Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Intervalo de año de publicación
1.
ACS Nano ; 18(25): 16199-16207, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38860922

RESUMEN

Biological signaling correlates with the interrelation between ion and nanofluidic transportation pathways. However, artificial embodies with reconfigurable ion-fluid transport interaction aspects remain largely elusive. Herein, we unveiled an intimate interplay between nanopore-driven advancing flow and ion carriage for the spontaneous imbibition of aqueous solutions at the nanoporous thin film level. Ionic factors dominate transport phenomena processing and integration (ions influence fluid motion, which in turn governs the self-regulated ion traveling). We show an ion-induced translation effect that finely converts a chemical input, the nature of ions, into a related fluidic output: modulation of the extent of imbibition. We further find complex imbibition dynamics induced by the ion type and population. We peculiarly pinpoint a stop-and-go effective transport process with a programmable delay time triggered by selective guest-host interactions. The ion-fluid transport interplay is captured by a simple model that considers the counterbalance between the capillary infiltration and solution concentration, owing to water loss at the nanoporous film-air interface. Our results demonstrate that nanopore networks present fresh scenarios for understanding and controlling autonomous macroscopic liquid locomotion and offer a distinctive working principle for smart ion operation.

2.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674160

RESUMEN

Slc4a genes encode various types of transporters, including Na+-HCO3- cotransporters, Cl-/HCO3- exchangers, or Na+-driven Cl-/HCO3- exchangers. Previous research has revealed that Slc4a9 (Ae4) functions as a Cl-/HCO3- exchanger, which can be driven by either Na+ or K+, prompting investigation into whether other Slc4a members facilitate cation-dependent anion transport. In the present study, we show that either Na+ or K+ drive Cl-/HCO3- exchanger activity in cells overexpressing Slc4a8 or Slc4a10. Further characterization of cation-driven Cl-/HCO3- exchange demonstrated that Slc4a8 and Slc4a10 also mediate Cl- and HCO3--dependent K+ transport. Full-atom molecular dynamics simulation on the recently solved structure of Slc4a8 supports the coordination of K+ at the Na+ binding site in S1. Sequence analysis shows that the critical residues coordinating monovalent cations are conserved among mouse Slc4a8 and Slc4a10 proteins. Together, our results suggest that Slc4a8 and Slc4a10 might transport K+ in the same direction as HCO3- ions in a similar fashion to that described for Na+ transport in the rat Slc4a8 structure.


Asunto(s)
Potasio , Simportadores de Sodio-Bicarbonato , Animales , Ratones , Bicarbonatos/metabolismo , Sitios de Unión , Antiportadores de Cloruro-Bicarbonato/metabolismo , Antiportadores de Cloruro-Bicarbonato/genética , Cloruros/metabolismo , Transporte Iónico , Simulación de Dinámica Molecular , Potasio/metabolismo , Sodio/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Simportadores de Sodio-Bicarbonato/genética
3.
Ann Biomed Eng ; 52(1): 103-123, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37651029

RESUMEN

Escherichia coli bacterium is a rod-shaped organism composed of a complex double membrane structure. Knowledge of electric field driven ion transport through both membranes and the evolution of their induced permeabilization has important applications in biomedical engineering, delivery of genes and antibacterial agents. However, few studies have been conducted on Gram-negative bacteria in this regard considering the contribution of all ion types. To address this gap in knowledge, we have developed a deterministic and stochastic Brownian dynamics model to simulate in 3D space the motion of ions through pores formed in the plasma membranes of E. coli cells during electroporation. The diffusion coefficient, mobility, and translation time of Ca2+, Mg2+, Na+, K+, and Cl- ions within the pore region are estimated from the numerical model. Calculations of pore's conductance have been validated with experiments conducted at Gustave Roussy. From the simulations, it was found that the main driving force of ionic uptake during the pulse is the one due to the externally applied electric field. The results from this work provide a better understanding of ion transport during electroporation, aiding in the design of electrical pulses for maximizing ion throughput, primarily for application in cancer treatment.


Asunto(s)
Electroporación , Escherichia coli , Transporte Iónico , Transporte Biológico , Electroporación/métodos , Iones
4.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003293

RESUMEN

Chemoresistance to standard neoadjuvant treatment commonly occurs in locally advanced breast cancer, particularly in the luminal subtype, which is hormone receptor-positive and represents the most common subtype of breast cancer associated with the worst outcomes. Identifying the genes associated with chemoresistance is crucial for understanding the underlying mechanisms and discovering effective treatments. In this study, we aimed to identify genes linked to neoadjuvant chemotherapy resistance in 62 retrospectively included patients with luminal breast cancer. Whole RNA sequencing of 12 patient biopsies revealed 269 differentially expressed genes in chemoresistant patients. We further validated eight highly correlated genes associated with resistance. Among these, solute carrier family 12 member 1 (SLC12A1) and glutamate ionotropic AMPA type subunit 4 (GRIA4), both implicated in ion transport, showed the strongest association with chemoresistance. Notably, SLC12A1 expression was downregulated, while protein levels of glutamate receptor 4 (GLUR4), encoded by GRIA4, were elevated in patients with a worse prognosis. Our results suggest a potential link between SLC12A1 gene expression and GLUR4 protein levels with chemoresistance in luminal breast cancer. In particular, GLUR4 protein could serve as a potential target for drug intervention to overcome chemoresistance.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/genética , Proteínas de Transporte de Membrana , Terapia Neoadyuvante , Estudios Retrospectivos , Miembro 1 de la Familia de Transportadores de Soluto 12
5.
J Fungi (Basel) ; 9(9)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37755056

RESUMEN

The use of the cationic, dye thioflavin T (ThT), to estimate the electric plasma membrane potential difference (PMP) via the fluorescence changes and to obtain its actual values from the accumulation of the dye, considering important correction factors by its binding to the internal components of the cell, was described previously for baker's yeast. However, it was considered important to explore whether the method developed could be applied to other yeast strains. Alternative ways to estimate the PMP by using flow cytometry and a multi-well plate reader are also presented here. The methods were tested with other strains of Saccharomyces cerevisiae (W303-1A and FY833), as well as with non-conventional yeasts: Debaryomyces hansenii, Candida albicans, Meyerozyma guilliermondii, and Rhodotorula mucilaginosa. Results of the estimation of the PMP via the fluorescence changes under different conditions were adequate with all strains. Consistent results were also obtained with several mutants of the main monovalent transporters, validating ThT as a monitor for PMP estimation.

6.
Artículo en Inglés | MEDLINE | ID: mdl-34126254

RESUMEN

Aeglids are unique freshwater decapods whose habitats are being impacted by metallic compounds, such as copper (Cu). Thus, we investigated the effects of acute Cu exposure on ionic regulation of Aegla castro. For this, male specimens in intermolt were collected from a reference stream and acclimated for 5 days in laboratory. After which, crabs were exposed to 11 µg L-1 Cu (Cu11) or only to water (CTR) for 24 h. Hemolymph samples were withdrawn for the determination of Na+, K+, Ca2+, and Mg2+ concentrations and the posterior gills removed for the analysis of Na+/K+-ATPase, Ca2+-ATPase, H+-ATPase, and carbonic anhydrase (CA) activities. Increased Ca2+ and Mg2+ hemolymph concentrations were observed in animals from Cu11, when compared with CTR group. In addition, decreased activity of CA was observed in animals exposed to Cu. In the current study, alterations in Ca2+ and Mg2+concentrations probably indicate that animals activated exoskeleton reabsorption mechanisms, characteristic of the premolt. Therefore, increased Ca2+ and Mg2+ concentrations in hemolymph may indicate that a biochemical signal associated with the molting cycle was triggered by Cu exposure. Despite the known harmful effects of Cu on osmoregulatory enzymes, here we observed decreased activity only in CA. However, decreased activity of CA could trigger both acid-base imbalance and ionic disruption, since CA provides H+ and HCO3- for intracellular pH maintenance, and underpins Na+ and Cl- for ionic regulation. Therefore, understanding how aeglids respond to metal contamination in laboratory conditions is crucial to assess their potential as an alternative biological model for aquatic ecotoxicology.


Asunto(s)
Braquiuros/efectos de los fármacos , Cobre/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Biomarcadores , Braquiuros/fisiología , Inhibidores de Anhidrasa Carbónica/toxicidad , Anhidrasas Carbónicas/metabolismo , Branquias/efectos de los fármacos , Branquias/enzimología , Masculino , Equilibrio Hidroelectrolítico/efectos de los fármacos
7.
J Exp Biol ; 224(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34008838

RESUMEN

Rhodnius prolixus is a blood-feeding insect vector of Trypanosoma cruzi, a protozoan parasite that causes Chagas disease. During each blood meal, the animals ingest large volumes of blood, that may be up to 12 times the unfed body mass. These blood meals impose a significant osmotic stress for the animals due to the hyposmotic condition of the ingested blood compared with the insect's hemolymph. Thus the insect undergoes a massive postprandial diuresis that allows for the excretion of the plasma fraction of the blood in less than two hours. Diuresis is performed by the excretory system, consisting of the Malpighian tubules and gut, under the control of diuretic and anti-diuretic factors. We investigated the ion transport machinery triggered by stimulation with the diuretic factor serotonin in the anterior midgut (i.e. crop) and the effect of the diuretic modulator RhoprCCHamide2. Ussing chamber assays revealed that serotonin-stimulated increase in transepithelial short-circuit current (Isc) was more sensitive to the blockage with amiloride than 5-N-ethyl-N-isopropyl amiloride (EIPA), suggesting the involvement of Na+ channels. Incubation in Na+-free, but not Cl--free saline, blocked the effect of serotonin on Isc. Moreover, treatment with Na+-K+-2Cl- cotransporter (NKCC) and Na+-Cl- cotransporter (NCC) blockers had no effect on fluid secretion but was blocked by amiloride. Blockage of Na+/K+-ATPase with ouabain inhibited Isc but the H+-ATPase inhibitor bafilomycin had no effect. The neuropeptide RhoprCCHamide2 diminished serotonin-stimulated Isc across the crop. The results suggest that Na+ undergoes active transport via an apical amiloride-sensitive Na+ channel and a basolateral ouabain-sensitive Na+/K+-ATPase, while Cl- is transported through a passive paracellular pathway.


Asunto(s)
Enfermedad de Chagas , Neuropéptidos , Rhodnius , Animales , Túbulos de Malpighi , Serotonina/farmacología
8.
Bioelectrochemistry ; 124: 28-39, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29990599

RESUMEN

Electroporation-based techniques, i.e. techniques based on the perturbation of the cell membrane through the application of electric pulses, are widely used at present in medicine and biotechnology. However, the electric pulse - cell membrane interaction is not yet completely understood neither explicitly formalized. Here we introduce a Multiphysics (MP) model describing electric pulse - cell membrane interaction consisting on the Poisson equation for the electric field, the Nernst-Planck equations for ion transport (protons, hydroxides, sodium or calcium, and chloride), the Maxwell tensor and mechanical equilibrium equation for membrane deformations (with an explicit discretization of the cell membrane), and the Smoluchowski equation for membrane permeabilization. The MP model predicts that during the application of an electric pulse to a spherical cell an elastic deformation of its membrane takes place affecting the induced transmembrane potential, the pore creation dynamics and the ionic transport. Moreover, the coincidence among maximum membrane deformation, maximum pore aperture, and maximum ion uptake is predicted. Such behavior has been corroborated experimentally by previously published results in red blood and CHO cells as well as in supramolecular lipid vesicles.


Asunto(s)
Membrana Celular/fisiología , Electroporación/métodos , Animales , Células CHO , Calcio/metabolismo , Membrana Celular/metabolismo , Cloruros/metabolismo , Cricetulus , Deformación Eritrocítica , Eritrocitos/metabolismo , Transporte Iónico , Potenciales de la Membrana , Modelos Biológicos
9.
J Fish Biol ; 93(3): 550-559, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29956316

RESUMEN

Smolting in Atlantic salmon Salmo salar is a critical life-history stage that is preparatory for downstream migration and entry to seawater that is regulated by abiotic variables including photoperiod and temperature. The present study was undertaken to determine the interaction of temperature and salinity on salinity tolerance, gill osmoregulatory proteins and cellular and endocrine stress in S. salar smolts. Fish were exposed to rapid changes in temperature (from 14 to 17, 20 and 24°C) in fresh water (FW) and seawater (SW), with and without prior acclimation and sampled after 2 and 8 days. Fish exposed simultaneously to SW and 24°C experienced 100% mortality, whereas no mortality occurred in any of the other groups. The highest temperature also resulted in poor ion regulation in SW with or without prior SW acclimation, whereas no substantial effect was observed in FW. Gill Na+ -K+ -ATPase (NKA) activity increased in SW fish compared to FW fish and decreased with high temperature in both FW and SW. Gill Nkaα1a abundance was high in FW and Nkaα1b and Na+ -K+ -2Cl- cotransporter high in SW, but all three were lower at the highest temperature. Gill Hsp70 levels were elevated in FW and SW at the highest temperature and increased with increasing temperature 2 days following direct transfer to SW. Plasma cortisol levels were elevated in SW at the highest temperature. Our results indicate that there is an important interaction of salinity and elevated temperature on osmoregulatory performance and the cellular stress response in S. salar, with an apparent threshold for osmoregulatory failure in SW above 20°C.


Asunto(s)
Branquias/enzimología , Calor , Salmo salar/sangre , Tolerancia a la Sal , Equilibrio Hidroelectrolítico , Aclimatación/fisiología , Animales , Sistema Endocrino , Agua Dulce , Proteínas HSP70 de Choque Térmico/metabolismo , Osmorregulación , Salinidad , Salmón/metabolismo , Agua de Mar , Sodio/sangre , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Estrés Fisiológico , Temperatura
10.
Arch Toxicol ; 92(1): 273-288, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28721440

RESUMEN

In the recent years, the toxicity of certain divalent cations has been associated with the alteration of intracellular Ca2+ homeostasis. Among other mechanisms, these cations may affect the functionality of certain Ca2+-binding proteins and/or Ca2+ pumps. The plasma membrane calcium pump (PMCA) maintains Ca2+ homeostasis in eukaryotic cells by mediating the efflux of this cation in a process coupled to ATP hydrolysis. The aim of this work was to investigate both in vitro and in cultured cells if other divalent cations (Sr2+, Ba2+, Co2+, Cd2+, Pb2+ or Be2+) could be transported by PMCA. Current results indicate that both purified and intact cell PMCA transported Sr2+ with kinetic parameters close to those of Ca2+ transport. The transport of Pb2+ and Co2+ by purified PMCA was, respectively, 50 and 75% lower than that of Ca2+, but only Co2+ was extruded by intact cells and to a very low extent. In contrast, purified PMCA-but not intact cell PMCA-transported Ba2+ at low rates and only when activated by limited proteolysis or by phosphatidylserine addition. Finally, purified PMCA did not transport Cd2+ or Be2+, although minor Be2+ transport was measured in intact cells. Moreover, Cd2+ impaired the transport of Ca2+ through various mechanisms, suggesting that PMCA may be a potential target of Cd2+-mediated toxicity. The differential capacity of PMCA to transport these divalent cations may have a key role in their detoxification, limiting their noxious effects on cell homeostasis.


Asunto(s)
Cationes/farmacocinética , Metales/farmacocinética , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Transporte Biológico , Calcio/farmacocinética , Calmodulina/química , Calmodulina/metabolismo , Cationes/toxicidad , Células Cultivadas , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Células HEK293 , Humanos , Inactivación Metabólica , Metales/toxicidad , Fosfatidilserinas/metabolismo , Fosfatidilserinas/farmacología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/química , Dominios Proteicos
11.
Front Plant Sci ; 8: 1021, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28659960
12.
Microbiol Res ; 192: 142-147, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27664732

RESUMEN

Phyllosticta citricarpa is the epidemiological agent of Citrus Black Spot (CBS) disease, which is responsible for large economic losses worldwide. CBS is characterized by the presence of spores (pycnidiospores) in dark lesions of fruit, which are also responsible for short distance dispersal of the disease. The identification of genes involved in asexual reproduction of P. citricarpa can be an alternative for directional disease control. We analyzed a library of mutants obtained through Agrobacterium tumefaciens transformation system, looking for alterations in growth and reproductive structure formation. Two mutant strains were found to have lost the ability to form pycnidia. The flanking T-DNA insertion regions were identified on P. citricarpa genome by using blast analysis and further gene prediction. The predicted genes containing the T-DNA insertions were identified as Spindle Poison Sensitivity Scp3, Ion Transport protein, and Cullin Binding proteins. The Ion Transport and Cullin Binding proteins are known to be correlated with sexual and asexual reproduction in fungi; however, the exact mechanism by which these proteins act on spore formation in P. citricarpa needs to be better characterized. The Scp3 proteins are suggested here for the first time as being associated with asexual reproduction in fungus. This protein is associated with microtubule formation, and as microtubules play an essential role as spindle machinery for chromosome segregation and cytokinesis, insertions in this gene can lead to abnormal formations, such as that observed here in P. citricarpa. We suggest these genes as new targets for fungicide development and CBS disease control, by iRNA.


Asunto(s)
Agrobacterium tumefaciens/fisiología , Ascomicetos/fisiología , Regulación Fúngica de la Expresión Génica , Interacciones Microbianas , Mutación , Reproducción Asexuada/genética , Transformación Genética , Citrus/microbiología , ADN Bacteriano , Orden Génico , Genes Reporteros , Mutagénesis Insercional , Enfermedades de las Plantas/microbiología
13.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;49(10): e5340, 2016. tab, graf
Artículo en Inglés | LILACS | ID: biblio-951651

RESUMEN

Undernutrition represents a major public health challenge for middle- and low-income countries. This study aimed to evaluate whether a multideficient Northeast Brazil regional basic diet (RBD) induces acute morphological and functional changes in the ileum of mice. Swiss mice (∼25 g) were allocated into two groups: i) control mice were fed a standard diet and II) undernourished mice were fed the RBD. After 7 days, mice were killed and the ileum collected for evaluation of electrophysiological parameters (Ussing chambers), transcription (RT-qPCR) and protein expression (western blotting) of intestinal transporters and tight junctions. Body weight gain was significantly decreased in the undernourished group, which also showed decreased crypt depth but no alterations in villus height. Electrophysiology measurements showed a reduced basal short circuit current (Isc) in the undernourished group, with no differences in transepithelial resistance. Specific substrate-evoked Isc related to affinity and efficacy (glutamine and alanyl-glutamine) were not different between groups, except for the maximum Isc (efficacy) induced by glucose. Transcription of Sglt1 and Pept1 was significantly higher in the undernourished group, while SN-2 transcription was decreased. No changes were found in transcription of CAT-1 and CFTR, while claudin-2 and occludin transcriptions were significantly increased in the undernourished group. Despite mRNA changes, SGLT-1, PEPT-1, claudin-2 and occludin protein expression showed no difference between groups. These results demonstrate early effects of the RBD on mice, which include reduced body weight and crypt depth in the absence of significant alterations to villus morphology, intestinal transporters and tight junction expression.


Asunto(s)
Animales , Masculino , Conejos , Desnutrición/fisiopatología , Desnutrición/metabolismo , Crecimiento/fisiología , Íleon/anatomía & histología , Íleon/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Factores de Tiempo , Peso Corporal , Ingestión de Energía/fisiología , ARN Mensajero , Immunoblotting , Enfermedad Aguda , Transporte Iónico/fisiología , Desnutrición/complicaciones , Modelos Animales de Enfermedad , Absorción Intestinal/fisiología
14.
Front Plant Sci ; 6: 466, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26157451

RESUMEN

Salinity is one of the major limitations for food production worldwide. Improvement of plant salt-stress tolerance using plant-growth promoting rhizobacteria (PGPR) has arisen as a promising strategy to help overcome this limitation. However, the molecular and biochemical mechanisms controlling PGPR/plant interactions under salt-stress remain unclear. The main objective of this study was to obtain new insights into the mechanisms underlying salt-stress tolerance enhancement in the salt-sensitive Arabidopsis thaliana Col-0 plants, when inoculated with the well-known PGPR strain Burkholderia phytofirmans PsJN. To tackle this, different life history traits, together with the spatiotemporal accumulation patterns for key metabolites and salt-stress related transcripts, were analyzed in inoculated plants under short and long-term salt-stress. Inoculated plants displayed faster recovery and increased tolerance after sustained salt-stress. PsJN treatment accelerated the accumulation of proline and transcription of genes related to abscisic acid signaling (Relative to Dessication, RD29A and RD29B), ROS scavenging (Ascorbate Peroxidase 2), and detoxification (Glyoxalase I 7), and down-regulated the expression of Lipoxygenase 2 (related to jasmonic acid biosynthesis). Among the general transcriptional effects of this bacterium, the expression pattern of important ion-homeostasis related genes was altered after short and long-term stress (Arabidopsis K(+) Transporter 1, High-Affinity K(+) Transporter 1, Sodium Hydrogen Exchanger 2, and Arabidopsis Salt Overly Sensitive 1). In all, the faster and stronger molecular changes induced by the inoculation suggest a PsJN-priming effect, which may explain the observed tolerance after short-term and sustained salt-stress in plants. This study provides novel information about possible mechanisms involved in salt-stress tolerance induced by PGPR in plants, showing that certain changes are maintained over time. This opens up new venues to study these relevant biological associations, as well as new approaches to a better understanding of the spatiotemporal mechanisms involved in stress tolerance in plants.

15.
Am J Physiol Cell Physiol ; 308(10): C779-91, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25788573

RESUMEN

The renal thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) is the salt transporter in the distal convoluted tubule. Its activity is fundamental for defining blood pressure levels. Decreased NCC activity is associated with salt-remediable arterial hypotension with hypokalemia (Gitelman disease), while increased activity results in salt-sensitive arterial hypertension with hyperkalemia (pseudohypoaldosteronism type II; PHAII). The discovery of four different genes causing PHAII revealed a complex multiprotein system that regulates the activity of NCC. Two genes encode for with-no-lysine (K) kinases WNK1 and WNK4, while two encode for kelch-like 3 (KLHL3) and cullin 3 (CUL3) proteins that form a RING type E3 ubiquitin ligase complex. Extensive research has shown that WNK1 and WNK4 are the targets for the KLHL3-CUL3 complex and that WNKs modulate the activity of NCC by means of intermediary Ste20-type kinases known as SPAK or OSR1. The understanding of the effect of WNKs on NCC is a complex issue, but recent evidence discussed in this review suggests that we could be reaching the end of the dark ages regarding this matter.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Animales , Humanos , Riñón/metabolismo , Lisina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
16.
Anim. Reprod. (Online) ; 12(1): 7-23, Jan.-Mar.2015. ilus, tab
Artículo en Inglés | VETINDEX | ID: biblio-1461139

RESUMEN

Efferent ductules are small, delicate tubules that connect rete testis with the head of the epididymis, first identified by de Graaf in 1668. Although difficult to find in routine dissection, the ductules are an essential component of the male reproductive tract and in larger mammals occupy up more than 50% of the caput epididymidis. My introduction to research began with the study of efferent ductules in the domestic turkey, and to my surprise these small structures with kidney-like function become the core for numerous discoveries throughout my scientific career. In this review, only two discoveries that I found interesting will be discussed: cilia that line the efferent ductule lumen and estrogen receptors that play an essential role in regulating fluid reabsorption. A potential link between these two discoveries was uncovered in the study of efferent ductule effects observed in the estrogen receptor knockout mouse and following toxic exposure to the fungicide benomyl.


Asunto(s)
Masculino , Animales , Pavos/anatomía & histología , Pavos/fisiología , Receptor alfa de Estrógeno/análisis , Receptor alfa de Estrógeno/fisiología , Fármacos para la Fertilidad
17.
Anim. Reprod. ; 12(1): 7-23, Jan.-Mar.2015. ilus, tab
Artículo en Inglés | VETINDEX | ID: vti-745421

RESUMEN

Efferent ductules are small, delicate tubules that connect rete testis with the head of the epididymis, first identified by de Graaf in 1668. Although difficult to find in routine dissection, the ductules are an essential component of the male reproductive tract and in larger mammals occupy up more than 50% of the caput epididymidis. My introduction to research began with the study of efferent ductules in the domestic turkey, and to my surprise these small structures with kidney-like function become the core for numerous discoveries throughout my scientific career. In this review, only two discoveries that I found interesting will be discussed: cilia that line the efferent ductule lumen and estrogen receptors that play an essential role in regulating fluid reabsorption. A potential link between these two discoveries was uncovered in the study of efferent ductule effects observed in the estrogen receptor knockout mouse and following toxic exposure to the fungicide benomyl.(AU)


Asunto(s)
Animales , Masculino , Pavos/anatomía & histología , Pavos/fisiología , Receptor alfa de Estrógeno/análisis , Receptor alfa de Estrógeno/fisiología , Fármacos para la Fertilidad
18.
Anim Reprod ; 12(1): 7-23, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-28191043

RESUMEN

Efferent ductules are small, delicate tubules that connect rete testis with the head of the epididymis, first identified by de Graaf in 1668. Although difficult to find in routine dissection, the ductules are an essential component of the male reproductive tract and in larger mammals occupy up more than 50% of the caput epididymidis. My introduction to research began with the study of efferent ductules in the domestic turkey, and to my surprise these small structures with kidney-like function become the core for numerous discoveries throughout my scientific career. In this review, only two discoveries that I found interesting will be discussed: cilia that line the efferent ductule lumen and estrogen receptors that play an essential role in regulating fluid reabsorption. A potential link between these two discoveries was uncovered in the study of efferent ductule effects observed in the estrogen receptor knockout mouse and following toxic exposure to the fungicide benomyl.

19.
Braz. j. pharm. sci ; 51(3): 755-761, July-Sept. 2015. tab, graf
Artículo en Inglés | LILACS | ID: lil-766318

RESUMEN

Lectins have been described as glycoproteins that reversibly and specifically bind to carbohydrates. Legume lectins isolated from the subtribe Diocleinae (Canavalia, Dioclea andCratylia) are structurally homologous with respect to their primary structures. The Diocleinae lectins of Canavalia brasiliensis, Dioclea guianensis andCanavalia ensiformis have been shown to distinctly alter physiological parameters in isolated rat kidneys. Thus, the aim of this study was to investigate the effect of Cratylia floribunda lectin (CFL) on renal hemodynamics and ion transport in rats. In isolated perfused kidneys, CFL (10 mg/mL, n=5) increased RPP, RVR and decreased %TK+, but did not change urinary flow, glomerular filtration rate, sodium or chloride tubular transport. In isolated perfused mesenteric bed, CFL (3 and 10 mg/mL/min; n=4) did not alter tissue basal tonus or tissue contraction by phenylephrine (1 mM/mL/min). In conclusion, the seed lectin of Cratylia floribunda increased renal hemodynamic parameters showing a kaliuretic effect. This effect could be of tubular origin, rather than a result from haemodynamic alterations.


As lectinas são descritas como (glico)proteínas que se ligam, especificamente e reversivelmente, a carboidratos. Lectinas de leguminosas isoladas da subtribo Diocleinae (Canavalia, Dioclea eCratylia) são estruturalmente homólogas em relação às suas estruturas primárias. Demonstrou-se que as lectinas de DiocleinaeCanavalia brasiliensis, Dioclea guianensis eCanavalia ensiformis alteram diferentemente parâmetros fisiológicos em rins isolados de ratos. Dessa maneira, o objetivo deste estudo foi investigar o papel da lectina de Cratylia floribunda (CFL) na hemodinâmica renal e no transporte de íons em ratos. Em rins isolados perfundidos, CFL (10 mg/mL, n=5) aumentou a pressão de perfusão renal, a resistência vascular renal e reduziu o percentual do transporte tubular de K+, mas não alterou o fluxo urinário, a taxa de filtração glomerular e o percentual de transporte tubular dos íons sódio e cloreto. No leito mesentérico isolado perfundido, CFL (3 e 10 mg/mL/min, n=4) não alterou o tônus basal ou a contração do tecido induzida por fenilefrina (1 mM/mL/min). Em conclusão, a lectina de sementes de Cratylia floribunda altera parâmetros hemodinâmicos renais, provavelmente de origem tubular, e não por alterações hemodinâmicas.


Asunto(s)
Ratas , Transporte Iónico , Lectinas de Plantas/análisis , Dioclea , Hemodinámica , Amilorida/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA