Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Fluoresc ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320630

RESUMEN

The hydrothermal method was employed to synthesize a novel bi-ligands LnMOF: Ln(cpioa)phen. The secondary ligand 1, 10-phen serves as a bridging agent to further facilitate energy transfer between Ln ions and the primary ligand H3cpioa. A comparison between Ln(cpioa) MOFs (Ln: Tb3+, Eu3+) and Ln(cpioa)phen MOFs (Ln: Tb3+, Eu3+) reveals that addition of the secondary ligand significantly improves the emission intensity by as high as almost 34 times. After detailed structural study, it is found that different Ln ions have the similar coordination in the Ln(cpioa)phen MOF. In addition, the chromaticity of Ln(cpioa)phen MOFs can be easily tuned by the amounts of doping Ln ions. La0.974Tb0.0255Eu0.0005(cpioa)phen MOF has a white emission with a CIE coordinate of (0.323, 0.343). Characterizations of corresponding LED devices show that device based on Ln(cpioa)phen MOF has better photoluminescence performances, which indicates that Ln(cpioa)phen MOF has great potential of for WLED applications.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124884, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39089068

RESUMEN

The overuse of quinolone antibiotics has led to a series of health and environmental issues. Herein, we combine the distinct luminescence properties of Eu3+ with the unique structure of covalent organic frameworks (COFs) to develop a precise and sensitive fluorescent probe for detecting Flumequine (Flu) in water. Eu3+ is thoroughly anchored into the channels of COFs as recognition sites, while the synthesized probe material still maintains its intact framework structure. The unique structure of COFs provides excellent support and protection for Eu3+. Therefore, COF-Eu can rapidly bind with Flu which can transfer the absorbed energy to Eu3+ through an "antenna effect", resulting in red fluorescence. Moreover, there is a good linear relationship between Flu concentration in the range of 0-30 µM, with a detection limit of 41 nM. Simultaneously, the material maintains remarkable reproducibility, with its performance remaining almost unchanged after five cycles of use. Remarkably, the probe demonstrates excellent Flu recovery rates in real samples. This study provides a viable approach for the recognition of flumequine in the environment through a customized fluorescence detection method.

3.
Mikrochim Acta ; 191(6): 317, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38724862

RESUMEN

A simple, sensitive dual-emission probe was developed for the detection of phosphate (Pi). The probe Tb-BTB/DPA was synthesized by mixing dual-ligand, 1,3,5-tri(4-carboxyphenyl) benzene (H3BTB) and dipicolinic acid (DPA), with metal ions Tb3+ in ethanol-water solution at 40℃ for 2 h. Tb-BTB/DPA exhibits two emission peaks, the emission at 362 nm is attributed to H3BTB, an energy transfer between Tb3+ nodes, and DPA further enhances the fluorescence of Tb3+ at 544 nm. Pi competes with ligand H3BTB to coordinate Tb3+, resulting in partial collapse of the Tb-BTB/DPA structure and interrupting the electron transfer between H3BTB and Tb3+. Therefore, the emission at 362 nm is enhanced, while the emission at 544 nm is unchanged, and a ratiometric fluorescence method is developed to detect Pi. Tb-BTB/DPA exhibits good linearity within the Pi concentration range (0.1-50 µmol/L), and the detection limit was 25.8 nmol/L. This study provides a new way to prepare probes with dual emission sensing properties.

4.
Nano Lett ; 24(9): 2765-2772, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38393855

RESUMEN

Alloying lanthanide ions (Yb3+) into perovskite quantum dots (Yb3+:CsPb(Cl1-xBrx)3) is an effective method to achieve efficient near-infrared (NIR) luminescence (>950 nm). Increasing the Yb3+ alloying ratio in the perovskite matrix enhances the luminescence intensity of Yb3+ emission at 990 nm. However, high Yb3+ alloying (>15%) results in vacancy-induced inferior material stability. In this work, we developed a polarity-mediated antisolvent manipulation strategy to resolve the incompatibility between a high Yb3+ alloying ratio and inferior stability of Yb3+:CsPb(Cl1-xBrx)3. Precise control of solution polarity enables increased uniformity of the perovskite matrix with fewer trap densities. Employing this strategy, we obtain Yb3+:CsPb(Cl1-xBrx)3 with the highest Yb3+ alloying ratio of 30.2% and a 2-fold higher electroluminescence intensity at 990 nm. We lever the engineered Yb3+:CsPb(Cl1-xBrx)3 to fabricate NIR-LEDs, achieving a peak external quantum efficiency (EQE) of 8.5% at 990 nm: this represents the highest among perovskite NIR-LEDs with an emission wavelength above 950 nm.

5.
Adv Sci (Weinh) ; 11(7): e2305241, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38084003

RESUMEN

Luminescent materials that display quick spectral responses to thermal stimuli have attracted pervasive attention in sensing technologies. Herein, a programmable luminescence color switching in lanthanide-doped LiYO2 under thermal stimuli, based on deliberate control of the monoclinic (ß) to tetragonal (α) phase transition in the crystal lattice, is reported. Specifically, a lanthanide-doping (Ln3+ ) approach to fine-tune the phase-transition temperature in a wide range from 294 to 359 K is developed. Accordingly, an array of Ln3+ -doped LiYO2 crystals that exhibit progressive phase transition, and thus sequential color switching at gradually increasing temperatures, is constructed. The tunable optical response to thermal stimuli is harnessed for colorimetric temperature indication and quantitative detection, demonstrating superior sensitivity and temperature resolution (Sr = 26.1% K-1 , δT = 0.008 K). The advances in controlling the phase-transition behavior of luminescent materials also offer exciting opportunities for high-performance personalized health monitoring.

6.
Molecules ; 28(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37687189

RESUMEN

A series of novel 3D coordination polymers [Ln2(Qdca)3(H2O)x]·yH2O (x = 3 or 4, y = 0-4) assembled from selected lanthanide ions (Ln(III) = Nd, Eu, Tb, and Er) and a non-explored quinoline-2,4-dicarboxylate building block (Qdca2- = C11H5NO42-) were prepared under hydrothermal conditions at temperatures of 100, 120, and 150 °C. Generally, an increase in synthesis temperature resulted in structural transformations and the formation of more hydrated compounds. The metal complexes were characterized by elemental analysis, single-crystal and powder X-ray diffraction methods, thermal analysis (TG-DSC), ATR/FTIR, UV/Vis, and luminescence spectroscopy. The structural variety of three-dimensional coordination polymers can be ascribed to the temperature effect, which enforces the diversity of quinoline-2,4-dicarboxylate ligand denticity and conformation. The Qdca2- ligand only behaves as a bridging or bridging-chelating building block binding two to five metal centers with seven different coordination modes arising mainly from different carboxylate group coordination types. The presence of water molecules in the structures of complexes is crucial for their stability. The removal of both coordinated and non-coordinated water molecules leads to the disintegration and combustion of metal-organic frameworks to the appropriate lanthanide oxides. The luminescence features of complexes, quantum yield, and luminescent lifetimes were measured and analyzed. Only the Eu complexes show emission in the VIS region, whereas Nd and Er complexes emit in the NIR range. The luminescence properties of complexes were correlated with the crystal structures of the investigated complexes.

7.
Chemistry ; 29(71): e202302633, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-37697454

RESUMEN

Recent progress on the temporal response (TR) of lanthanide-doped upconversion luminescence (UCL) has enriched the means of UCL regulation, promoted advanced designs for customized applications such as biological diagnosis, high-capacity optical coding, and dynamic optical anti-counterfeiting, and pushed us to reacquaint the dynamic responses of sensitizer/activator ions in UCL systems. In particular, the lifetime of UCL should be revisited after discovery of novel experimental phenomena and luminescence mechanisms, i. e., it should be understood as the collective TR (in the decay edge) of all the involved ions rather than the reciprocal of the radiative rate of an individual ion. In this Concept, we retraced the latest understanding of the dynamics in UCL with special attention to the relationship between excitation and emission, means of TR regulation, and discussed existing challenges. It is expected to provide some fundamental insights to deepened understanding, further regulation, and frontier applications of TR features of UCL.

8.
Molecules ; 28(16)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37630416

RESUMEN

Complexes of lanthanide ions, such as Eu(III) (red light emission) and Tb(III) (green light emission), with proper ligands can be highly luminescent and color-tunable, also attaining yellow and orange emission under UV radiation. The ligands employed in this work were poly(sodium acrylate), working as polymeric matrix, and 1,10-phenanthroline, taking advantage of its antenna effect. Possibilities of color display were further enhanced by incorporating a cationic polyfluorene with blue emission. This strategy allowed for obtaining cyan and magenta, besides the aforementioned colors. Uncoated cellulose paper was impregnated with the resulting luminescent inks, observing a strong hypsochromic shift in excitation wavelength upon drying. Hence, while a cheap UV-A lamp sufficed to reveal the polyfluorene's blue emission, shorter wavelengths were necessary to visualize the emission due to lanthanide ions as well. The capacity to reveal, with UV-C radiation, a full-color image that remains invisible under natural light is undoubtedly useful for anti-counterfeiting applications. Furthermore, both lanthanide ion complexes and polyfluorenes were shown to have their luminescence quenched by Cu(II) ions and nitroarenes, respectively.

9.
Materials (Basel) ; 16(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37512344

RESUMEN

In this work, we have compiled our research on lanthanide-based luminescent materials for use as down-shifter layers in photovoltaic (PV) mini-modules. The complexes we have prepared (C1-17), with formulas [Eu2(phen)2(bz)6] (C1), [Eu2(bphen)2(bz)6] (C2), [Eu(tta)3bphen] (C3), [Eu(bta)3pyz-phen] (C4), [Eu(tta)3pyz-phen] (C5), [Eu(bta)3me-phen] (C6), [Er(bta)3me-phen] (C7), [Yb(bta)3me-phen] (C8), [Gd(bta)3me-phen] (C9), [Yb(bta)3pyz-phen] (C10), [Er(tta)3pyz-phen] (C11), [Eu2(bz)4(tta)2(phen)2] (C12), [Gd2(bz)4(tta)2(phen)2] (C13), [EuTb(bz)4(tta)2(phen)2] (C14), [EuGd(bz)4(tta)2(phen)2] (C15), [Eu1.2Gd0.8(bz)4(tta)2(phen)2] (C16), and [Eu1.6Gd0.4(bz)4(tta)2(phen)2] (C17), can be grouped into three families based on their composition: Complexes C1-6 were synthesized using Eu3+ ions and phenanthroline derivatives as the neutral ligands and fluorinated ß-diketonates as the anionic ligands. Complexes C7-11 were prepared with ligands similar to those of complexes C1-6 but were synthesized with Er3+, Yb3+, or Gd3+ ions. Complexes C12-17 have the general formula [M1M2(bz)4(tta)2(phen)2], where M1 and M2 can be Eu3+, Gd3+, or Tb3+ ions, and the ligands were benzoate (bz-), 2-thenoyltrifluoroacetone (tta-), and 1,10-phenanthroline (phen). Most of the complexes were characterized using X-ray techniques, and their photoluminescent properties were studied. We then assessed the impact of complexes in the C1-6 and C12-17 series on the EQE of PV mini-modules and examined the durability of one of the complexes (C6) in a climate chamber when embedded in PMMA and EVA films. This study emphasizes the methodology employed and the key findings, including enhanced mini-module efficiency. Additionally, we present promising results on the application of complex C6 in a bifacial solar cell.

10.
Luminescence ; 38(8): 1521-1528, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37296519

RESUMEN

To obtain optimal luminescence, 0.12 g of GdVO4 :3%Eu3+ nanocrystals (NCs) and different volumes of nitrogen-doped carbon dots (N-CDs) crude solution were used as precursors, and the composite synthesized using the hydrothermal deposition method showed optimal luminescence when 11 ml (2.45 mmol) crude solution was used. In addition, similar composites with the same molar ratio as GVE/cCDs(11) were also prepared with the hydrothermal and physical mixing processes. Based on the test results of XRD, XPS, and PL spectra, for the composite GVE/cCDs(11), the highest (lowest) peak intensity of the C-C/C=C (C=O/C=N) bond, which was 1.18 (0.75) times that of GVE/cCDs-m, indicated most N-CDs deposition and led to their highest emission intensity under 365 nm excitation, although nitrogen atoms in the composite were shed slightly during the deposition process. Finally, as can be seen from the patterns designed for security applications that the optimally luminescent composite is one of the most promising candidates in the anti-counterfeiting field.


Asunto(s)
Luminiscencia , Nanopartículas , Carbono/química , Nitrógeno/química
11.
Front Chem ; 11: 1209264, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37265591

RESUMEN

Lanthanide coordinating polymeric microparticles have witnessed increasing research interests during the past decades due to their versatile morphology and tunable fluorescent properties. Herein, we have synthesized an amidoximed block copolymer containing aromatic backbone and pendent amidoxime as well as carboxyl groups, which has been employed as the ligand to sensitize the intrinsic fluorescence emission of lanthanide ions of Tb3+ and Eu3+. Furthermore, the lanthanide coordinating polymeric microparticles showing tunable green and red emission fluorescence have been prepared via the emulsion confinement co-self-assembly of amidoximed polymeric ligands with Tb3+ and Eu3+. It is found that both the fluorescence emission and sizes of obtained fluorescent microparticles can be easily modulated in a wide range by tuning concentration of polymers and lanthanide ions, as well as emulsion evaporation temperature. Thanks to their tunable sizes (250-900 nm), fluorescence emission as well as presence of surface active functional groups, the present fluorescent microparticles would find potential applications in in-vitro detection, optical encoding and devices.

12.
ACS Appl Mater Interfaces ; 15(20): 24629-24637, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37162456

RESUMEN

Lead-free halide double perovskite, as one of the promising candidates for lead halide perovskite materials, shows great potential in light-emitting diodes (LEDs), benefiting from its environmental friendliness and high chemical stability. However, the poor regulation of the emission spectra severely limits its application range. Herein, various lanthanide ions were successfully doped in Cs2NaScCl6 double perovskite single crystals (DPSCs) to yield effective and stable emissions spanning from visible to near-infrared (NIR) regions. Notably, efficient energy transfer from the host to the dopants enables tunable emissions with good chromaticity, which is rarely reported in the field of lead-free double perovskite. Moreover, density functional theory calculations reveal that the high local electron density around the [LnCl6]3- octahedron in DPSCs plays a key role in the improvement of photoluminescence quantum yields (PLQYs). The optimal PLQYs are up to 84%, which increases around 3 times over that of the undoped sample. Finally, multicolor and NIR LEDs based on Ln3+-doped Cs2NaScCl6 DPSCs were fabricated and had different application functions. Specifically, the single-composite white LED shows adjustable coordinates and correlated color temperatures, while the NIR LED shows good night vision imaging. This work provides new inspiration for the application of efficient multifunctional LEDs based on lead-free double perovskite materials.

13.
ACS Appl Mater Interfaces ; 15(21): 25704-25712, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37198907

RESUMEN

Understanding the photoionic mechanism in optoelectronic materials offers significant potential for various applications in the fields of laser, data/energy storage, signal processing, and ionic batteries. However, the research on such light-matter interaction using photons of sub-bandgap energy is scarce, especially for those transparent materials with photoactive centers that would generate a local field upon photoillumination. This research investigates the photoionic effect in Yb3+/Er3+ doped tellurate glass with Ag nanoparticles (NPs) embedded. It is found that the photogenerated electric dipole of Yb3+/Er3+ ions and local field of Ag NPs could block the Ag+ migration in an external electric field. The blocking phenomenon of Ag NPs is the so-called Coulomb blocking effect (ascribed to its quantum confinement effect), which would be further enhanced by the additional photoinduced localized surface plasmon resonance (LSPR) effect. Interestingly, the photoresponsive electric dipole of lanthanide ions could cause plasmon oscillation of Ag NPs, resulting in a partial release of the blockade of lanthanide ions and enhanced blockade via quantum confinement of Ag NPs. A model device is proposed according to the photoresistive behavior. The research gives another perspective on the photoionic effect via the photoresponsive local field generated by photoactive centers in optofunctional materials.

14.
Carbohydr Polym ; 315: 120981, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37230618

RESUMEN

Biological macromolecules had been studied as ligands in recent years, which not only give the complexes excellent polymer properties, but also have many advantages such as biodegradability. Carboxymethyl chitosan (CMCh) is excellent biological macromolecular ligand because of its abundant active amino and carboxyl groups, and it can smoothly transfer energy to Ln3+ after coordinating. To further study the energy transfer mechanism of CMCh-Ln3+ complexes, CMCh-Eu3+/Tb3+ complexes with different Eu3+/Tb3+ ratios were prepared by using CMCh as a ligand. The morphology, structure, and properties of CMCh-Eu3+/Tb3+ were characterized and analyzed by infrared spectroscopy, XPS, TG and Judd-Ofelt theory, thus the chemical structure of CMCh-Eu3+/Tb3+ was determined. The mechanism of energy transfer was explained in detail, also the Förster resonance transfer model is confirmed, and the hypothesis of energy transfer back was verified by the characterization and calculation methods of fluorescence spectra, UV spectra, phosphorescence spectra and fluorescence lifetime. Finally, CMCh-Eu3+/Tb3+ with different molar ratios were used to prepare a series of multicolor LED lamps, and it extends the application range of biological macromolecules as ligands.

15.
ACS Nano ; 17(11): 10546-10559, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37212730

RESUMEN

Plasmonic nanostructures have a capability to control the photoluminescence (PL) emission properties of optical species and thus can dramatically enhance the performances of diverse optical systems and devices. Lanthanide ions typically exhibit multiple PL emission lines. Systematic studies on the plasmon-enabled selective enhancement for the different emission lines of lanthanide ions are still highly desired in order to achieve the fine manipulation on the spectral profile and luminescence intensity ratio (LIR). Herein we report on the synthesis and PL emission properties of monodisperse spherical (Au core)@(Y(V,P)O4:Eu) nanostructures, which integrate the plasmonic and luminescent units into an individual core@shell structure. The localized surface plasmon resonance adjusted through control of the size of the Au nanosphere core enables the systematic modulation of the selective emission enhancement of Eu3+. As revealed by single-particle scattering and PL measurements, the five luminescence emission lines of Eu3+ originating from the 5D0,1 excitation states are affected by the localized plasmon resonance to different extents, which are dependent on both the dipole transition nature and the intrinsic quantum yield of the emission line. Based on the plasmon-enabled tunable LIR, high-level anticounterfeiting and optical temperature measurements for photothermal conversion are further demonstrated. Our architecture design and PL emission tuning results offer many possibilities for constructing multifunctional optical materials by integrating plasmonic and luminescent building blocks into hybrid nanostructures with different configurations.

16.
J Fluoresc ; 33(6): 2145-2160, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37093332

RESUMEN

The fluorescence assay is one of the popular methods that is applied for detection of different targets. However, this method may show low sensitivity and high background in biological samples due to the natural fluorescence of different compounds in complicated samples. In addition, it inevitably affects the detection results accuracy. A fundamental solution to this problem is the use of the time-resolved fluorescence technique (TRF). The main component of this technique is the use of long fluorescence lifetime reagents. In this review, various time-resolved fluorescent reagents such as complexes of lanthanide ions, lanthanide-doped inorganic nanoparticles; Mn-doped ZnS quantum dots (QDs) and pyrene excimer are introduced. Moreover, TRF sensors, especially TRF aptasensors (DNA-based sensors) are discussed. This review will give new ideas for researchers to develop novel high-sensitive TRF sensors that can remove or decrease background fluorescence and use them for the detection of various targets in complicated samples without treatment.


Asunto(s)
Elementos de la Serie de los Lantanoides , Nanopartículas , Puntos Cuánticos , Fluorescencia , ADN , Compuestos de Zinc , Sulfuros
17.
Talanta ; 259: 124521, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37058939

RESUMEN

The establishment of simple and sensitive detection methods for fluoride ion (F-) is of great importance for its effective prevention and control, and metal-organic framework (MOF) has attracted much attention for sensing applications due to its high surface areas and tunable structures. Herein, we successfully synthesized a fluorescent probe for ratiometric sensing of F- by encapsulating sensitized Tb3+ in a MOF-on-MOF material (UIO66/MOF801, with the formula of C48H28O32Zr6 and C24H2O32Zr6, respectively). We found that Tb3+@UIO66/MOF801 can be used as a built-in fluorescent probe for fluorescence-enhanced sensing of F-. Interestingly, the two fluorescence emission peaks of Tb3+@UIO66/MOF801 at 375 nm and 544 nm exhibit different fluorescence responses to F- under excitation at 300 nm. The 544 nm peak is sensitive to F-, while the 375 nm peak is insensitive to it. Photophysical analysis indicated that the photosensitive substance was formed, which promotes the absorption of 300 nm excitation light by the system. Self-calibrating fluorescent detection of F- was achieved due to the unequal energy transfer toward the two different emission centers. The detection limit of Tb3+@UIO66/MOF801 for F- was 4.029 µM, which is far lower than the WHO guideline for drinking water. Moreover, the ratiometric fluorescence strategy showed a high concentration tolerance of interference, because of its inner-reference effect. This work highlights the high potential of lanthanide ion encapsulated MOF-on-MOF as environmental sensors, and offers a scalable way for construction of the ratiometric fluorescence sensing systems.

18.
Sensors (Basel) ; 23(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36904832

RESUMEN

This paper contains the design of active optical lenses used for the detection of arc flashing emissions. The phenomenon of an arc flashing emission and its characteristics were contemplated. Methods of preventing these emissions in electric power systems were discussed as well. The article also includes a comparison of commercially available detectors. An analysis of the material properties of fluorescent optical fiber UV-VIS-detecting sensors constitutes a major part of the paper. The main purpose of the work was to make an active lens using photoluminescent materials, which can convert ultraviolet radiation into visible light. As part of the work, active lenses with materials such as Poly(methyl 2-methylpropenoate) (PMMA) and phosphate glass doped with lanthanides, such as terbium (Tb3+) and europium (Eu3+) ions, were analyzed. These lenses were used to make optical sensors, which were supported by commercially available sensors in their construction.

19.
Nano Lett ; 23(7): 2862-2869, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36926957

RESUMEN

Lifetime-based NIR luminescent nanothermometry is ideally suited for temperature detection in living cells and in vivo, but the thermal sensitivity (Sr) modulation remains elusive. Herein, a thorough investigation is performed to unveil the shell effect on lifetime-based Sr by finely controlling the shell thickness of lanthanide-doped core-shell-shell nanoparticles. Owing to the space-dependent energy transfer and back energy transfer between Nd3+ and Yb3+ as well as the energy migration to surface quenchers, both active and inert shells can regulate the thermal-dependent nonradiative decays and NIR luminescence lifetime of Yb3+, which in turn modulates the Sr from 0.56% to 1.54% °C-1. After poly(acrylic acid) modification of the optimal architecture, the tiny nanoprobes possess robust stability to fluctuations in the microenvironment, which enables accurate temperature mapping of inflammation in the internal liver organ of living mouse. This work will provide new insights for optimizing Sr and guidance for precise temperature measurements in vivo.


Asunto(s)
Elementos de la Serie de los Lantanoides , Nanopartículas , Animales , Ratones , Temperatura , Luminiscencia , Hígado
20.
ACS Nano ; 17(7): 6822-6832, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36940429

RESUMEN

The generation of temperature gradients on nanoparticles heated externally by a magnetic field is crucially important in magnetic hyperthermia therapy. But the intrinsic low heating power of magnetic nanoparticles, at the conditions allowed for human use, is a limitation that restricts the general implementation of the technique. A promising alternative is local intracellular hyperthermia, whereby cell death (by apoptosis, necroptosis, or other mechanisms) is attained by small amounts of heat generated at thermosensitive intracellular sites. However, the few experiments conducted on the temperature determination of magnetic nanoparticles have found temperature increments that are much higher than the theoretical predictions, thus supporting the local hyperthermia hypothesis. Reliable intracellular temperature measurements are needed to get an accurate picture and resolve the discrepancy. In this paper, we report the real-time variation of the local temperature on γ-Fe2O3 magnetic nanoheaters using a Sm3+/Eu3+ ratiometric luminescent thermometer located on its surface during exposure to an external alternating magnetic field. We measure maximum temperature increments of 8 °C on the surface of the nanoheaters without any appreciable temperature increase on the cell membrane. Even with magnetic fields whose frequency and intensity are still well within health safety limits, these local temperature increments are sufficient to produce a small but noticeable cell death, which is enhanced considerably as the magnetic field intensity is increased to the maximum level tolerated for human use, consequently demonstrating the feasibility of local hyperthermia.


Asunto(s)
Hipertermia Inducida , Humanos , Temperatura , Hipertermia Inducida/métodos , Calor , Campos Magnéticos , Muerte Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA