Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
Am J Chin Med ; 47(5): 1149-1170, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31311297

RESUMEN

Three-dimensionally (3D) cultured tumor cells (spheroids) exhibit more resistance to therapeutic agents than the cells cultured in traditional two-dimensional (2D) system (monolayers). We previously demonstrated that arsenic disulfide (As2S2) exerted significant anticancer efficacies in both 2D- and 3D-cultured MCF-7 cells, whereas 3D spheroids were shown to be resistant to the As2S2 treatment. L-buthionine-(S, R)-sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, has been regarded to be a potent candidate for combinatorial treatment due to its GSH modulation function. In the present study, we introduced BSO in combination with As2S2 at a low concentration to investigate the possible enhancing anticancer efficacy by the combinatorial treatment on 2D- and 3D-cultured MCF-7 cells. Our results presented for the first time that the combination of As2S2 and BSO exerted potent anticancer synergism in both MCF-7 monolayers and spheroids. The IC50 values of As2S2 in combinatorial treatment were significantly lower than those in treatment of As2S2 alone in both 2D- and 3D-cultured MCF-7 cells (P<0.01, respectively). In addition, augmented induction of apoptosis and enhanced cell cycle arrest along with the regulation of apoptosis- and cell cycle-related proteins, as well as synergistic inhibitions of PI3K/Akt signals, were also observed following co-treatment of As2S2 and BSO. Notably, the combinatorial treatment significantly decreased the cellular GSH levels in both 2D- and 3D-cultured MCF-7 cells in comparison with each agent alone (P<0.05 in each). Our results suggest that the combinatorial treatment with As2S2 and BSO could be a promising novel strategy to reverse arsenic resistance in human breast cancer.


Asunto(s)
Antineoplásicos/farmacología , Arsenicales/farmacología , Neoplasias de la Mama/fisiopatología , Butionina Sulfoximina/farmacología , Sulfuros/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Técnicas de Cultivo de Célula , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Humanos , Células MCF-7 , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo
2.
Toxicol Appl Pharmacol ; 273(3): 508-15, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24095963

RESUMEN

Oxidative stress and reactive oxygen species (ROS) have been implicated in the teratogenicity of methanol (MeOH) in rodents, both in vivo and in embryo culture. We explored the ROS hypothesis further in vivo in pregnant C57BL/6J mice. Following maternal treatment with a teratogenic dose of MeOH, 4 g/kg via intraperitoneal (ip) injection on gestational day (GD) 12, there was no increase 6h later in embryonic ROS formation, measured by 2',7'-dichlorodihydrofluorescin diacetate (DCFH-DA) fluorescence, despite an increase observed with the positive control ethanol (EtOH), nor was there an increase in embryonic oxidatively damaged DNA, quantified as 8-oxo-2'-deoxyguanosine (8-oxodG) formation. MeOH teratogenicity (primarily ophthalmic anomalies, cleft palate) also was not altered by pre- and post-treatment with varying doses of the free radical spin trapping agent alpha-phenyl-N-tert-butylnitrone (PBN). In contrast, pretreatment with L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, depleted maternal hepatic and embryonic GSH, and enhanced some new anomalies (micrognathia, agnathia, short snout, fused digits, cleft lip, low set ears), but not the most common teratogenic effects of MeOH (ophthalmic anomalies, cleft palate) in this strain. These results suggest that ROS did not contribute to the teratogenic effects of MeOH in this in vivo mouse model, in contrast to results in embryo culture from our laboratory, and that the protective effect of GSH in this model may arise from its role as a cofactor for formaldehyde dehydrogenase in the detoxification of formaldehyde.


Asunto(s)
Glutatión/farmacología , Metanol/toxicidad , Estrés Oxidativo/efectos de los fármacos , 8-Hidroxi-2'-Desoxicoguanosina , Aldehído Oxidorreductasas/farmacología , Animales , Cromatografía Líquida de Alta Presión , Óxidos N-Cíclicos/farmacología , Daño del ADN/efectos de los fármacos , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Femenino , Radicales Libres/metabolismo , Masculino , Metionina Sulfoximina/análogos & derivados , Metionina Sulfoximina/farmacología , Ratones , Ratones Endogámicos C57BL , Embarazo , Especies Reactivas de Oxígeno/metabolismo , Espectrometría de Masas en Tándem , Teratógenos/toxicidad
3.
Biochem Biophys Res Commun ; 439(3): 357-62, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-23998930

RESUMEN

Cysteinyl leukotrienes (cysLTs), which include leukotriene C4 (LTC4), are the predominant class of LTs synthesized by mast cells. CysLTs can induce many of the abnormalities seen in asthma. LTC4 is generated by the conjugation of LTA4 with reduced glutathione (GSH) by LTC4 synthase. During screening of the effects of prostanoids on high-affinity IgE receptor (FcεRI)-mediated LTC4 release from mast cells, we realized that some prostanoids, including ONO-AE1-259-01 and ONO-AE-248, inhibited LTC4 release, which was associated with a decrease in the amount of intracellular total GSH. We ascertained that l-buthionine-S,R-sulfoximine (BSO), a selective inhibitor of glutamate-cysteine ligase, inhibited LTC4 release. In addition, cell-permeable GSH, the glutathione reduced form ethyl ester (GSH-OEt), enhanced LTC4 release in accordance with the change in intracellular total GSH. Depletion of intracellular total GSH induced by ONO-AE-248 or BSO enhanced FcεRI-mediated LTB4 release in contrast to LTC4. Oxidative stress contributes to many pathological conditions including asthma. GSH is a major soluble antioxidant and a cofactor for several detoxifying enzymes including GSH peroxidase. Exposure of mast cells to hydrogen peroxide (H2O2) or diamide to mimic oxidative stress unexpectedly increased rather than decreased the intracellular reduced GSH content as well as total GSH in the late phase (i.e., 24 or 48 h after exposure), which was accompanied by an increase in LTC4 release. In conclusion, FcεRI-mediated LTC4 release from mast cells is mainly regulated by the amount of intracellular GSH. In some cases, oxidative stress may induce a late-phase increase in intracellular GSH, resulting in enhanced LTC4 release from mast cells.


Asunto(s)
Glutatión/metabolismo , Leucotrieno C4/metabolismo , Mastocitos/metabolismo , Estrés Oxidativo , Receptores de IgE/metabolismo , Animales , Basófilos/inmunología , Basófilos/metabolismo , Línea Celular , Células Cultivadas , Glutatión/inmunología , Humanos , Peróxido de Hidrógeno/inmunología , Peróxido de Hidrógeno/metabolismo , Leucotrieno C4/inmunología , Mastocitos/inmunología , Ratones , Prostaglandinas/inmunología , Prostaglandinas/metabolismo , Receptores de IgE/inmunología
4.
Behav Brain Res ; 253: 165-72, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23850355

RESUMEN

Glutathione (GSH) displays a broad range of functions, among them a role as a neuromodulator with some neuroprotective properties. Taking into account that oxidative stress has been associated with depressive disorders, this study investigated the possibility that GSH, a major cell antioxidant, elicits an antidepressant-like effect in mice. Thus, GSH was administered by i.c.v. route to mice that were tested in the forced swimming test and in the tail suspension test, two predictive tests for antidepressant drug activity. In addition, GSH metabolism and the redox environment were modulated in order to study the possible mechanisms underlying the effects of GSH in the forced swimming test. The administration of GSH decreased the immobility time in the forced swimming test (300-3000nmol/site) and tail suspension test (100-1000nmol/site), consistent with an antidepressant-like effect. GSH depletion elicited by l-buthionine sulfoximine (3.2µmol/site, i.c.v.) did not alter the antidepressant-like effect of GSH, whereas the inhibition of extracellular GSH catabolism by acivicin (100nmol/site, i.c.v.) prevented the antidepressant-like effect of GSH. Moreover, a sub-effective dose (0.01nmol/site, i.c.v.) of the oxidizing agent DTNB (5,5'-dithiobis(2-nitrobenzoic acid)) potentiated the effect of GSH (100nmol/site, i.c.v.), while the pretreatment (25-100mg/kg, i.p.) with the reducing agent DTT (dl-dithiothreitol) prevented the antidepressant-like effect of GSH (300nmol/site, i.c.v.). DTNB (0.1nmol/site, i.c.v.), produced an antidepressant-like effect, per se, which was abolished by DTT (25mg/kg, i.p.). The results show, for the first time, that centrally administered GSH produces an antidepressant-like effect in mice, which can be modulated by the GSH metabolism and the thiol/disulfide reagents. The redox environment may constitute a new venue for future antidepressant-drug development.


Asunto(s)
Antidepresivos , Depresión/psicología , Glutatión/farmacología , Natación/psicología , Animales , Antimetabolitos/farmacología , Antioxidantes/metabolismo , Butionina Sulfoximina/farmacología , Ácido Ditionitrobenzoico/farmacología , Ditiotreitol/farmacología , Femenino , Glutatión/administración & dosificación , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Glutatión Transferasa/metabolismo , Suspensión Trasera/psicología , Inyecciones Intraventriculares , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Oxidación-Reducción , gamma-Glutamiltransferasa/metabolismo
5.
Free Radic Biol Med ; 65: 436-445, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23891676

RESUMEN

Intracellular redox homeostasis is crucial for many cellular functions but accurate measurements of cellular compartment-specific redox states remain technically challenging. Genetically encoded biosensors including the glutathione-specific redox-sensitive yellow fluorescent protein (rxYFP) may provide an alternative way to overcome the limitations of conventional glutathione/glutathione disulfide (GSH/GSSG) redox measurements. This study describes the use of rxYFP sensors for investigating compartment-specific steady redox state and their dynamics in response to stress in human cells. RxYFP expressed in the cytosol, nucleus, or mitochondrial matrix of HeLa cells was responsive to the intracellular redox state changes induced by reducing as well as oxidizing agents. Compartment-targeted rxYFP sensors were able to detect different steady-state redox conditions among the cytosol, nucleus, and mitochondrial matrix. These sensors expressed in human epidermal keratinocytes HEK001 responded to stress induced by ultraviolet A radiation in a dose-dependent manner. Furthermore, rxYFP sensors were able to sense dynamic and compartment-specific redox changes caused by 100 µM hydrogen peroxide (H2O2). Mitochondrial matrix-targeted rxYFP displayed a greater dynamics of oxidation in response to a H2O2 challenge than the cytosol- and nucleus-targeted sensors, largely due to a more alkaline local pH environment. These observations support the view that mitochondrial glutathione redox state is maintained and regulated independently from that of the cytosol and nucleus. Taken together, our data show the robustness of the rxYFP sensors to measure compartmental redox changes in human cells. Complementary to existing redox sensors and conventional redox measurements, compartment-targeted rxYFP sensors provide a novel tool for examining mammalian cell redox homeostasis, permitting high-resolution readout of steady glutathione state and dynamics of redox changes.


Asunto(s)
Proteínas Bacterianas , Técnicas Biosensibles/métodos , Glutatión/metabolismo , Proteínas Luminiscentes , Western Blotting , Línea Celular , Humanos , Oxidación-Reducción , Transfección
6.
Toxicol In Vitro ; 27(6): 2013-21, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23872425

RESUMEN

Silver nanoparticles (Ag NP) have been shown to generate reactive oxygen species; however, the association between physicochemical characteristics of nanoparticles and cellular stress responses elicited by exposure has not been elucidated. Here, we examined three key stress-responsive pathways activated by Nrf-2/ARE, NFκB, and AP1 during exposure to Ag NP of two distinct sizes (10 and 75 nm) and coatings (citrate and polyvinylpyrrolidone), as well as silver nitrate (AgNO3), and CeO2 nanoparticles. The in vitro assays assessed the cellular response in a battery of stable luciferase-reporter HepG2 cell lines. We further assessed the impact of Ag NP and AgNO3 exposure on cellular redox status by measuring glutathione depletion. Lastly, we determined intracellular Ag concentration by inductively coupled plasma mass spectroscopy (ICP-MS) and re-analyzed reporter-gene data using these values to estimate the relative potencies of the Ag NPs and AgNO3. Our results show activation of all three stress response pathways, with Nrf-2/ARE displaying the strongest response elicited by each Ag NP and AgNO3 evaluated here. The smaller (10-nm) Ag NPs were more potent than the larger (75-nm) Ag NPs in each stress-response pathway, and citrate-coated Ag NPs had higher intracellular silver concentrations compared with both PVP-coated Ag NP and AgNO3. The cellular stress response profiles after Ag NP exposure were similar to that of AgNO3, suggesting that the oxidative stress and inflammatory effects of Ag NP are likely due to the cytotoxicity of silver ions.


Asunto(s)
Nanopartículas del Metal/toxicidad , Plata/toxicidad , Transporte Biológico , Supervivencia Celular , Cerio/toxicidad , Ácido Cítrico/química , Genes Reporteros , Glutatión/metabolismo , Células Hep G2 , Humanos , Luciferasas/genética , Nanopartículas del Metal/química , Factor 2 Relacionado con NF-E2/genética , FN-kappa B/genética , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Povidona/química , Proteína de Replicación C/genética , Plata/química , Nitrato de Plata/toxicidad
7.
Biochem Pharmacol ; 86(4): 458-68, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23791871

RESUMEN

In the present study, we performed in silico and in vitro analyses to evaluate the chemosensitizing effects of 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) on tumor cells. Our in silico analyses of the ligand-receptor interactions between 6-MITC and the glutamate cysteine ligase (GCL) catalytic subunit (GCLC) revealed that 6-MITC possibly inhibited GCL enzyme activity, and that Cys-249 and Gln-251 were important residues for stable binding of ligands to GCLC. It was further found that 6-MITC interfered with the hydrogen bonds of the cysteinyl and glutamyl moieties of GSH with Cys-249 and Gln-251, respectively, and possibly overrode the feedback inhibition of GCL enzyme activity by GSH. To the best of our knowledge, this is the first in silico analysis to suggest an overriding effect of 6-MITC on GSH-induced feedback inhibition of GCL. In our in vitro analyses, combined treatment with 6-MITC and L-buthionine-S,R-sulfoximine (BSO) depleted GSH within 4 h in tumorigenic human c-Ha-ras and mouse c-myc-cotransfected highly metastatic serum-free mouse embryo-1 (r/m HM-SFME-1) cells, but did not deplete GSH in normal SFME cells. Furthermore, exposure to 6-MITC plus BSO for 4h, followed by glycyrrhetinic acid (GA) treatment for 3h, eradicated the tumor cells with minimal damage to the normal cells. The present findings suggest that 6-MITC in combination therapies could be used to sensitize tumor cells to antitumor agents, thereby leading to their eradication.


Asunto(s)
Antineoplásicos/farmacología , Butionina Sulfoximina/farmacología , Glutamato-Cisteína Ligasa/antagonistas & inhibidores , Ácido Glicirretínico/farmacología , Isotiocianatos/farmacología , Animales , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Simulación por Computador , Sinergismo Farmacológico , Glutamato-Cisteína Ligasa/metabolismo , Glutatión/metabolismo , Humanos , Ratones , Simulación del Acoplamiento Molecular , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/metabolismo
8.
Free Radic Biol Med ; 63: 325-37, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23736079

RESUMEN

Developmental signals that control growth and differentiation are regulated by environmental factors that generate reactive oxygen species (ROS) and alter steady-state redox environments in tissues and fluids. Protein thiols are selectively oxidized and reduced in distinct spatial and temporal patterns in conjunction with changes in glutathione/glutathione disulfide (GSH/GSSG) and cysteine/cystine (Cys/CySS) redox potentials (E(h)) to regulate developmental signaling. The purpose of this study was to measure compartment-specific thiol redox status in cultured organogenesis-stage rat conceptuses and to evaluate the impact of thiol oxidation on the redox proteome. The visceral yolk sac (VYS) has the highest initial (0 h) total intracellular GSH (GSH+2GSSG) concentration (5.5 mM) and the lowest Eh (-223 mV) as determined by HPLC analysis. Total embryo (EMB) GSH concentrations ranged lower (3.2 mM) and were only slightly more oxidized than the VYS. Total GSH concentrations in yolk sac fluid (YSF) and amniotic fluid (AF) are >500-fold lower than in tissues and are highly oxidized (YSF E(h)=-121 mV and AF E(h)=-49 mV). Steady-state total Cys concentrations (Cys+2CySS) were significantly lower than GSH in tissues but were otherwise equal in VYS and EMB near 0.5 mM. On gestational day 11, total GSH and Cys concentrations in EMB and VYS increase significantly over the 6h time course while E(h) remains relatively constant. The Eh (GSH/GSSG) in YSF and AF become more reduced over time while E(h) (Cys/CySS) become more oxidized. Addition of L-buthionine-S,R-sulfoximine (BS0) to selectively inhibit GSH synthesis and mimic the effects of some GSH-depleting environmental chemicals significantly decreased VYS and EMB GSH and Cys concentrations and increased Eh over the 6h exposure period, showing a greater overall oxidation. In the YSF, BSO caused a significant increase in total Cys concentrations to 1.7 mM but did not significantly change the E(h) for Cys/CySS. A significant net oxidation was seen in the BSO-treated AF compartment after 6 h. Biotinylated iodoacetamide (BIAM) labeling of proteins revealed the significant thiol oxidation of many EMB proteins following BSO treatment. Quantitative changes in the thiol proteome, associated with developmentally relevant pathways, were detected using isotope coded affinity tag (ICAT) labeling and mass spectroscopy. Adaptive pathways were selectively enriched with increased concentrations of proteins involved in mRNA processing (splicesome) and mRNA stabilization (glycolysis, GAPDH), as well as protein synthesis (aminoacyl-tRNA) and protein folding (antigen processing, Hsp70, protein disulfide isomerase). These results show the ability of chemical and environmental modulators to selectively alter compartmental intracellular and extracellular GSH and Cys concentrations and change their corresponding E(h) within the intact viable conceptus. The altered E(h) were also of sufficient magnitude to alter the redox proteome and change relative protein concentrations, suggesting that the mechanistic links through which environmental factors inform and regulate developmental signaling pathways may be discovered using systems developmental biology techniques.


Asunto(s)
Embrión de Mamíferos/metabolismo , Glutatión/biosíntesis , Oxidación-Reducción , Estrés Oxidativo , Proteínas/metabolismo , Animales , Cisteína/metabolismo , Glutatión/antagonistas & inhibidores , Disulfuro de Glutatión/metabolismo , Organogénesis/fisiología , Proteoma/análisis , Ratas , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Saco Vitelino/crecimiento & desarrollo , Saco Vitelino/metabolismo
9.
Free Radic Biol Med ; 62: 13-25, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23665395

RESUMEN

It has been established that oxidative stress, defined as the condition in which the sum of free radicals in a cell exceeds the antioxidant capacity of the cell, contributes to the pathogenesis of Parkinson disease. Glutathione is a ubiquitous thiol tripeptide that acts alone or in concert with enzymes within cells to reduce superoxide radicals, hydroxyl radicals, and peroxynitrites. In this review, we examine the synthesis, metabolism, and functional interactions of glutathione and discuss how these relate to the protection of dopaminergic neurons from oxidative damage and its therapeutic potential in Parkinson disease.


Asunto(s)
Dopamina/metabolismo , Glutatión/metabolismo , Estrés Oxidativo , Enfermedad de Parkinson/metabolismo , Antioxidantes/metabolismo , Neuronas Dopaminérgicas , Humanos , Mitocondrias/enzimología , Mitocondrias/metabolismo , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/fisiopatología , Sustancia Negra/enzimología
10.
Lab Anim Res ; 27(3): 259-63, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21998617

RESUMEN

Recently, loss of endogenous glutathione during N-methyl-D-aspartate (NMDA) receptor-mediated excitotoxic injury, and the resultant overproduction of reactive oxygen species (ROS) through an arachidonic acid cascade process in brain, have been implicated in neuronal damage in various neurodegenerative diseases. Glutathione depletion induced by L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of glutathione synthesis, is known to cause arachidonic acid-mediated excitotoxicity in primary mixed cortical cultures. The aim of this study was to investigate whether esculetin (6,7-dihydroxycoumarin), an inhibitor of lipoxygenase, protects against neurotoxicity induced by NMDA or BSO. We observed that neurotoxicity induced by NMDA but not kainic acid was attenuated by esculetin. At the same concentration (100 µM), esculetin attenuated the (45)Ca(2+) uptake elevation induced by NMDA. Free radical-mediated neuronal injury induced by H(2)O(2) and xanthine/xanthine oxidase was concentration-dependently blocked by esculetin. Esculetin (1-30 µM) dose-dependently inhibited BSO-induced neuronal injury. In addition, arachidonate-induced neurotoxicity was completely blocked by esculetin. BSO also reduced glutathione peroxidase (GPx) activity, but did not change glutathione reductase (GR) activity 24 h after treatment. Esculetin dose-dependently increased GR activity, but did not alter GPx activity. These findings suggest that esculetin can contribute to the rescue of neuronal cells from NMDA neurotoxicity and that this protective effect occurs partly through NMDA receptor modulation and the sparing of glutathione depletion.

11.
Laboratory Animal Research ; : 259-263, 2011.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-95397

RESUMEN

Recently, loss of endogenous glutathione during N-methyl-D-aspartate (NMDA) receptor-mediated excitotoxic injury, and the resultant overproduction of reactive oxygen species (ROS) through an arachidonic acid cascade process in brain, have been implicated in neuronal damage in various neurodegenerative diseases. Glutathione depletion induced by L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of glutathione synthesis, is known to cause arachidonic acid-mediated excitotoxicity in primary mixed cortical cultures. The aim of this study was to investigate whether esculetin (6,7-dihydroxycoumarin), an inhibitor of lipoxygenase, protects against neurotoxicity induced by NMDA or BSO. We observed that neurotoxicity induced by NMDA but not kainic acid was attenuated by esculetin. At the same concentration (100 microM), esculetin attenuated the 45Ca2+ uptake elevation induced by NMDA. Free radical-mediated neuronal injury induced by H2O2 and xanthine/xanthine oxidase was concentration-dependently blocked by esculetin. Esculetin (1-30 microM) dose-dependently inhibited BSO-induced neuronal injury. In addition, arachidonate-induced neurotoxicity was completely blocked by esculetin. BSO also reduced glutathione peroxidase (GPx) activity, but did not change glutathione reductase (GR) activity 24 h after treatment. Esculetin dose-dependently increased GR activity, but did not alter GPx activity. These findings suggest that esculetin can contribute to the rescue of neuronal cells from NMDA neurotoxicity and that this protective effect occurs partly through NMDA receptor modulation and the sparing of glutathione depletion.


Asunto(s)
Ácido Araquidónico , Encéfalo , Glutatión , Glutatión Reductasa , Ácido Kaínico , Lipooxigenasa , N-Metilaspartato , Enfermedades Neurodegenerativas , Neuronas , Oxidorreductasas , Peroxidasa , Especies Reactivas de Oxígeno , Umbeliferonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA