RESUMEN
Genetic differentiation between and within natural populations is the result of the joint effects of neutral and adaptative processes. In addition, the spatial arrangement of the landscape promotes connectivity or creates barriers to gene flow, directly affecting speciation processes. In this study, we carried out a landscape genomics analysis using NextRAD data from a montane forest specialist bird complex, the Mesoamerican Chestnut-capped/Green-striped Brushfinch of the genus Arremon. Specifically, we examined population genomic structure using different assignment methods and genomic differentiation and diversity, and we tested alternative genetic isolation hypotheses at the individual level (e.g., isolation by barrier, IBB; isolation by environment, IBE; isolation by resistance, IBR). We found well-delimited genomic structuring (K = 5) across Mesoamerican montane forests in the studied group. Individual-level genetic distances among major montane ranges were mainly explained by IBR hypotheses in this sedentary Neotropical taxon. Our results uncover genetic distances/differentiation and patterns of gene flow in allopatric species that support the role of tropical mountains as spatial landscape drivers of biodiversity. IBR clearly supports a pattern of conserved niche-tracking of suitable habitat conditions and topographic complexity throughout glacial-interglacial dynamics.
Asunto(s)
Genética de Población , Passeriformes , Animales , Variación Genética/genética , Ecosistema , Bosques , Passeriformes/genéticaRESUMEN
Distinguishing among the mechanisms underlying the spatial distribution of genetic variation resulting from the environmental or physical barriers from those arising due to simple geographic distance is challenging in complex landscapes. The Andean uplift represents one of the most heterogeneous habitats where multiple mechanisms may interact, confounding their relative roles. We explore this broad question in the leaf-cutting ant Atta cephalotes, a species that is distributed across the Andes mountains, using nuclear microsatellite markers and mtCOI gene sequences. We investigate spatial genetic divergence across the western range of the northern Andes in Colombia by testing the relative role of alternative scenarios of population divergence, including isolation by geographic distance (IBD), climatic conditions (IBE), and the physical barriers presented by the Andes mountains (IBB). Our results reveal substantial genetic differentiation among A. cephalotes populations for both types of markers, but only nuclear divergence followed a hierarchical pattern with multiple models of genetic divergence imposed by the western range. Model selection showed that the IBD, IBE (temperature and precipitation), and IBB (Andes mountains) models, often proposed as individual drivers of genetic divergence, interact, and explain up to 33% of the genetic divergence in A. cephalotes. The IBE model remained significant after accounting for IBD, suggesting that environmental factors play a more prominent role than IBB. These factors, in combination with the idiosyncratic dispersal patterns of ants, appear to determine the hierarchical patterns of gene flow. This study enriches our understanding of the forces shaping population divergence in complex habitat landscapes.