Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.033
Filtrar
1.
Molecules ; 29(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125017

RESUMEN

Isatin-derived spirocyclic cores are found in several biologically active molecules. Here, we report nucleophilic domino reactions for the synthesis of α-methylene-γ-butyrolactone/lactam containing spirocyclic oxindoles. The Zn-mediated one-step reaction accommodates a range of substrates and can be used to rapidly generate focused libraries of highly substituted spirocyclic compound.

2.
Beilstein J Org Chem ; 20: 1894-1899, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135658

RESUMEN

In this work, we report an efficient approach to 2-oxoazetidine-3-carboxylic acid derivatives based on a thermally promoted Wolff rearrangement of diazotetramic acids in the presence of nucleophiles. The method allows easy variation of the substituent in the exocyclic acyl group by introducing different N-, O-, and S-nucleophilic reagents into the reaction. The reaction of chiral diazotetramic acids leads exclusively to trans-diastereomeric ß-lactams. The use of variously substituted diazotetramic acids, including spirocyclic derivatives, as well as a wide range of nucleophiles provides access to a structural diversity of medically relevant 2-oxoazetidine-3-carboxylic acid amides and esters.

3.
J Pharm Pract ; : 8971900241273163, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136342

RESUMEN

Background: Cefepime is used for the treatment of nosocomial infections and serves as a carbapenem-sparing agent for treating AmpC inducible bacteria. Cefepime induced neurotoxicity (CIN) is a well-documented adverse effect, although data describing the risk of CIN in patients with a history of seizures (HOS) remains limited. Objectives: The primary and secondary objectives were to compare the rates of CIN in patients with and without HOS and identify risk factors associated with CIN, respectively. Methods: This was a retrospective matched cohort study of patients admitted to University Hospital from January 2019 to December 2022 that were initiated on cefepime with and without a baseline HOS. Patients were matched at a rate of 1:1 by age (+/- 5 years), sex, and month of admission (+/- 1 month). Results: A total of 150 patients were included, 75 in each group. There was no statistically significant difference in CIN between the two groups (9 vs 7, P = 0.7923). The only risk factors associated with CIN were age >65 (OR, 5.8 [95% CI, 1.194-27.996]), acute kidney injury (AKI) during cefepime administration (OR, 13.8 [95% CI, 2.528-75.206]), and an intensive care unit (ICU) stay (OR, 8.6 [95% CI, 1.735-42.624]). Conclusion: There was no increased risk of CIN observed in patients with HOS. Patients age >65, AKI while receiving cefepime and those admitted to the ICU were 5.8, 13.8, and 8.6 times more likely to experience CIN. These results suggest that it may be safe to administer cefepime to patients with HOS in the appropriate clinical setting.

4.
J Int Med Res ; 52(8): 3000605241253447, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39161253

RESUMEN

The aim of this narrative review was to discuss the literature on ß-lactam antibiotic-associated hypokalemia, a potentially life-threatening electrolyte disorder. The PubMed, Web of Science, Cochrane Library, and Scopus databases were searched for articles published between 1965 and 2023, using the following terms: 'hypokalemia' OR 'potassium loss' OR 'potassium deficiency' AND 'beta-lactams' OR 'penicillin' OR 'penicillin G' OR 'cephalosporins' OR 'ceftazidime' OR 'ceftriaxone' OR 'flucloxacillin' OR 'carbapenems' OR 'meropenem' OR 'imipenem' OR 'cefiderocol' OR 'azlocillin' OR 'ticarcillin'. Additional search terms were 'hypokalemia' AND 'epidemiology' AND 'ICU' OR 'intensive care unit' OR 'ER' OR 'emergency department' OR 'ambulatory' OR 'old' OR 'ageing population', and experimental (animal-based) studies were excluded. A total of eight studies were selected and discussed, in addition to nine case reports and case series. Both older and currently used ß-lactam antibiotics (e.g., ticarcillin and flucloxacillin, respectively) have been associated with therapy-related hypokalemia. The incidence of ß-lactam antibiotic-associated hypokalemia may be as high as 40%, thus, the issue of ß-lactam-associated hypokalemia remains clinically relevant. Although other causes of hypokalemia are likely to be diagnosed more frequently (e.g., due to diuretic therapy or diarrhea), the possibility of ß-lactam-induced renal potassium loss should always be considered in individuals with so-called 'unexplained hypokalemia'.


Asunto(s)
Antibacterianos , Hipopotasemia , beta-Lactamas , Hipopotasemia/inducido químicamente , Humanos , beta-Lactamas/efectos adversos , Antibacterianos/efectos adversos , Potasio/sangre
5.
Antimicrob Agents Chemother ; : e0027224, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133022

RESUMEN

The effectiveness of ß-lactam antibiotics is increasingly threatened by resistant bacteria that harbor hydrolytic ß-lactamase enzymes. Depending on the class of ß-lactamase present, ß-lactam hydrolysis can occur through one of two general molecular mechanisms. Metallo-ß-lactamases (MBLs) require active site Zn2+ ions, whereas serine-ß-lactamases (SBLs) deploy a catalytic serine residue. The result in both cases is drug inactivation via the opening of the ß-lactam warhead of the antibiotic. MBLs confer resistance to most ß-lactams and are non-susceptible to SBL inhibitors, including recently approved diazabicyclooctanes, such as avibactam; consequently, these enzymes represent a growing threat to public health. Aspergillomarasmine A (AMA), a fungal natural product, can rescue the activity of the ß-lactam antibiotic meropenem against MBL-expressing bacterial strains. However, the effectiveness of this ß-lactam/ß-lactamase inhibitor combination against bacteria producing multiple ß-lactamases remains unknown. We systematically investigated the efficacy of AMA/meropenem combination therapy with and without avibactam against 10 Escherichia coli and 10 Klebsiella pneumoniae laboratory strains tandemly expressing single MBL and SBL enzymes. Cell-based assays demonstrated that laboratory strains producing NDM-1 and KPC-2 carbapenemases were resistant to the AMA/meropenem combination but became drug-susceptible upon adding avibactam. We also probed these combinations against 30 clinical isolates expressing multiple ß-lactamases. E. coli, Enterobacter cloacae, and K. pneumoniae clinical isolates were more susceptible to AMA, avibactam, and meropenem than Pseudomonas aeruginosa and Acinetobacter baumannii isolates. Overall, the results demonstrate that a triple combination of AMA/avibactam/meropenem has potential for empirical treatment of infections caused by multiple ß-lactamase-producing bacteria, especially Enterobacterales.

6.
Microbiol Spectr ; : e0387623, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162554

RESUMEN

Metallo-beta-lactamase (MBL)-producing carbapenem-resistant Enterobacteriaceae (CRE) infections continue to pose a serious threat to healthcare. Due to their unique active site, MBLs evade the activity of many novel beta-lactam/beta-lactamase inhibitor combinations, which have been specifically targeted toward those carbapenemases with serine active sites. Furthermore, resistance to most, if not all, other clinically relevant antimicrobial classes leaves few reliable therapeutic options. Combination therapy has thus played a vital role in the treatment of MBL-producing CRE infections. In this study, we utilized the static time-kill assay to investigate clinically relevant concentrations of cefepime, piperacillin-tazobactam, and meropenem alone and in combination with either amikacin or the novel plazomicin to determine if combinations of routinely used beta-lactam therapy with an aminoglycoside would achieve bactericidal activity against eight clinically isolated Verona integron-encoded MBL (VIM)-producing CRE. Furthermore, we compared this activity to the combination of aztreonam/avibactam, which has shown potent activity against MBL-producing CRE. Both aztreonam/avibactam and meropenem with either aminoglycoside were rapidly bactericidal within 4 hours and remained bactericidal through 24 hours against all isolates with few exceptions. Combinations including cefepime and piperacillin-tazobactam were also rapidly bactericidal, but activity after 24 hours was inconsistent depending upon the partner aminoglycoside and isolate. Further investigation is warranted to elucidate optimal antibiotic exposures against MBL-producing CRE, including novel agents in the pipeline.IMPORTANCECarbapenem-resistant Enterobacterales (CRE) are one of the most pressing antimicrobial-resistant threats at present. In addition to exhibiting resistance to many, if not all, commonly used antimicrobial agents, CRE achieves these resistant phenotypes through a variety of mechanisms, each of which can uniquely affect available treatment options. The present study is an in vitro investigation of several Verona integron-encoded metallo-beta-lactamase (VIM)-producing CRE isolated from patients at our academic medical center. Because metallo-beta-lactamases (MBLs) are inherently resistant to many of the novel treatments designed to treat CRE due to their different active site composition, we tested several antimicrobial combinations containing routinely utilized broad-spectrum beta-lactams and aminoglycosides. Our results further our understanding of combination therapy options against VIM-producing CRE, including with non-carbapenem-beta-lactams cefepime and piperacillin. By optimizing combinations of existing antimicrobial agents, we hope to expand the available armamentarium against these resistant pathogens.

7.
Front Microbiol ; 15: 1415400, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021634

RESUMEN

Introduction: Antibiotic resistance represents one of the most significant threats to public health in the 21st century. Polyphenols, natural molecules with antibacterial activity produced by plants, are being considered as alternative antimicrobial strategies to manage infections caused by drug-resistant bacteria. In this study, we investigated the antibacterial activity of a polyphenol mixture extracted from citrus fruits, against both antibiotic-susceptible and resistant strains of Staphylococcus aureus and Staphylococcus epidermidis. Methods: Broth microdilution and time-kill curve experiments were used to test the extract anti-staphylococcal activity. Cytotoxicity was assessed by the hemolysis assay. The interaction between the mixture and antibiotics was investigated by the checkerboard assay. The effect of B alone and in combination with oxacillin on the membrane potential was investigated by the 3,3'-dipropylthiadicarbocyanine iodide assay. The ability of the extract to induce the development of resistance was verified by propagating S. aureus for 10 transfers in the presence of sub-inhibitory concentrations. Results: The citrus extract was found to be active against all Staphylococcus strains at remarkably low concentrations (0.0031 and 0.0063%), displaying rapid bactericidal effects without being toxic on erythrocytes. In particular, B was found to rapidly cause membrane depolarization. When combined with methicillin, meropenem, and oxacillin, the mixture displayed synergistic activity exclusively against methicillin-resistant strains. We additionally show that the sequential exposure of S. aureus to sub-inhibitory concentrations did not induce the development of resistance against the extract. Discussion: Overall, these findings support the potential use of the citrus extract as promising option to manage staphylococcal infections and suggest that it may counteract the mechanism behind methicillin-resistance.

8.
Sisli Etfal Hastan Tip Bul ; 58(2): 155-158, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021692

RESUMEN

Objectives: The cross-reactivity problem between cephalosporins and penicillins has mainly been evaluated in the context of patients allergic to penicillins. However, we have little data regarding the opposite aspect of the problem, i.e. the cross-reactivity in subjects primarily sensitized to cephalosporins. This prospective study aims to evaluate the cross-reactivity to penicillins and some other cephalosporins in patients with immediate allergic reactions to cephalosporins. Methods: The study included 21 children with immediate allergic reactions to at least one cephalosporin. Skin testing was performed with a panel of minor and major determinant mixtures of penicillins and three commonly used cephalosporins (cephazoline, cefuroxime and ceftriaxone). Results: The children had used 5.14±4.91 (1-15) times any beta-lactam antibiotic in the previous year and the most common cephalosporins accused were ceftriaxone (42.92%), and cefuroxime, cefazolin, cefixime, cefprozil and cefotaxime (9.5% each). Skin tests were positive for any cephalosporin in 14 (66.7%) subjects and penicillin allergens in 15 (71.4%) subjects. Totally, 85.7% of children with a positive allergy history to cephalosporins were found to be sensitive to either penicillin or any one of three cephalosporins. Conclusion: There seems to be a high risk of adverse reactions to penicillins and other cephalosporins in children with a history of type I hypersensitivity reaction to cephalosporins. Therefore, skin testing with both cephalosporins and penicillins should be performed in patients with a history of cephalosporin allergy.

9.
Int J Qual Health Care ; 36(3)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38955670

RESUMEN

Beta-lactam antibiotics are widely used in the intensive care unit due to their favorable effectiveness and safety profiles. Beta-lactams given to patients with sepsis must be delivered as soon as possible after infection recognition (early), treat the suspected organism (appropriate), and be administered at a dose that eradicates the infection (adequate). Early and appropriate antibiotic delivery occurs in >90% of patients, but less than half of patients with sepsis achieve adequate antibiotic exposure. This project aimed to address this quality gap and improve beta-lactam adequacy using the Define, Measure, Analyze, Improve, and Control Lean Six Sigma quality improvement framework. A multidisciplinary steering committee was formed, which completed a stakeholder analysis to define the gap in practice. An Ishikawa cause and effect (Fishbone) diagram was used to identify the root causes and an impact/effort grid facilitated prioritization of interventions. An intervention that included bundled education with the use of therapeutic drug monitoring (TDM; i.e. drug-level testing) was projected to have the highest impact relative to the amount of effort and selected to address beta-lactam inadequacy in the critically ill. The education and TDM intervention were deployed through a Plan, Do, Study, Act cycle. In the 3 months after "go-live," 54 episodes of beta-lactam TDM occurred in 41 unique intensive care unit patients. The primary quality metric of beta-lactam adequacy was achieved in 94% of individuals after the intervention. Ninety-four percent of clinicians gauged the education provided as sufficient. The primary counterbalance of antimicrobial days of therapy, a core antimicrobial stewardship metric, was unchanged over time (favorable result; P = .73). Application of the Define, Measure, Analyze, Improve, and Control Lean Six Sigma quality improvement framework effectively improved beta-lactam adequacy in critically ill patients. The approach taken in this quality improvement project is widely generalizable to other drugs, drug classes, or settings to increase the adequacy of drug exposure.


Asunto(s)
Antibacterianos , Enfermedad Crítica , Unidades de Cuidados Intensivos , Mejoramiento de la Calidad , Gestión de la Calidad Total , beta-Lactamas , Humanos , Enfermedad Crítica/terapia , Antibacterianos/uso terapéutico , Antibacterianos/administración & dosificación , beta-Lactamas/uso terapéutico , Sepsis/tratamiento farmacológico , Monitoreo de Drogas/métodos
10.
J Bacteriol ; : e0013024, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995039

RESUMEN

c-di-AMP is an essential second messenger that binds and regulates several proteins of different functions within bacterial cells. Among those, PstA is a structurally conserved c-di-AMP-binding protein, but its function is largely unknown. PstA is structurally similar to PII signal transduction proteins, although it specifically binds c-di-AMP rather than other PII ligands such as ATP and α-ketoglutarate. In Listeria monocytogenes, we found that PstA increases ß-lactam susceptibility at normal and low c-di-AMP levels, but increases ß-lactam resistance upon c-di-AMP accumulation. Examining a PstA mutant defective for c-di-AMP binding, we found the apo form of PstA to be toxic for ß-lactam resistance, and the c-di-AMP-bound form to be beneficial. Intriguingly, a role for PstA in ß-lactam resistance is only prominent in aerobic cultures, and largely diminished under hypoxic conditions, suggesting that PstA function is linked to aerobic metabolism. However, PstA does not control aerobic growth rate, and has a modest influence on the tricarboxylic acid cycle and membrane potential-an indicator of cellular respiration. The regulatory role of PstA in ß-lactam resistance is unrelated to reactive oxygen species or oxidative stress. Interestingly, during aerobic growth, PstA function requires the cytochrome bd oxidase (CydAB), a component of the respiratory electron transport chain. The requirement for CydAB might be related to its function in maintaining a membrane potential, or redox stress response activities. Altogether, we propose a model in which apo-PstA diminishes ß-lactam resistance by interacting with an effector protein, and this activity can be countered by c-di-AMP binding or a by-product of redox stress. IMPORTANCE: PstA is a structurally conserved c-di-AMP-binding protein that is broadly present among Firmicutes bacteria. Furthermore, PstA binds c-di-AMP at high affinity and specificity, indicating an important role in the c-di-AMP signaling network. However, the molecular function of PstA remains elusive. Our findings reveal contrasting roles of PstA in ß-lactam resistance depending on c-di-AMP-binding status. We also define physiological conditions for PstA function during aerobic growth. Future efforts can exploit these conditions to identify PstA interaction partners under ß-lactam stress.

11.
Bioanalysis ; : 1-10, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041640

RESUMEN

Aim: To assess the impact of experimental conditions on free serum concentrations as determined by ultrafiltration and HPLC-DAD analysis in a wide range of antibiotics. Materials & methods: Relative centrifugation force (RCF), temperature, pH and buffer were varied and the results compared with the standard protocol (phosphate buffer pH 7.4, 37°C, 1000 × g). Results: Generally, at 10,000 × g the unbound fraction (fu) decreased with increasing molecular weight, and was lower at 22°C. In unbuffered serum, the fu of flucloxacillin or valproic acid was increased, that of basic or amphoteric drugs considerably decreased. Comparable results were obtained using phosphate or HEPES buffer except for drugs which form metal chelate complexes. Conclusion: Maintaining a physiological pH is more important than strictly maintaining body temperature.


[Box: see text].

12.
mBio ; 15(6): e0033924, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38988221

RESUMEN

The emergence of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) has imposed further challenges to the clinical management of MRSA infections. When exposed to ß-lactam antibiotics, these strains can easily acquire reduced ß-lactam susceptibility through chromosomal mutations, including those in RNA polymerase (RNAP) genes such as rpoBC, which may then lead to treatment failure. Despite the increasing prevalence of such strains and the apparent challenges they pose for diagnosis and treatment, there is limited information available on the actual mechanisms underlying such chromosomal mutation-related transitions to reduced ß-lactam susceptibility, as it does not directly associate with the expression of mecA. This study investigated the cellular physiology and metabolism of six missense mutants with reduced oxacillin susceptibility, each carrying respective mutations on RpoBH929P, RpoBQ645H, RpoCG950R, RpoCG498D, RpiAA64E, and FruBA211E, using capillary electrophoresis-mass spectrometry-based metabolomics analysis. Our results showed that rpoBC mutations caused RNAP transcription dysfunction, leading to an intracellular accumulation of ribonucleotides. These mutations also led to the accumulation of UDP-Glc/Gal and UDP-GlcNAc, which are precursors of UTP-associated peptidoglycan and wall teichoic acid. Excessive amounts of building blocks then contributed to the cell wall thickening of mutant strains, as observed in transmission electron microscopy, and ultimately resulted in decreased susceptibility to ß-lactam in OS-MRSA. IMPORTANCE: The emergence of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) strains has created new challenges for treating MRSA infections. These strains can become resistant to ß-lactam antibiotics through chromosomal mutations, including those in the RNA polymerase (RNAP) genes such as rpoBC, leading to treatment failure. This study investigated the mechanisms underlying reduced ß-lactam susceptibility in four rpoBC mutants of OS-MRSA. The results showed that rpoBC mutations caused RNAP transcription dysfunction, leading to an intracellular accumulation of ribonucleotides and precursors of peptidoglycan as well as wall teichoic acid. This, in turn, caused thickening of the cell wall and ultimately resulted in decreased susceptibility to ß-lactam in OS-MRSA. These findings provide insights into the mechanisms of antibiotic resistance in OS-MRSA and highlight the importance of continued research in developing effective treatments to combat antibiotic resistance.


Asunto(s)
Antibacterianos , ARN Polimerasas Dirigidas por ADN , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Oxacilina , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/enzimología , Oxacilina/farmacología , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Antibacterianos/farmacología , beta-Lactamas/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mutación Missense , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Pared Celular/genética , Humanos , Mutación , Metabolómica
13.
Eur J Med Chem ; 276: 116692, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39068864

RESUMEN

Biocatalysis is a valuable industrial approach in active pharmaceutical ingredient (API) manufacturing for asymmetric induction and synthesis of chiral APIs. Herein, we investigated synthesis of a panel of microtubule-destabilising antiproliferative ß-lactam enantiomers employing a commercially available immobilised Candida antarctica lipase B enzyme together with methanol and MTBE. The ß-lactam ring remained intact during chiral kinetic resolution reactions, plausibly due to a bulky N-1 phenyl substituent on the ß-lactam ring substrate. The predominant reaction mediated by CAL-B was methanol catalysed conversion of the ß-lactam 3-acetoxy substituent to a 3-hydroxyl group, with preferential methanolysis of the 3S, 4S enantiomer. The unreacted substrate underwent progressive enantioenrichment to the 3R, 4R enantiomer. Substitution patterns on the B ring C3 meta position of the ß-lactam scaffold greatly affected the rate of reaction. Halo substituents (fluoro-, chloro- and bromo-) reduced the rate of conversion compared to unsubstituted analogues, which in turn increased enantiomeric excess (ee). Ee values up to 86 % for the 3S, 4S 3-hydroxyl enantiomer were achieved. A double resolution approach for unreacted substrate yielded high ee values (>99 %) for the 3R, 4R 3-acetoxy enantiomer. CAL-B mediated methanolysis is a more sustainable method for resolution of racemic antiproliferative ß-lactams compared to a previous technique of chiral diastereomeric resolution. Yields of ß-lactams obtained using CAL-B are far superior than previously described, which will facilitate progression toward pre-clinical and clinical development. Biocatalysis is a useful tool in the toolbox of the medicinal chemist.


Asunto(s)
Antineoplásicos , Proliferación Celular , Proteínas Fúngicas , Lipasa , beta-Lactamas , Lipasa/metabolismo , beta-Lactamas/química , beta-Lactamas/síntesis química , beta-Lactamas/farmacología , Cinética , Estereoisomerismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Humanos , Biocatálisis , Estructura Molecular , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga , Basidiomycota
14.
Chemistry ; : e202401658, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890146

RESUMEN

A new nickel catalyzed cross-electrophile coupling for accessing γ-lactams (isoindolinones) as well as γ-lactones (isobenzofuranones) via carbonylation with CO2 is documented. The protocol exploits the synergistic role of redox-active Ni(II) complexes and AlCl3 as a CO2 activator/oxygen scavenger, leading to the formation of a wide range of cyclic amides and esters (28 examples) in good to high yields (up to 87 %). A dedicated computational investigation revealed the multiple roles played by AlCl3. In particular, the simultaneous transient protection of the pendant amino group of the starting reagents and the formation of the electrophilically activated CO2-AlCl3 adduct are shown to concur in paving the way for an energetically favorable mechanistic pathway.

15.
Antimicrob Agents Chemother ; 68(7): e0021824, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38837393

RESUMEN

NaHCO3 responsiveness is a novel phenotype where some methicillin-resistant Staphylococcus aureus (MRSA) isolates exhibit significantly lower minimal inhibitory concentrations (MIC) to oxacillin and/or cefazolin in the presence of NaHCO3. NaHCO3 responsiveness correlated with treatment response to ß-lactams in an endocarditis animal model. We investigated whether treatment of NaHCO3-responsive strains with ß-lactams was associated with faster clearance of bacteremia. The CAMERA2 trial (Combination Antibiotics for Methicillin-Resistant Staphylococcus aureus) randomly assigned participants with MRSA bloodstream infections to standard therapy, or to standard therapy plus an anti-staphylococcal ß-lactam (combination therapy). For 117 CAMERA2 MRSA isolates, we determined by broth microdilution the MIC of cefazolin and oxacillin, with and without 44 mM of NaHCO3. Isolates exhibiting ≥4-fold decrease in the MIC to cefazolin or oxacillin in the presence of NaHCO3 were considered "NaHCO3-responsive" to that agent. We compared the rate of persistent bacteremia among participants who had infections caused by NaHCO3-responsive and non-responsive strains, and that were assigned to combination treatment with a ß-lactam. Thirty-one percent (36/117) and 25% (21/85) of MRSA isolates were NaHCO3-responsive to cefazolin and oxacillin, respectively. The NaHCO3-responsive phenotype was significantly associated with sequence type 93, SCCmec type IVa, and mecA alleles with substitutions in positions -7 and -38 in the regulatory region. Among participants treated with a ß-lactam, there was no association between the NaHCO3-responsive phenotype and persistent bacteremia (cefazolin, P = 0.82; oxacillin, P = 0.81). In patients from a randomized clinical trial with MRSA bloodstream infection, isolates with an in vitro ß-lactam-NaHCO3-responsive phenotype were associated with distinctive genetic signatures, but not with a shorter duration of bacteremia among those treated with a ß-lactam.


Asunto(s)
Antibacterianos , Cefazolina , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Oxacilina , Infecciones Estafilocócicas , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Cefazolina/farmacología , Cefazolina/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Oxacilina/farmacología , Bacteriemia/tratamiento farmacológico , Bacteriemia/microbiología , Fenotipo , beta-Lactamas/farmacología , beta-Lactamas/uso terapéutico , Masculino , Bicarbonato de Sodio/farmacología , Femenino , Persona de Mediana Edad
16.
Rev Esp Quimioter ; 37(4): 299-322, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38840420

RESUMEN

Antimicrobial agents are widely used, and drug interactions are challenging due to increased risk of adverse effects or reduced efficacy. Among the interactions, the most important are those affecting metabolism, although those involving drug transporters are becoming increasingly known. To make clinical decisions, it is key to know the intensity of the interaction, as well as its duration and time-dependent recovery after discontinuation of the causative agents. It is not only important to be aware of all patient treatments, but also of supplements and natural medications that may also interact. Although they can have serious consequences, most interactions can be adequately managed with a good understanding of them. Especially in patients with polipharmacy it is compulsory to check them with an electronic clinical decision support database. This article aims to conduct a narrative review focusing on the major clinically significant pharmacokinetic drug-drug interactions that can be seen in patients receiving treatment for bacterial infections.


Asunto(s)
Antibacterianos , Interacciones Farmacológicas , Humanos , Antibacterianos/farmacocinética , Antibacterianos/uso terapéutico , Antibacterianos/efectos adversos , Infecciones Bacterianas/tratamiento farmacológico
17.
J Pharm Biomed Anal ; 248: 116259, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38870837

RESUMEN

BACKGROUND: The investigation of drug disposition in tissues is critical to improving dosing strategy and maximizing treatment effectiveness, yet developing a multi-tissue bioanalytical method could be challenging due to the differences among various matrices. Herein, we developed an LC-MS/MS method tailored for the quantitation of piperacillin (PIP), cefazolin (CFZ), and cefoxitin (CFX) in rat plasma and 12 tissues, accompanied by validation data for each matrix according to the FDA and EMA guidelines. RESULTS: The method required only a small sample volume (5 µL plasma or 50-100 µL tissue homogenates) and a relatively simple protocol for simultaneous quantitation of PIP, CFZ, and CFX within different biological matrices. Mobile phase A was composed of 5 mM ammonium formate and 0.1 % formic acid in water, while mobile phase B contained 0.1 % formic acid in acetonitrile. The mobile phase was pumped through a Synergi Fusion-RP column equipped with a guard column with a gradient elution program at a 0.3 mL/min flow rate. The mass spectrometer was operated in positive ionization mode (ESI+) using multiple reaction monitoring. SIGNIFICANCE: The validated method has been successfully applied to quantify PIP, CFZ, and CFX from the plasma and tissue samples collected in a pilot rat study and will further be used in a large pharmacokinetic study. To our knowledge, this is also the first report presenting long-term, freeze-thaw, and autosampler stability data for PIP, CFZ, and CFX in rat plasma and multiple tissues.


Asunto(s)
Cefazolina , Cefoxitina , Piperacilina , Espectrometría de Masas en Tándem , Animales , Espectrometría de Masas en Tándem/métodos , Ratas , Cefazolina/sangre , Cefazolina/farmacocinética , Cefazolina/análisis , Piperacilina/sangre , Piperacilina/farmacocinética , Piperacilina/análisis , Cefoxitina/farmacocinética , Cefoxitina/sangre , Cefoxitina/química , Cefoxitina/análisis , Cromatografía Liquida/métodos , Reproducibilidad de los Resultados , Distribución Tisular , Ratas Sprague-Dawley , Antibacterianos/sangre , Antibacterianos/farmacocinética , Antibacterianos/análisis , Masculino , Cromatografía Líquida con Espectrometría de Masas
18.
Iran J Microbiol ; 16(2): 176-186, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38854980

RESUMEN

Background and Objectives: Multi-drug-resistant pathogens pose a significant threat as they can rapidly spread, leading to severe healthcare-associated invasive infections. In developing countries, diarrheagenic Escherichia coli (DEC) is a major bacterial pathogen responsible for causing diarrhea. However, the outbreak of resistant strains has made the treatment of DEC infections much more challenging. This study aimed to investigate the relationship between antibiotic resistance genes and other virulence categories in E. coli strains that cause diarrhea, particularly DEC. Materials and Methods: The phylogenetic grouping was defined using PCR and multi-locus sequence type (MLST) methods. Results: Among the isolates analyzed, 14 were identified as resistant and were classified into eight distinct sequence types: ST3, ST53, ST77, ST483, ST512, ST636, ST833, and ST774, indicating genetic diversity among the resistant strains. Certain sequence types, notably ST512 and ST636, were found to be associated with multiple antibiotic resistance in DEC. Regarding antibiotic susceptibility, strains showed the highest resistance to amoxicillin, suggesting that this antibiotic may not be effective in treating DEC infections. On the other hand, the isolates demonstrated susceptibility to amikacin and chloramphenicol, implying that these antibiotics could be more suitable treatment options for DEC infections. Conclusion: The findings underscore the importance of promptly identifying antibiotic resistance patterns and their correlation with specific pathogenic virulence categories, as this knowledge can aid in selecting the most appropriate antibiotics for treating DEC infections. Considering the antibiotic resistance profiles and associated resistance genes is crucial in managing and containing diarrheal outbreaks and in selecting effective antibiotic therapies for DEC infections.

19.
Rev Argent Microbiol ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38845247

RESUMEN

Multidrug-resistant Shigella sonnei ST152, global lineage III, is a high-risk clone, whose dissemination has limited therapeutic options for shigellosis. This study aimed to characterize two isolates of S. sonnei, which were recovered in Lima, Peru, during November 2019, exhibiting resistance to extended-spectrum cephalosporins and quinolones, and concurrently harboring blaCTX-M-15 and qnrS1 genes, in addition to mutations in gyrA-S83L. These isolates were resistant to ceftriaxone, ciprofloxacin and trimethoprim/sulfamethoxazole. The molecular analysis showed that both isolates belonged to lineage III, sublineages IIIa and IIIb. The blaCTX-M-15 gene was located in the same genetic platform as qnrS1, flanked upstream by ISKpn19, on a conjugative plasmid belonging to the IncI-γ group. To the best of our knowledge, this would be the first report on S. sonnei isolates carrying the blaCTX-M-15 gene in Peru. The global dissemination of S. sonnei ST152, co-resistant to ß-lactams and quinolones, could lead to a worrisome scenario in the event of potential acquisition of genetic resistance mechanisms to azithromycin.

20.
Antibiotics (Basel) ; 13(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38927223

RESUMEN

Carbapenemases, a class of enzymes specialized in the hydrolysis of carbapenems, represent a significant threat to global public health. These enzymes are classified into different Ambler's classes based on their active sites, categorized into classes A, D, and B. Among the most prevalent types are IMI/NMC-A, KPC, VIM, IMP, and OXA-48, commonly associated with pathogenic species such as Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The emergence and dissemination of carbapenemase-producing bacteria have raised substantial concerns due to their ability to infect humans and animals (both companion and food-producing) and their presence in environmental reservoirs. Adopting a holistic One Health approach, concerted efforts have been directed toward devising comprehensive strategies to mitigate the impact of antimicrobial resistance dissemination. This entails collaborative interventions, highlighting proactive measures by global organizations like the World Health Organization, the Center for Disease Control and Prevention, and the Food and Agriculture Organization. By synthesizing the evolving landscape of carbapenemase epidemiology in Portugal and tracing the trajectory from initial isolated cases to contemporary reports, this review highlights key factors driving antibiotic resistance, such as antimicrobial use and healthcare practices, and underscores the imperative for sustained vigilance, interdisciplinary collaboration, and innovative interventions to curb the escalating threat posed by antibiotic-resistant pathogens. Finally, it discusses potential alternatives and innovations aimed at tackling carbapenemase-mediated antibiotic resistance, including new therapies, enhanced surveillance, and public awareness campaigns.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA