Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Glycobiology ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058648

RESUMEN

The Human Glycome Atlas (HGA) Project was launched in April 2023, spearheaded by three Japanese institutes: the Tokai National Higher Education and Research System, the National Institutes of Natural Sciences, and Soka University. This was the first time that a field in the life sciences was adopted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) for a Large-scale Academic Frontiers Promotion Project. This project aims to construct a knowledgebase of human glycans and glycoproteins as a standard for the human glycome. A high-throughput pipeline for comprehensively analyzing 20,000 blood samples in its first five years is planned, at which time an access-controlled version of a human glycomics knowledgebase, called TOHSA, will be released. By the end of the final tenth year, TOHSA will provide a central resource linking human glycan data with other omics data including disease-related information.

2.
Drug Discov Today ; 29(7): 104047, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38830503

RESUMEN

During the past 20 years, there has been a significant increase in the number of protein-based drugs approved by the US Food and Drug Administration (FDA). This paper presents THPdb2, an updated version of the THPdb database, which holds information about all types of protein-based drugs, including peptides, antibodies, and biosimilar proteins. THPdb2 contains a total of 6,385 entries, providing comprehensive information about 894 FDA-approved therapeutic proteins, including 354 monoclonal antibodies and 85 peptides or polypeptides. Each entry includes the name of therapeutic molecule, the amino acid sequence, physical and chemical properties, and route of drug administration. The therapeutic molecules that are included in the database target a wide range of biological molecules, such as receptors, factors, and proteins, and have been approved for the treatment of various diseases, including cancers, infectious diseases, and immune disorders.


Asunto(s)
Aprobación de Drogas , Péptidos , United States Food and Drug Administration , Estados Unidos , Péptidos/uso terapéutico , Péptidos/farmacología , Péptidos/química , Humanos , Proteínas/química , Proteínas/uso terapéutico , Biosimilares Farmacéuticos/uso terapéutico , Biosimilares Farmacéuticos/farmacología
3.
Genetics ; 227(1)2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38573366

RESUMEN

WormBase has been the major repository and knowledgebase of information about the genome and genetics of Caenorhabditis elegans and other nematodes of experimental interest for over 2 decades. We have 3 goals: to keep current with the fast-paced C. elegans research, to provide better integration with other resources, and to be sustainable. Here, we discuss the current state of WormBase as well as progress and plans for moving core WormBase infrastructure to the Alliance of Genome Resources (the Alliance). As an Alliance member, WormBase will continue to interact with the C. elegans community, develop new features as needed, and curate key information from the literature and large-scale projects.


Asunto(s)
Caenorhabditis elegans , Caenorhabditis elegans/genética , Animales , Bases de Datos Genéticas , Genoma de los Helmintos , Genómica/métodos
4.
aBIOTECH ; 5(1): 94-106, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38576435

RESUMEN

Genomic data serve as an invaluable resource for unraveling the intricacies of the higher plant systems, including the constituent elements within and among species. Through various efforts in genomic data archiving, integrative analysis and value-added curation, the National Genomics Data Center (NGDC), which is a part of the China National Center for Bioinformation (CNCB), has successfully established and currently maintains a vast amount of database resources. This dedicated initiative of the NGDC facilitates a data-rich ecosystem that greatly strengthens and supports genomic research efforts. Here, we present a comprehensive overview of central repositories dedicated to archiving, presenting, and sharing plant omics data, introduce knowledgebases focused on variants or gene-based functional insights, highlight species-specific multiple omics database resources, and briefly review the online application tools. We intend that this review can be used as a guide map for plant researchers wishing to select effective data resources from the NGDC for their specific areas of study. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00134-4.

5.
J Biomed Semantics ; 15(1): 4, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664818

RESUMEN

BACKGROUND: Pathogenic parasites are responsible for multiple diseases, such as malaria and Chagas disease, in humans and livestock. Traditionally, pathogenic parasites have been largely an evasive topic for vaccine design, with most successful vaccines only emerging recently. To aid vaccine design, the VIOLIN vaccine knowledgebase has collected vaccines from all sources to serve as a comprehensive vaccine knowledgebase. VIOLIN utilizes the Vaccine Ontology (VO) to standardize the modeling of vaccine data. VO did not model complex life cycles as seen in parasites. With the inclusion of successful parasite vaccines, an update in parasite vaccine modeling was needed. RESULTS: VIOLIN was expanded to include 258 parasite vaccines against 23 protozoan species, and 607 new parasite vaccine-related terms were added to VO since 2022. The updated VO design for parasite vaccines accounts for parasite life stages and for transmission-blocking vaccines. A total of 356 terms from the Ontology of Parasite Lifecycle (OPL) were imported to VO to help represent the effect of different parasite life stages. A new VO class term, 'transmission-blocking vaccine,' was added to represent vaccines able to block infectious transmission, and one new VO object property, 'blocks transmission of pathogen via vaccine,' was added to link vaccine and pathogen in which the vaccine blocks the transmission of the pathogen. Additionally, our Gene Set Enrichment Analysis (GSEA) of 140 parasite antigens used in the parasitic vaccines identified enriched features. For example, significant patterns, such as signal, plasma membrane, and entry into host, were found in the antigens of the vaccines against two parasite species: Plasmodium falciparum and Toxoplasma gondii. The analysis found 18 out of the 140 parasite antigens involved with the malaria disease process. Moreover, a majority (15 out of 54) of P. falciparum parasite antigens are localized in the cell membrane. T. gondii antigens, in contrast, have a majority (19/24) of their proteins related to signaling pathways. The antigen-enriched patterns align with the life cycle stage patterns identified in our ontological parasite vaccine modeling. CONCLUSIONS: The updated VO modeling and GSEA analysis capture the influence of the complex parasite life cycles and their associated antigens on vaccine development.


Asunto(s)
Ontologías Biológicas , Animales , Parásitos/inmunología , Vacunas Antiprotozoos/inmunología , Humanos , Vacunas/inmunología , Modelos Biológicos
6.
Genetics ; 227(1)2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38552170

RESUMEN

The Alliance of Genome Resources (Alliance) is an extensible coalition of knowledgebases focused on the genetics and genomics of intensively studied model organisms. The Alliance is organized as individual knowledge centers with strong connections to their research communities and a centralized software infrastructure, discussed here. Model organisms currently represented in the Alliance are budding yeast, Caenorhabditis elegans, Drosophila, zebrafish, frog, laboratory mouse, laboratory rat, and the Gene Ontology Consortium. The project is in a rapid development phase to harmonize knowledge, store it, analyze it, and present it to the community through a web portal, direct downloads, and application programming interfaces (APIs). Here, we focus on developments over the last 2 years. Specifically, we added and enhanced tools for browsing the genome (JBrowse), downloading sequences, mining complex data (AllianceMine), visualizing pathways, full-text searching of the literature (Textpresso), and sequence similarity searching (SequenceServer). We enhanced existing interactive data tables and added an interactive table of paralogs to complement our representation of orthology. To support individual model organism communities, we implemented species-specific "landing pages" and will add disease-specific portals soon; in addition, we support a common community forum implemented in Discourse software. We describe our progress toward a central persistent database to support curation, the data modeling that underpins harmonization, and progress toward a state-of-the-art literature curation system with integrated artificial intelligence and machine learning (AI/ML).


Asunto(s)
Bases de Datos Genéticas , Genómica , Animales , Genómica/métodos , Programas Informáticos , Genoma , Ratones
7.
Genetics ; 227(1)2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38376816

RESUMEN

PomBase (https://www.pombase.org), the model organism database (MOD) for fission yeast, was recently awarded Global Core Biodata Resource (GCBR) status by the Global Biodata Coalition (GBC; https://globalbiodata.org/) after a rigorous selection process. In this MOD review, we present PomBase's continuing growth and improvement over the last 2 years. We describe these improvements in the context of the qualitative GCBR indicators related to scientific quality, comprehensivity, accelerating science, user stories, and collaborations with other biodata resources. This review also showcases the depth of existing connections both within the biocuration ecosystem and between PomBase and its user community.


Asunto(s)
Schizosaccharomyces , Schizosaccharomyces/genética , Bases de Datos Genéticas , Genoma Fúngico
8.
Genetics ; 227(1)2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38262680

RESUMEN

Echinobase (www.echinobase.org) is a model organism knowledgebase serving as a resource for the community that studies echinoderms, a phylum of marine invertebrates that includes sea urchins and sea stars. Echinoderms have been important experimental models for over 100 years and continue to make important contributions to environmental, evolutionary, and developmental studies, including research on developmental gene regulatory networks. As a centralized resource, Echinobase hosts genomes and collects functional genomic data, reagents, literature, and other information for the community. This third-generation site is based on the Xenbase knowledgebase design and utilizes gene-centric pages to minimize the time and effort required to access genomic information. Summary gene pages display gene symbols and names, functional data, links to the JBrowse genome browser, and orthology to other organisms and reagents, and tabs from the Summary gene page contain more detailed information concerning mRNAs, proteins, diseases, and protein-protein interactions. The gene pages also display 1:1 orthologs between the fully supported species Strongylocentrotus purpuratus (purple sea urchin), Lytechinus variegatus (green sea urchin), Patiria miniata (bat star), and Acanthaster planci (crown-of-thorns sea star). JBrowse tracks are available for visualization of functional genomic data from both fully supported species and the partially supported species Anneissia japonica (feather star), Asterias rubens (sugar star), and L. pictus (painted sea urchin). Echinobase serves a vital role by providing researchers with annotated genomes including orthology, functional genomic data aligned to the genomes, and curated reagents and data. The Echinoderm Anatomical Ontology provides a framework for standardizing developmental data across the phylum, and knowledgebase content is formatted to be findable, accessible, interoperable, and reusable by the research community.


Asunto(s)
Bases de Datos Genéticas , Equinodermos , Animales , Equinodermos/genética , Genoma , Genómica/métodos , Erizos de Mar/genética , Bases del Conocimiento
9.
Drug Discov Today ; 29(3): 103881, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218213

RESUMEN

The human kinome, with more than 500 proteins, is crucial for cell signaling and disease. Yet, about one-third of kinases lack in-depth study. The Data and Resource Generating Center for Understudied Kinases has developed multiple resources to address this challenge including creation of a heavy amino acid peptide library for parallel reaction monitoring and quantitation of protein kinase expression, use of understudied kinases tagged with a miniTurbo-biotin ligase to determine interaction networks by proximity-dependent protein biotinylation, NanoBRET probe development for screening chemical tool target specificity in live cells, characterization of small molecule chemical tools inhibiting understudied kinases, and computational tools for defining kinome architecture. These resources are available through the Dark Kinase Knowledgebase, supporting further research into these understudied protein kinases.


Asunto(s)
Proteínas Quinasas , Proteínas , Humanos , Proteínas Quinasas/metabolismo , Proteómica
10.
J Transl Med ; 21(1): 885, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057859

RESUMEN

BACKGROUND: With the development of cancer precision medicine, a huge amount of high-dimensional cancer information has rapidly accumulated regarding gene alterations, diseases, therapeutic interventions and various annotations. The information is highly fragmented across multiple different sources, making it highly challenging to effectively utilize and exchange the information. Therefore, it is essential to create a resource platform containing well-aggregated, carefully mined, and easily accessible data for effective knowledge sharing. METHODS: In this study, we have developed "Consensus Cancer Core" (Tri©DB), a new integrative cancer precision medicine knowledgebase and reporting system by mining and harmonizing multifaceted cancer data sources, and presenting them in a centralized platform with enhanced functionalities for accessibility, annotation and analysis. RESULTS: The knowledgebase provides the currently most comprehensive information on cancer precision medicine covering more than 40 annotation entities, many of which are novel and have never been explored previously. Tri©DB offers several unique features: (i) harmonizing the cancer-related information from more than 30 data sources into one integrative platform for easy access; (ii) utilizing a variety of data analysis and graphical tools for enhanced user interaction with the high-dimensional data; (iii) containing a newly developed reporting system for automated annotation and therapy matching for external patient genomic data. Benchmark test indicated that Tri©DB is able to annotate 46% more treatments than two officially recognized resources, oncoKB and MCG. Tri©DB was further shown to have achieved 94.9% concordance with administered treatments in a real clinical trial. CONCLUSIONS: The novel features and rich functionalities of the new platform will facilitate full access to cancer precision medicine data in one single platform and accommodate the needs of a broad range of researchers not only in translational medicine, but also in basic biomedical research. We believe that it will help to promote knowledge sharing in cancer precision medicine. Tri©DB is freely available at www.biomeddb.org , and is hosted on a cutting-edge technology architecture supporting all major browsers and mobile handsets.


Asunto(s)
Neoplasias , Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Genómica/métodos , Neoplasias/genética , Neoplasias/terapia , Bases del Conocimiento
11.
Methods Mol Biol ; 2698: 277-300, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37682481

RESUMEN

The amount of biological data is growing at a rapid pace as many high-throughput omics technologies and data pipelines are developed. This is resulting in the growth of databases for DNA and protein sequences, gene expression, protein accumulation, structural, and localization information. The diversity and multi-omics nature of such bioinformatic data requires well-designed databases for flexible organization and presentation. Besides general-purpose online bioinformatic databases, users need narrowly focused online databases to quickly access a meaningful collection of related data for their research. Here, we describe the methodology used to implement a plant gene regulatory knowledgebase, with data, query, and tool features, as well as the ability to expand to accommodate future datasets. We exemplify this methodology for the GRASSIUS knowledgebase, but it is applicable to developing and updating similar plant gene regulatory knowledgebases. GRASSIUS organizes and presents gene regulatory data from grass species with a central focus on maize (Zea mays). The main class of data presented include not only the families of transcription factors (TFs) and co-regulators (CRs) but also protein-DNA interaction data, where available.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Secuencia de Aminoácidos , Biología Computacional , Bases del Conocimiento , Zea mays
12.
Genetics ; 225(2)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37579192

RESUMEN

Gene inactivation can affect the process(es) in which that gene acts and causally downstream ones, yielding diverse mutant phenotypes. Identifying the genetic pathways resulting in a given phenotype helps us understand how individual genes interact in a functional network. Computable representations of biological pathways include detailed process descriptions in the Reactome Knowledgebase and causal activity flows between molecular functions in Gene Ontology-Causal Activity Models (GO-CAMs). A computational process has been developed to convert Reactome pathways to GO-CAMs. Laboratory mice are widely used models of normal and pathological human processes. We have converted human Reactome GO-CAMs to orthologous mouse GO-CAMs, as a resource to transfer pathway knowledge between humans and model organisms. These mouse GO-CAMs allowed us to define sets of genes that function in a causally connected way. To demonstrate that individual variant genes from connected pathways result in similar but distinguishable phenotypes, we used the genes in our pathway models to cross-query mouse phenotype annotations in the Mouse Genome Database (MGD). Using GO-CAM representations of 2 related but distinct pathways, gluconeogenesis and glycolysis, we show that individual causal paths in gene networks give rise to discrete phenotypic outcomes resulting from perturbations of glycolytic and gluconeogenic genes. The accurate and detailed descriptions of gene interactions recovered in this analysis of well-studied processes suggest that this strategy can be applied to less well-understood processes in less well-studied model systems to predict phenotypic outcomes of novel gene variants and to identify potential gene targets in altered processes.


Asunto(s)
Biología Computacional , Bases de Datos Genéticas , Ratones , Humanos , Animales , Ontología de Genes , Mutación , Fenotipo , Biología Computacional/métodos
13.
Multimed Tools Appl ; : 1-24, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37362729

RESUMEN

In recent years, there has been a surge in the use of deep learning systems for e-healthcare applications. While these systems can provide significant benefits regarding improved diagnosis and treatment, they also pose substantial privacy risks to patients' sensitive data. Privacy is a crucial issue in e-healthcare, and it is essential to keep patient information secure. A new approach based on multi-agent-based privacy metrics for e-healthcare deep learning systems has been proposed to address this issue. This approach uses a combination of deep learning and multi-agent systems to provide a more robust and secure method for e-healthcare applications. The multi-agent system is designed to monitor and control the access to patients' data by different agents in the system. Each agent is assigned a specific role and has specific data access permissions. The system employs a set of privacy metrics to a substantial privacy level of the data accessed by each agent. These metrics include confidentiality, integrity, and availability, evaluated in real-time and used to identify potential privacy violations. In addition to the multi-agent system, the deep learning component is also integrated into the system to improve the accuracy of diagnoses and treatment plans. The deep learning model is trained on a large dataset of medical records and can accurately predict the diagnosis and treatment plan based on the patient's symptoms and medical history. The multi-agent-based privacy metrics for the e-healthcare deep learning system approach have several advantages. It provides a more secure system for e-healthcare applications by ensuring only authorized agents can access patients' data. Privacy metrics enable the system to identify potential privacy violations in real-time, thereby reducing the risk of data breaches. Finally, integrating deep learning improves the accuracy of diagnoses and treatment plans, leading to better patient outcomes.

14.
Hormones (Athens) ; 22(3): 359-366, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37291365

RESUMEN

PURPOSE: Hormones play a critical role in regulating various physiological processes and any hormonal imbalances can lead to major endocrine disorders. Thus, studying hormones is essential for both the therapeutics and the diagnostics of hormonal diseases. To facilitate this need, we have developed Hmrbase2, a comprehensive platform that provides extensive information on hormones. METHODS: Hmrbase2 is a web-based database which is an update of a previously published database, Hmrbase ( http://crdd.osdd.net/raghava/hmrbase/ ). We collected a large amount of information on peptide and non-peptide hormones and hormone receptors, this information being sourced from Hmrbase, HMDB, UniProt, HORDB, ENDONET, PubChem, and the medical literature. RESULTS: Hmrbase2 contains a total of 12,056 entries, which is more than twice the number of entries contained in the previous version Hmrbase. These include 7406, 753, and 3897 entries for peptide hormones, non-peptide hormones, and hormone receptors, respectively, from 803 organisms compared to the 562 organisms in the previous version. The database also hosts 5662 hormone receptor pairs. The source organism, function, and subcellular location are provided for peptide hormones and receptors and properties such as melting point and water solubility is provided for non-peptide hormones. Besides browsing and keyword search, an advanced search option has also been supplied. Additionally, a similarity search module has been incorporated enabling users to run similarity searches against peptide hormone sequences using BLAST and Smith-Waterman. CONCLUSIONS: To make the database accessible to various users, we designed a user-friendly, responsive website that can be easily used on smartphones, tablets, and desktop computers. The updated database version, Hmrbase2, offers improved data content compared to the previous version. Hmrbase2 is freely available at https://webs.iiitd.edu.in/raghava/hmrbase2 .


Asunto(s)
Hormonas , Hormonas Peptídicas , Humanos , Bases de Datos de Proteínas
15.
J Biomed Inform ; 143: 104405, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37270143

RESUMEN

BACKGROUND: Scientific discovery progresses by exploring new and uncharted territory. More specifically, it advances by a process of transforming unknown unknowns first into known unknowns, and then into knowns. Over the last few decades, researchers have developed many knowledge bases to capture and connect the knowns, which has enabled topic exploration and contextualization of experimental results. But recognizing the unknowns is also critical for finding the most pertinent questions and their answers. Prior work on known unknowns has sought to understand them, annotate them, and automate their identification. However, no knowledge-bases yet exist to capture these unknowns, and little work has focused on how scientists might use them to trace a given topic or experimental result in search of open questions and new avenues for exploration. We show here that a knowledge base of unknowns can be connected to ontologically grounded biomedical knowledge to accelerate research in the field of prenatal nutrition. RESULTS: We present the first ignorance-base, a knowledge-base created by combining classifiers to recognize ignorance statements (statements of missing or incomplete knowledge that imply a goal for knowledge) and biomedical concepts over the prenatal nutrition literature. This knowledge-base places biomedical concepts mentioned in the literature in context with the ignorance statements authors have made about them. Using our system, researchers interested in the topic of vitamin D and prenatal health were able to uncover three new avenues for exploration (immune system, respiratory system, and brain development) by searching for concepts enriched in ignorance statements. These were buried among the many standard enriched concepts. Additionally, we used the ignorance-base to enrich concepts connected to a gene list associated with vitamin D and spontaneous preterm birth and found an emerging topic of study (brain development) in an implied field (neuroscience). The researchers could look to the field of neuroscience for potential answers to the ignorance statements. CONCLUSION: Our goal is to help students, researchers, funders, and publishers better understand the state of our collective scientific ignorance (known unknowns) in order to help accelerate research through the continued illumination of and focus on the known unknowns and their respective goals for scientific knowledge.


Asunto(s)
Bases del Conocimiento , Conocimiento , Procesamiento de Lenguaje Natural , Femenino , Humanos , Recién Nacido , Nacimiento Prematuro , Publicaciones , Vitamina D
16.
Artículo en Inglés | MEDLINE | ID: mdl-37202885

RESUMEN

BACKGROUND: Hypertension is notably a serious public health concern due to its high prevalence and strong association with cardiovascular disease and renal failure. It is reported to be the fourth leading disease that leads to death worldwide. OBJECTIVE: Currently, there is no active operational knowledge base or database for hypertension or cardiovascular illness. METHOD: The primary data source was retrieved from the research outputs obtained from our laboratory team working on hypertension research. We have presented a preliminary dataset and external links to the public repository for detailed analysis to readers. RESULT: As a result, HTNpedia was created to provide information regarding hypertension-related proteins and genes. CONCLUSION: The complete webpage is accessible via www.mkarthikeyan.bioinfoau.org/HTNpedia.

17.
J Am Med Inform Assoc ; 30(7): 1257-1265, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37164621

RESUMEN

OBJECTIVE: Knowledgebases are needed to clarify correlations observed in real-world electronic health record (EHR) data. We posit design principles, present a unifying framework, and report a test of concept. MATERIALS AND METHODS: We structured a knowledge framework along 3 axes: condition of interest, knowledge source, and taxonomy. In our test of concept, we used hypertension as our condition of interest, literature and VanderbiltDDx knowledgebase as sources, and phecodes as our taxonomy. In a cohort of 832 566 deidentified EHRs, we modeled blood pressure and heart rate by sex and age, classified individuals by hypertensive status, and ran a Phenome-wide Association Study (PheWAS) for hypertension. We compared the correlations from PheWAS to the associations in our knowledgebase. RESULTS: We produced PhecodeKbHtn: a knowledgebase comprising 167 hypertension-associated diseases, 15 of which were also negatively associated with blood pressure (pos+neg). Our hypertension PheWAS included 1914 phecodes, 129 of which were in the PhecodeKbHtn. Among the PheWAS association results, phecodes that were in PhecodeKbHtn had larger effect sizes compared with those phecodes not in the knowledgebase. DISCUSSION: Each source contributed unique and additive associations. Models of blood pressure and heart rate by age and sex were consistent with prior cohort studies. All but 4 PheWAS positive and negative correlations for phecodes in PhecodeKbHtn may be explained by knowledgebase associations, hypertensive cardiac complications, or causes of hypertension independently associated with hypotension. CONCLUSION: It is feasible to assemble a knowledgebase that is compatible with EHR data to aid interpretation of clinical correlation research.


Asunto(s)
Estudio de Asociación del Genoma Completo , Hipertensión , Humanos , Fenotipo , Estudios de Cohortes , Presión Sanguínea , Polimorfismo de Nucleótido Simple
18.
Genetics ; 224(1)2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36866529

RESUMEN

The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains, and updates the GO knowledgebase. The GO knowledgebase consists of three components: (1) the GO-a computational knowledge structure describing the functional characteristics of genes; (2) GO annotations-evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and (3) GO Causal Activity Models (GO-CAMs)-mechanistic models of molecular "pathways" (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised, and updated in response to newly published discoveries and receives extensive QA checks, reviews, and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, and guidance on how users can best make use of the data that we provide. We conclude with future directions for the project.


Asunto(s)
Bases de Datos Genéticas , Proteínas , Ontología de Genes , Proteínas/genética , Anotación de Secuencia Molecular , Biología Computacional
19.
Genetics ; 224(1)2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36607068

RESUMEN

As one of the first model organism knowledgebases, Saccharomyces Genome Database (SGD) has been supporting the scientific research community since 1993. As technologies and research evolve, so does SGD: from updates in software architecture, to curation of novel data types, to incorporation of data from, and collaboration with, other knowledgebases. We are continuing to make steps toward providing the community with an S. cerevisiae pan-genome. Here, we describe software upgrades, a new nomenclature system for genes not found in the reference strain, and additions to gene pages. With these improvements, we aim to remain a leading resource for students, researchers, and the broader scientific community.


Asunto(s)
Saccharomyces , Humanos , Saccharomyces/genética , Saccharomyces cerevisiae/genética , Genoma Fúngico , Bases de Datos Genéticas , Programas Informáticos
20.
Curr Res Toxicol ; 4: 100099, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36619288

RESUMEN

Concentrations at which global gene expression profiles in cells or animals exposed to a test substance start to differ significantly from those of controls have been proposed as an alternative point of departure for use in screening level hazard assessment. The present study describes pilot testing of a high throughput compatible transcriptomics assay with larval fathead minnows. One day post hatch fathead minnows were exposed to eleven different concentrations of three metals, three selective serotonin reuptake inhibitors, and four neonicotinoid-like compounds for 24 h and concentration response modeling was applied to whole body gene expression data. Transcriptomics-based points of departure (tPODs) were consistently lower than effect concentrations reported in apical endpoint studies in fish. However, larval fathead minnow-based tPODs were not always lower than concentrations reported to elicit apical toxicity in other aquatic organisms like crustaceans or insects. Random in silico subsampling of data from the pilot assays was used to evaluate various assay design and acceptance considerations such as transcriptome coverage, number of replicate individuals to sequence per treatment, and minimum number of differentially expressed genes to produce a reliable tPOD estimate. Results showed a strong association between the total number of genes for which a concentration response relationship could be derived and the overall variability in the resulting tPOD estimates. We conclude that, for our current assay design and analysis pipeline, tPODs based on fewer than 15 differentially expressed genes are likely to be unreliable for screening and that interindividual variability in gene expression profiles appears to be a more significant driver of tPOD variability than sample size alone. Results represent initial steps toward developing high throughput transcriptomics assays for use in ecological hazard screening.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA