Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
Sci Total Environ ; 949: 175157, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094636

RESUMEN

This study utilized MODIS true color satellite imagery to analyse blowing sand and dust events dynamics in the Middle East from 2010 to 2021, focusing on Syria, Iraq, and Jordan. A total of 4923 dust point sources were detected, with a significant concentration (~90 %) located within the Tigris-Euphrates Basin (Nearest Neighbor Ratio = 0.41, р < 0.001). Land cover analysis revealed that bare land, comprising most of the study area, was the predominant source of dust emissions. Wetlands, though only constituting about 1 % of the area, showed the highest frequency of dust sources per unit area, highlighting their role as critical dust emission hotspots. The study emphasizes the impact of drought and anthropogenic factors, such as poor land management, on blowing dust intensity. It suggests the necessity of strategic land management practices, including re-vegetation of arid areas, reducing soil exposure, and implementing wind erosion control measures. To effectively address the transboundary nature of dust emissions, the findings underscore the importance of fostering regional cooperation through mechanisms such as shared environmental monitoring and data exchange platforms, joint management of cross-border natural resources, and collaborative policy making.

2.
Animal ; 18(8): 101231, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39053155

RESUMEN

Virtual fencing (VF) technology is gaining interest due to its potential to facilitate sustainable grazing management. It allows farmers to contain grazing livestock without physical fences, thereby reducing the time and labour associated with the implementation of conventional fences. From a conservation perspective, some sensitive areas within uplands should not be grazed during certain periods of the year, and VF provides an invisible and moveable fence line that can exclude livestock from these areas. However, there are also concerns associated with its use, including animal welfare impacts, cost-effectiveness, and public perception. The extent to which VF can contribute to make livestock systems more sustainable remains to be investigated. To address this gap, this study investigates the potential of VF to promote sustainable grazing management using the Efficiency, Substitution, and Redesign framework, which has been used for the first time in this context. The framework is particularly relevant in taking an active and normative approach to identify key aspects to focus on to help achieve sustainability. We consulted stakeholders including farmers, wildlife inspectors, veterinarians, policy officers, researchers, NGOs, farm advisors or certification managers, through focus groups (N = 4) and in-depth, semi-structured interviews (N = 5). Stakeholders have highlighted the potential of VF to provide new opportunities to increase the efficiency and sustainability of livestock grazing systems, enabling their redesign, and contributing to improved environmental and animal welfare outcomes, as well as higher financial and social performance. However, there are important aspects that remain to be addressed to achieve such redesign, including issues of reliability due to poor network signal, animals' ability to learn, biosecurity and safety issues related to the absence of physical fences, farm suitability and farmers' ability to use the systems effectively. This study highlights the need to ensure that the development and uptake of VF are mutually beneficial to farmers, animals, and the wider farming industry. This includes a highlight on the importance of participative approaches to involve key stakeholders to address concerns and maximise the potential of the technology.

3.
Heliyon ; 10(12): e32880, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988574

RESUMEN

Soil erosion is a major environmental problem in Ethiopia, reducing topsoil and agricultural land productivity. Soil loss estimation is a critical component of sustainable land management practices because it provides important information about soil erosion hotspot areas and prioritizes areas that require immediate management interventions. This study integrates the Revised Universal Soil Loss Equation (RUSLE) with Google Earth Engine (GEE) to estimate soil erosion rates and map soil erosion in the Upper Tekeze Basin, Northern Ethiopia. SoilGrids250 m, CHIRPS-V2, SRTM-V3, MERIT Hydrograph, NDVI from sentinel collections and land use land cover (LULC) data were accessed and processed in the GEE Platform. LULC was classified using Random forest (RF) classification algorithm in the GEE platform. Landsat surface reflectance images from Landsat 8 Operational land imager (OLI) sensors (2021) was used for LULC classification. Besides, different auxiliary data were utilized to improve the classification accuracy. Using the RUSLE-GEE framework, we analyzed the soil loss rate in different agroecologies and LULC types in the upper Tekeze basin in Waghimra zone. The results showed that the average soil loss rate in the Upper Tekeze basin is 25.5 t ha-1 yr-1. About 63 % of the basin is experiencing soil erosion above the maximum tolerable rate, which should be targeted for land management interventions. Specifically, 55 % of the study area, which is covered by unprotected shrubland is experiencing mean annual soil loss of 34.75 t ha-1 yr-1 indicating the need for immediate soil conservation intervention. The study also revealed evidence that this high mean soil loss rate of the basin can be reduced to a tolerable rate by implementing integrative watershed management and exclosures. Furthermore, this study demonstrated that GEE could be a good source of datasets and a computing platform for RUSLE, in particular for data scarce semi-arid and arid environments. The results from this study are reliable for decision-making for rapid soil erosion assessment and intervention prioritization.

4.
Int J Biometeorol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955818

RESUMEN

Urban street dust (UStD) is a vital issue for human health and is crucial for urban sustainability. This study aims to enhance the creation of safe, affordable, and resilient cities by examining environmental contamination and health risks in urban residential areas. Specifically, it investigates the concentrations and spatial distribution of chromium (Cr), cadmium (Cd), nickel (Ni), copper (Cu), lead (Pb), and zinc (Zn) in UStD in Yenimahalle, Ankara. The mean concentrations of Zn, Cr, Pb, Cd, Ni, and Cu in UStD were 97.98, 66.88, 55.22, 52.45, 38.37, and 3.81 mg/kg, respectively. The geoaccumulation pollution index (Igeo) values for these elements were: Cd (5.12), Ni (1.61), Cr (1.21), Pb (1.13), Cu (0.78), and Zn (0.24). These indices indicate that the area is moderately polluted with Cr, Pb, and Ni, uncontaminated to moderately contaminated with Cu and Zn, and extremely polluted with Cd. The hazard index (HI) values for Cr, Cd, Ni, Cu, Pb, and Zn were below the non-carcinogenic risk threshold for adults, indicating no significant risk. However, for children, the HI values for Pb, Ni, Cd, and Zn were 3.37, 1.80, 1.25, and 1.25, respectively, suggesting a higher risk. Carcinogenic risk (RI) of Cd, Ni, and Pb was significant for both children and adults, indicating that exposure through ingestion, inhalation, and dermal contact is hazardous. The findings highlight the need for strategic mitigation measures for both natural and anthropogenic activities, providing essential insights for residents, policymakers, stakeholders, and urban planners.

5.
Data Brief ; 55: 110680, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39071956

RESUMEN

Active management practices to reduce or promote particular vegetation, known as vegetation treatments, are a common part of environmental management and they are conducted for a variety of purposes including wildfire risk mitigation, invasive species management, and ecological restoration. Vegetation treatment for wildfire mitigation in particular have increased dramatically in the Western United States in the past several decades. While vegetation treatments are common, data regarding the timing, location, and type of treatments conducted are often only maintained by the organization that conducted the work, hampering the ability of managers and researchers to understand the distribution and timing of vegetation treatments across a landscape. This dataset is a collection of spatially referenced records of vegetation treatments such as mechanical thinning, prescribed burning, and herbicide applications that were conducted in the state of New Mexico, USA and adjacent parts of Colorado, Oklahoma, and Texas. Spatial data were collected through requests to the regional or state offices for the relevant agencies (e.g., The Bureau of Land Management, the U.S. Forest Service, New Mexico State Forestry Division). The accuracy of this data collection approach was assessed by conducting more intensive data collection in five randomly selected focal watersheds across New Mexico. In these watersheds local offices of the larger agencies were contacted, as well as any smaller groups (e.g., soil and water conservation districts, municipalities, and environmental non-profits), and in person visits were made to gather any information on vegetation treatments possible. The overall dataset includes records of treatments spanning a century and includes records of 9.9 million acres of treatments conducted by more than a dozen different organizations. In the five focal watershed that we surveyed the database contained 7.4 % fewer acres of treated land than the more intensive interview approach. This spatially extensive dataset on vegetation treatments will be useful for researchers quantifying or modelling the effect of vegetation management on fire risk and behaviour. Additionally, this data will be useful to ecologists studying the distribution, movement, and habitat associations of a variety of plant an animal species. Finally, this data will be useful for research on landscape conservation and management.

6.
Heliyon ; 10(11): e31894, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38841512

RESUMEN

Land management technology (LMT) adoption is one of Ethiopia's crucial strategies to combat soil depletion and promote agricultural production. However, there is scant information concerning the intensity, interdependent nature, and households' decision to adopt multiple LMTs. Thus, the purpose of this study is to identify factors influencing households' decisions to adopt multiple LMTs and the intensity and interdependency of the technologies in the Goyrie watershed of southern Ethiopia. The data was collected from 291 randomly selected household heads, focus group discussion participants, and key informant interview respondents. The quantitative data was analyzed using descriptive statistics and econometric methods like multivariate probit and ordered probit modeling, while the qualitative data was presented through content analysis. The result indicated that more than half of respondents (67 %) applied one or two LMTs. The highest complementary effects were observed in mixed soil bunds with desho grasses and manure applications. However, soil bunds and fanya-juu, manure application and agroforestry showed interchangeability with one another. Sex, education, family size, landholding size, access to development agents and credit institutions, training, and village membership increased the probability of adopting multiple LMTs, whereas age, land rent, and crop sharing discouraged the likelihood of households' decisions to adopt LMT. The results of the ordered probit model revealed that village membership and contact with extension agents highly encouraged the intensity of LMT adoptions. Thus, policymakers and planners should consider social, institutional, human asset, and technological related factors to increase adoption rates and intensity of land management technologies.

7.
New Phytol ; 243(2): 591-606, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38785184

RESUMEN

Investigating plant responses to climate change is key to develop suitable adaptation strategies. However, whether changes in land management can alleviate increasing drought threats to crops in the future is still unclear. We conducted a management × drought experiment with winter wheat (Triticum aestivum L.) to study plant water and vegetative traits in response to drought and management (conventional vs organic farming, with intensive vs conservation tillage). Water traits (root water uptake pattern, stem metaxylem area, leaf water potential, stomatal conductance) and vegetative traits (plant height, leaf area, leaf Chl content) were considered simultaneously to characterise the variability of multiple traits in a trait space, using principal component analysis. Management could not alleviate the drought impacts on plant water traits as it mainly affected vegetative traits, with yields ultimately being affected by both management and drought. Trait spaces were clearly separated between organic and conventional management as well as between drought and control conditions. Moreover, changes in trait space triggered by management and drought were independent from each other. Neither organic management nor conservation tillage eased drought impacts on winter wheat. Thus, our study raised concerns about the effectiveness of these management options as adaptation strategies to climate change.


Asunto(s)
Sequías , Carácter Cuantitativo Heredable , Estaciones del Año , Triticum , Agua , Triticum/fisiología , Triticum/crecimiento & desarrollo , Análisis de Componente Principal , Hojas de la Planta/fisiología , Agricultura/métodos , Raíces de Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo
8.
Sci Total Environ ; 932: 173094, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38729378

RESUMEN

The SDG 15.3.1 target of Land Degradation Neutrality (LDN) only has 15 years from conception (in 2015) to realization (in 2030). Therefore, investigating the effectiveness and challenges of LDN has become a priority, especially in drylands, where fragile ecosystems intersect with multiple disturbances. In this study, solutions are proposed and validated based on the challenges of LDN. We chose the Northern Slope of the Tianshan Mountains as a case study and set baselines in 2005 and 2010. The region and degree of land change (including degraded, stable, and improved) were depicted at the pixel scale (100 × 100 m), and LDN realization was assessed at the regional scale (including administrative districts and 5000 × 5000 m grids). The results showed a significant disparity between the two baselines. The number of areas that realized the LDN target was rare, regardless of the scale of the administrative districts or grids. Chord plots, Spearman's correlation, and curve estimation were employed to reveal the relationship between LDN and seven natural or socioeconomic factors. We found that substantial degradation was closely related to the expansion of unused, urban, and mining land and reduction in water, glaciers, and forests. Further evidence suggests that agricultural development both positively and negatively affects LDN, whereas urbanization and mining activities are undesirable for LDN. Notably, the adverse effects of glacier melting require additional attention. Therefore, we consider the easy-to-achieve and hard-to-achieve baselines as the mandatory and desirable targets of LDN, respectively, and focus further efforts in three aspects: preventing agricultural exploitation from occupying ecological resources, defining reasonable zones for urbanization and mining, and reducing greenhouse gas emissions to mitigate warming. Overall, this study is expected to be a beneficial addition to existing LDN theoretical systems and serve as a case validation of the challenges of LDN in drylands.

9.
J Environ Manage ; 358: 120804, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593736

RESUMEN

Forests boast essential resources and potential to mitigate climate change, meriting the development of conservation policies on all governmental scales. Ecosystem services provided by forests, including biodiversity, air quality, and food and fuel production, make forests valuable assets for climate-vulnerable communities that often lack the means to cope with ecosystem service degradation resulting from climate change. Historically, these vulnerable communities are previously marginalized and socio-economically limited, and climate change augments already-existing injustices. Policy discussions around managing forests and carbon, therefore, must consider environmental justice as well as diversity, equity, and inclusion to better meet the needs of all constituents. Using R, we perform a review of forest, climate, and policy peer-reviewed literature published between 2018 and 2021 for prevalence of topics related to diversity, equity, inclusion, and justice (DEIJ). We select DEIJ terms a priori and a posteriori based on our understanding of DEIJ and common considerations of the literature. Out of 2891 unique articles, 15.7% of literature mentioned at least one DEIJ term in the title, keyword list, or abstract. We identify which journals have published DEIJ literature more often in the context of forest, climate, and policy, and we perform a co-occurrence analysis of additional common themes. Concepts such as ecosystem services and economics appeared often in the literature, as well as REDD+ as a specifically mentioned policy. We call for increased consideration of DEIJ in forest, climate, and policy discussions and literature, as vulnerable communities historically have been excluded from and victimized by the conversations held among large, economically motivated entities.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Justicia Ambiental , Bosques , Biodiversidad , Ecosistema , Clima , Política Ambiental
10.
Sci Total Environ ; 928: 172218, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38580109

RESUMEN

In natural habitats, especially in arid and semi-arid areas that are fragile ecosystems, vegetation degradation is one of the most important factors affecting the variability of soil health. Studying physicochemical and biological parameters that serve as indicators of soil health offers important information on the potential risk of land degradation and the progression of changes in soil performance and health during recovery periods. This study specifically examines the impact of vegetation degradation on soil health indicators and the duration needed to improve the physical, chemical, and biological parameters in a semi-arid mountainous area site types with the dominance of Quercus macranthera Fisch & C.A. Mey and Carpinus orientalis Miller in northern Iran. In different years (2003, 2013, and 2023), litter and soil samples (at depths of 0-10, 10-20, and 20-30 cm) were collected in different types of degraded sites. Additionally, in 2023, a non-degraded site was chosen as a control and similar samples were collected. A total of 48 litter (12 samples for each of the study site types) and 144 soil (4 study site types × 3 depths × 12 samples) samples were collected. In order to investigate the spatial changes of soil basal respiration (or CO2 emission), which is involved in global warming, from each site type, 50 soil samples were taken along two 250-meter transects. The findings showed that litter P and Mg contents in the non-degraded site were 1.6 times higher than in degraded site types (2003). Following vegetation degradation, soil fertility indicators decreased by 2-4 times. The biota population was lower by about 80 % under the degraded site types (2003) than in the non-degraded site, and the density of fungi and bacteria in the degraded site types was almost half that of the non-degraded site types. Geostatistics showed the high variance (linear model) of CO2 emissions in areas without degradation. In addition, vegetation degradation significantly reduced soil carbon and nitrogen mineralization. Although soil health indicators under the degraded vegetation have improved over time (30 years), results showed that even thirty years is not enough for the full recovery of a degraded ecosystem, and more time is needed for the degraded area to reach the same conditions as the non-degraded site. Considering the time required for natural restoration in degraded site types, it is necessary to prioritize the conservation of vegetation and improve the ecosystem restoration process with adequate interventions.


Asunto(s)
Restauración y Remediación Ambiental , Bosques , Suelo , Suelo/química , Clima , Ambiente , Irán , Quercus , Betulaceae , Tiempo , Biota , Conservación de los Recursos Naturales
11.
PeerJ ; 12: e17221, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638157

RESUMEN

Background: Soil organic nitrogen (SON) levels can respond effectively to crop metabolism and are directly related to soil productivity. However, simultaneous comparisons of SON dynamics using isotopic tracing in diverse agroecosystems are lacking, especially in karst areas with fragile ecology. Methods: To better understand the response of SON dynamics to environmental changes under the coupling of natural and anthropogenic disturbances, SON contents and their stable N isotope (δ15NSON) compositions were determined in abandoned cropland (AC, n = 16), grazing shrubland (GS, n = 11), and secondary forest land (SF, n = 20) from a typical karst area in southwest China. Results: The SON contents in the SF (mean: 0.09%) and AC (mean: 0.10%) profiles were obviously lower than those in the GS profile (mean: 0.31%). The δ15NSON values ranged from 4.35‰-7.59‰, 3.79‰-7.23‰, and 1.87‰-7.08‰ for the SF, AC, and GS profiles, respectively. Decomposition of organic matter controlled the SON variations in the secondary forest land by the covered vegetation, and that in the grazing shrubland by goat excreta. δ15NSON ranges were controlled by the covered vegetation, and the δ15NSON fractionations during SON transformation were influenced by microorganisms in all surface soil. Conclusions: The excreta of goats that contained 15N-enriched SON induced a heavier δ15NSON composition in the grazed shrubland. Long-term cultivation consumes SON, whereas moderate grazing increases SON content to reduce the risk of soil degradation. This study suggests that optimized crop-livestock production may benefit the sustainable development of agroecosystems in karst regions.


Asunto(s)
Nitrógeno , Suelo , Nitrógeno/análisis , Suelo/química , Bosques , Ecología , China
12.
Sci Total Environ ; 927: 171974, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38547990

RESUMEN

Wars have serious negative effects on the total environment. This study reviews 193 case studies worldwide in order to better understand these impacts and their potential management before, during and after war. The synthesis of the evidence shows that military actions damage landscape resources. Aerial bombings have great negative impacts by damaging environmental conservation efforts, destroying trees, disturbing soilscapes and undermining soil health. In addition, war exterminates wildlife and their ecological niches and contributes to atmospheric and water pollution. Overall, military leaders and personnel have shown little concern about these impacts. Limited postwar restoration activities are also undertaken to reduce war-driven environmental impacts. The study highlights some good practices on how to manage the total environment during the warfare. Therefore, communities must share best lessons to remain in a sustainable peace, restore the war-damaged environment, and enhance sustainable economic development.


Asunto(s)
Conservación de los Recursos Naturales , Guerra , Conservación de los Recursos Naturales/métodos , Ambiente , Humanos
13.
Sci Total Environ ; 924: 171631, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38467254

RESUMEN

Soil acidification is an ongoing problem in intensively cultivated croplands due to inefficient and excessive nitrogen (N) fertilization. We collected high-resolution data comprising 19,969 topsoil (0-20 cm) samples from the Land Use and Coverage Area frame Survey (LUCAS) of the European commission in 2009 to assess the impact of N fertilization on buffering substances such as carbonates and base cations. We have only considered the impacts of mineral fertilizers from the total added N, and a N use efficiency of 60 %. Nitrogen fertilization adds annually 6.1 × 107 kmol H+ to European croplands, leading to annual loss of 6.1 × 109 kg CaCO3. Assuming similar acidification during the next 50 years, soil carbonates will be completely removed from 3.4 × 106 ha of European croplands. In carbonate-free soils, annual loss of 2.1 × 107 kmol of basic cations will lead to strong acidification of at least 2.6 million ha of European croplands within the next 50 years. Inorganic carbon and basic cation losses at such rapid scale tremendously drop the nutrient status and production potential of croplands. Soil liming to ameliorate acidity increases pH only temporarily and with additional financial and environmental costs. Only the direct loss of soil carbonate stocks and compensation of carbonate-related CO2 correspond to about 1.5 % of the proposed budget of the European commission for 2023. Thus, controlling and decreasing soil acidification is crucial to avoid degradation of agricultural soils, which can be done by adopting best management practices and increasing nutrient use efficiency. Regular screening or monitoring of carbonate and base cations contents, especially for soils, where the carbonate stocks are at critical levels, are urgently necessary.

14.
Syst Rev ; 13(1): 80, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429833

RESUMEN

BACKGROUND: Prevention policies against type 2 diabetes mellitus (T2DM) focus solely on individual healthy lifestyle behaviours, while an increasing body of research recognises the involvement of environmental determinants (ED) (cultural norms of land management and planning, local foodscape, built environment, pollution, and neighbourhood deprivation). Precise knowledge of this relationship is essential to proposing a prevention strategy integrating public health and spatial planning. Unfortunately, issues related to the consistency and synthesis of methods, and results in this field of research limit the development of preventive strategies. This systematic review aims to improve knowledge about the relationship between the risk of developing T2DM in adulthood and long-term exposure to its ED during childhood or teenage years. METHODS: This protocol is presented according to the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) tools. PubMed, Embase, CINAHL, Web of Science, EBSCO, and grey literature from the Laval University Libraries databases will be used for data collection on main concepts such as 'type 2 diabetes mellitus', 'zoning' or 'regional, urban, or rural areas land uses', 'local food landscape', 'built environment', 'pollution', and 'deprivation'. The Covidence application will store the collected data for selection and extraction based on the Population Exposure Comparator Outcome and Study design approach (PECOS). Studies published until December 31, 2023, in English or French, used quantitative data about individuals aged 18 and over that report on T2DM, ED (cultural norms of land management and planning, local foodscape, built environment, and neighbourhood deprivation), and their association (involving only risk estimators) will be included. Then, study quality and risk of bias will be conducted according to the combined criteria and ratings from the ROBINS-E (Risk of Bias in Non-randomised Studies-of Exposures) tools and the 'Effective Public Health Practice Project' (EPHPP). Finally, the analytical synthesis will be produced using the 'Synthesis Without Meta-analysis' (SWiM) guidelines. DISCUSSION: This systematic review will summarise available evidence on ED associated with T2DM. The results will contribute to improving current knowledge and developing more efficient cross-sectoral interventions in land management and public health in this field of research. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42023392073.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/prevención & control , Salud Pública , Proyectos de Investigación , Revisiones Sistemáticas como Asunto
15.
Ying Yong Sheng Tai Xue Bao ; 35(1): 8-16, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38511434

RESUMEN

The construction of ecological civilization emphasizes holistic protection of "mountain-water-forest-farmland-lake-grassland-sand", which has become an important concept of desertification prevention projects in arid and semi-arid areas of China. In the past, sandy land management and use have been neglected in desertification prevention and control, in that the links have not been effectively connected and the long-term and efficient desertification prevention has not been realized. Therefore, combining Qian Xuesen's understanding of "deserticulture", we comprehensively discussed the "long-term achievements" of China's desertification control miracle from the perspective of the historical evolution of the interaction of technology and practice, and the strategic development of policy guidance. Further, we defined the concepts of desertification prevention, desertification control, and sandy land management and use. We analyzed the coupling and coordination relationship between the four links and the scientific principle based on the development of ecological industry chain. Finally, we put forward the policy and market realization pathways, with efficient sandy land management as the core, desertification prevention as the basis, desertification control as the channel, and long-term sandy land use as the foundation. We expected to provide theoretical and practical guidance for creating a new miracle of China's desertification prevention and control.


Asunto(s)
Conservación de los Recursos Naturales , Arena , Monitoreo del Ambiente , China , Bosques , Ecosistema
16.
Sci Rep ; 14(1): 6523, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38499666

RESUMEN

The integrated development of agricultural land and finance not only promotes rural financial innovation and breaks the bottleneck of agricultural financing but also facilitates agricultural land transfer and scaled operations. This leads to the advancement of the effective growth of contemporary agriculture. The reform of the 'separation of three rights' in agricultural land promotes land circulation, which, in turn, offers an institutional guarantee for the tandem development of rural finance and agricultural land management. This paper measures the comprehensive development index of agricultural land management and rural finance in 30 provinces of China from 2005 to 2020. In light of this, it calculates the degree of coupling and coordination between China's agricultural land management and rural financial development. The Dagum Gini coefficient, kernel density, and the Moran index were used to analyze regional differences and patterns of agglomeration. The study found that the degree of coupling coordination between China's agricultural land management and rural finance is increasing annually. However, there remains a significant gap in achieving high-quality coupling. Notably, the growth rate of rural financial development exceeds that of agricultural land management, and hypervariable density is a major source of regional variation. There is polarization in the coupled development of farmland management and rural finance. Provinces in the eastern and central regions tend to be located in the high-high agglomeration (H-H) in terms of the level of development of agricultural land and financial integration, while the western region tends to fall in low-low aggregation (L-L).

17.
Sci Total Environ ; 927: 171759, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38521257

RESUMEN

Nitrate­nitrogen (NO3-N) is a contaminant of concern in groundwater worldwide. Stakeholders need information on the ability to detect changes in NO3-N concentrations to prove that land management practices are meeting water quality aims. We created a database of quarterly to monthly NO3-N measurements in 948 sites across New Zealand; 186 of those sites had mean residence time (MRT) data. New Zealand has set a target of sufficient land use mitigations in the next 30 years to ensure steady state surface water concentrations do not exceed 2.4 mg L-1. Here we assess whether the current monitoring network could identify the impacts of these mitigations, assuming that the mitigations are successfully implemented at the source. Only 41 % of the network could detect statistically significant reductions with the current standard quarterly sampling after 30 years of monitoring. The percentage of sites increased to 60 % with increased monitoring frequency (often weekly) but this required a 100-300 % increase in monitoring costs. However, policy makers and stakeholders typically require information on policy and mitigation effectiveness within 5-10 years. Detection within 5-10 years was very unlikely (0-20 % of sites) regardless of the sampling frequency. Importantly, these analyses include the impacts of groundwater lag and temporal dispersion on the likelihood of detecting change, ignoring these impacts, incorrectly, yields a much higher likelihood of detecting reductions. We conclude that the current monitoring network is unlikely to be fit for the purpose of detecting NO3-N reductions within practical timeframes or budgets. Furthermore, we conclude that lag and temporal dispersion effects must be included in detection power calculations; we therefore recommend that MRT data is regularly collected. We also provide a python package to enable easy detection power calculations with lag and temporal dispersion impacts, thereby supporting the development of robust change-detection monitoring networks.

18.
Ambio ; 53(8): 1124-1135, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38402492

RESUMEN

Changes in wild and domestic herbivore populations significantly impact extensive grazing systems, particularly in low productive environments, where increasing wild herbivore populations are perceived as a threat to farming. To assess the magnitude of these changes in Iceland, we compiled time series on herbivore populations from 1986 to 2020 and estimated changes in species densities, metabolic biomass, and consumption of plant biomass in improved lands and unimproved rangelands. We compared estimates of consumption rates to past and present net primary production. Overall, the herbivore community composition shifted from livestock to wildlife dominated. However, wild herbivores only contributed a small fraction (14%) of the total herbivore metabolic biomass and consumption (4-7%), and livestock dominated the overall herbivore biomass. These insights highlight the necessity of developing improved local integrated management for both wild and domestic herbivores where they coexist.


Asunto(s)
Animales Salvajes , Herbivoria , Ganado , Animales , Islandia , Biomasa , Plantas
19.
J Environ Manage ; 351: 119731, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38169249

RESUMEN

Wildland fire incident commanders make wildfire response decisions within an increasingly complex socio-environmental context. Threats to human safety and property, along with public pressures and agency cultures, often lead commanders to emphasize full suppression. However, commanders may use less-than-full suppression to enhance responder safety, reduce firefighting costs, and encourage beneficial effects of fire. This study asks: what management, socioeconomic, environmental, and fire behavior characteristics are associated with full suppression and the less-than-full suppression methods of point-zone protection, confinement/containment, and maintain/monitor? We analyzed incident report data from 374 wildfires in the United States northern Rocky Mountains between 2008 and 2013. Regression models showed that full suppression was most strongly associated with higher housing density and earlier dates in the calendar year, along with non-federal land jurisdiction, regional and national incident management teams, human-caused ignitions, low fire-growth potential, and greater fire size. Interviews with commanders provided decision-making context for these regression results. Future efforts to encourage less-than-full suppression should address the complex management context, in addition to the biophysical context, of fire response.


Asunto(s)
Incendios , Incendios Forestales , Estados Unidos , Humanos , Predicción , Gestión de Riesgos
20.
Pest Manag Sci ; 80(5): 2250-2259, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-36715695

RESUMEN

BACKGROUND: Agricultural landscapes provide resources for arthropod pests as well as their natural enemies. To develop integrated pest management (IPM) practices, it is important to understand how spatiotemporal location influences crop colonization and damage severity. We performed a 3-year (2016-2018) field experiment in winter oilseed rape (OSR, Brassica napus) fields in Estonia, where half of the fields were within 500 m of the location of the previous year's winter OSR field and half were outside this zone. We investigated how distance from the previous year's OSR crop influences the infestation and parasitism rates of two of its most important pests: the pollen beetle (Brassicogethes aeneus) and the cabbage seed weevil (Ceutorhynchus obstrictus). RESULTS: When the distance from the previous year's OSR crop was >500 m, we recorded significantly reduced pest pressure by both B. aeneus and C. obstrictus in the study fields. Biocontrol of both pests, provided by parasitic wasps, was high in each study year and commonly not affected by distance. Mean parasitism rates of B. aeneus were >31%, occasionally reaching >70%; for C. obstrictus, mean parasitism was >46%, reaching up to 79%, thereby providing effective biocontrol for both pest species. CONCLUSION: Spatiotemporal separation of OSR fields can reduce pest pressure without resulting in reduced parasitism of OSR pests. This supports a spatiotemporal field separation concept as an effective and sustainable technique for IPM in OSR. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Artrópodos , Brassica napus , Escarabajos , Avispas , Gorgojos , Animales , Escarabajos/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA