteristics (e.g., biotic, climatic, geographic, or orographic) of the islands most vulnerable to future changes in the functional space, and (iv) quantified how much of that potential functional loss would be offset by introduced species. Using trait information for 1474 mammal species occurring in 318 islands worldwide, we built trait probability density functions to quantify changes in functional richness and functional redundancy in each island if the mammals categorized by IUCN as threatened disappeared. We found that the extinction of threatened mammals would reduce the functional space in 63% of the assessed islands, although these extinctions in general would cause a reduction of less than 15% of their overall functional space. Also, on most islands, the extinction of just a few species would be sufficient to cause a significant loss of functional diversity. The potential functional loss would be higher on small, isolated, and/or species-rich islands, and, in general, the functional space lost would not be offset by introduced species. Our results show that the preservation of native species and their ecological roles remains crucial for maintaining the current functioning of island ecosystems. Therefore, conservation measures considering functional diversity are imperative to safeguard the unique functional roles of threatened mammal species on islands.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Extinción Biológica , Islas , Mamíferos , Animales , Mamíferos/fisiología , Especies Introducidas
16.
Mol Ecol ; 33(13): e17420, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38837546

RESUMEN

In this study, we investigated the invasiveness of Gekko japonicus, a prevalent gecko species in Japan and an ancient non-native species, focusing on its competition with both the undescribed endemic Gekko species (referred to as Nishiyamori in Japanese) and G. hokouensis. These species are co-distributed with G. japonicus, leading us to hypothesize that G. japonicus was invasive upon its initial introduction. We employed niche analysis and population genetics through ddRAD-seq to assess the historical invasiveness of G. japonicus by comparing regions with and without interspecies competition. Our niche analysis across the Goto Islands, Hiradojima Island (colonized by G. japonicus) and the Koshikishima Islands (not colonized by G. japonicus) indicated that endemic Gekko sp. alter their microhabitat usage in response to invasions by other gecko species, despite having similar suitable habitats and microhabitat preferences. Population genetic analysis revealed significant population declines in Gekko sp. within areas of introduced competition, in contrast to stable populations in areas without such competition. These findings suggest a tripartite competitive relationship among the gecko species, with G. japonicus and G. hokouensis invasions restricting the distribution of the endemic Gekko sp. Consequently, G. japonicus may have historically acted as an invasive species. Acknowledging the historical dynamics of current biodiversity is crucial for addressing complex ecological issues and making informed conservation decisions.


Asunto(s)
Ecosistema , Genética de Población , Especies Introducidas , Lagartos , Animales , Lagartos/genética , Japón , Islas
17.
Ecol Evol ; 14(6): e11523, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38932974

RESUMEN

Emerging infectious diseases threaten wildlife globally. While the effects of infectious diseases on hosts with severe infections and high mortality rates often receive considerable attention, effects on hosts that persist despite infection are less frequently studied. To understand how persisting host populations change in the face of disease, we quantified changes to the capture rates of Eptesicus fuscus (big brown bats), a persisting species susceptible to infection by the invasive fungal pathogen Pseudogymnoascus destructans (Pd; causative agent for white-nose syndrome), across the eastern US using a 30-year dataset. Capture rates of male and female E. fuscus increased from preinvasion to pathogen establishment years, with greater increases to the capture rates of females than males. Among females, capture rates of pregnant and post-lactating females increased by pathogen establishment. We outline potential mechanisms for these broad demographic changes in E. fuscus capture rates (i.e., increases to foraging from energy deficits created by Pd infection, increases to relative abundance, or changes to reproductive cycles), and suggest future research for identifying mechanisms for increasing capture rates across the eastern US. These data highlight the importance of understanding how populations of persisting host species change following pathogen invasion across a broad spatial scale. Understanding changes to population composition following pathogen invasion can identify broad ecological patterns across space and time, and open new avenues for research to identify drivers of those patterns.

18.
Ecol Evol ; 14(6): e11535, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38919645

RESUMEN

Human-induced environmental change has caused widespread loss of species that support important functions for ecosystems and society. For example, vertebrate scavengers contribute to the functional health of ecosystems and provide services to agricultural landscapes by removing carcasses and associated pests. Widespread extirpation of native Australian mammals since the arrival of Europeans in Australia has removed many scavenging species from landscapes, while scavenging mammals such as European red foxes (Vulpes vulpes) have been introduced. In much of Australia, squamate reptiles are the largest native terrestrial scavengers remaining, where large native mammals are extinct and conservation management is being undertaken to remove invasive mammals. The contribution of reptiles to scavenging functions is not well understood. In this study, we investigated the ecosystem functions provided by large reptiles as scavengers to better understand how populations can be managed to support ecosystem services. We investigated the ecosystem services provided by vertebrate scavengers in Australian coastal mallee ecosystems, focusing on the heath goanna (Varanus rosenbergi), the only extant native terrestrial scavenger in the region. We carried out exclosure experiments, isolating the scavenging activity of different taxonomic groups to quantify the contribution of different taxa to scavenging services, specifically the removal of rat carcasses, and its impact on the occurrence of agriculturally damaging blowflies. We compared areas with different native and invasive scavenger communities to investigate the impact of invasive species removal and native species abundance on scavenging services. Our results indicated that vertebrate scavenging significantly contributes to carcass removal and limitation of necrophagous fly breeding in carcasses and that levels of removal are higher in areas associated with high densities of heath goannas and low densities of invasive mammals. Therefore, augmentation of heath goanna populations represents a promising management strategy to restore and maximize scavenging ecosystem services.

19.
Parasitol Res ; 123(6): 247, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38898308

RESUMEN

Introduced species have a major impact on freshwater ecosystems, particularly on islands. Numerous fish species have been introduced in Corsica (Mediterranean island, southern France) as part of planned programs or clandestinely. The introduction of non-native freshwater fish species can have a range of impacts on the recipient ecosystem, including through the co-introduction of its pathogens. A sample of introduced perch Perca fluviatilis Linnaeus, 1758 from the artificial reservoir of Padula was examined following a report of parasites by an angler. The analyses revealed the occurrence of Eustrongylides sp. (Nematoda) and Clinostomum complanatum (Digenea), two zoonotic parasites in P. fluviatilis. Both parasites are reported for the first time in France. Eustrongylides sp. and C. complanatum may have been introduced with their fish intermediate hosts or through their final bird hosts. The occurrence of the two parasites raises concerns from both a veterinary and human health perspective as they can use a wide range of amphibians as intermediate hosts and can be acquired in humans through the consumption of raw or undercooked fish.


Asunto(s)
Enfermedades de los Peces , Especies Introducidas , Percas , Animales , Francia , Enfermedades de los Peces/parasitología , Percas/parasitología , Trematodos/aislamiento & purificación , Trematodos/clasificación , Zoonosis/parasitología , Infecciones por Trematodos/veterinaria , Infecciones por Trematodos/parasitología , Islas , Humanos
20.
Int J Parasitol Parasites Wildl ; 24: 100953, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38938270

RESUMEN

Feral deer are widespread throughout Australia with the capacity to impact livestock production via transmission of parasites. Samples of Dama dama (fallow deer), Rusa unicolor (sambar deer), Cervus elaphus (red deer) and an unidentified deer were sourced from various locations in south-eastern Australia for examination for parasites. Adult nematodes were collected from the lungs of all deer species across four separate geographical locations. The nematodes were identified as species of Dictyocaulus through both morphological and molecular means. Species identification based on morphological features was difficult, with many measurements from described species overlapping. Molecular analyses targeting three markers, namely 18S rRNA, ITS2, and cox1 revealed the presence of two distinct species: Dictyocaulus cervi and Dictyocaulus skrjabini. These are the first genetically confirmed reports of species of Dictyocaulus in feral deer in Australia, and although cross-transmission of species of Dictyocaulus with livestock has not yet been reported, it cannot be completely discounted without further research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA