Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 29(14): 3924-3940, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37165918

RESUMEN

Forests are increasingly exposed to extreme global warming-induced climatic events. However, the immediate and carry-over effects of extreme events on forests are still poorly understood. Gross primary productivity (GPP) capacity is regarded as a good proxy of the ecosystem's functional stability, reflecting its physiological response to its surroundings. Using eddy covariance data from 34 forest sites in the Northern Hemisphere, we analyzed the immediate and carry-over effects of late-spring frost (LSF) and growing season drought on needle-leaf and broadleaf forests. Path analysis was applied to reveal the plausible reasons behind the varied responses of forests to extreme events. The results show that LSF had clear immediate effects on the GPP capacity of both needle-leaf and broadleaf forests. However, GPP capacity in needle-leaf forests was more sensitive to drought than in broadleaf forests. There was no interaction between LSF and drought in either needle-leaf or broadleaf forests. Drought effects were still visible when LSF and drought coexisted in needle-leaf forests. Path analysis further showed that the response of GPP capacity to drought differed between needle-leaf and broadleaf forests, mainly due to the difference in the sensitivity of canopy conductance. Moreover, LSF had a more severe and long-lasting carry-over effect on forests than drought. These results enrich our understanding of the mechanisms of forest response to extreme events across forest types.


Asunto(s)
Sequías , Ecosistema , Estaciones del Año , Bosques , Calentamiento Global , Cambio Climático , Árboles
2.
Front Plant Sci ; 13: 920852, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874013

RESUMEN

Global warming is predicted to extend the growing season of trees and plants, and advance spring phenology. However, intensification of extreme climate events in mid-latitude forests, from weakening of the jet stream and atmospheric blockings, may expose trees to increased risk associated with more frequent late-spring frosts. Still, little is known regarding the intraspecific variation in frost tolerance and how it may be shaped by local adaptation to the climate of seed origin. As part of an assisted migration trial located in different bioclimatic zones in the province of Quebec, Canada, and following an extensive late-spring frost that occurred at the end of May 2021, we evaluated the frost damages on various white spruce (Picea glauca) seed sources tested on three sites (south, central, and north). The severity of frost damages was assessed on 5,376 trees after the cold spell and an early spring warming which advanced bud flush by approximately 10 days on average. The frost damage rate was similar among sites and seed sources and averaged 99.8%. Frost damage severity was unrelated to the latitude of seed origin but was variable among sites. The proportion of severely damaged trees was higher in the northern site, followed by central and southern sites. The proportion of severely damaged trees was linearly and inversely related to tree height before the frost event. Apical growth cancelation was not significantly different among seed sources including local ones, and averaged 74, 46, and 22%, respectively, in central, northern, and southern plantation sites. This study provides recommendations to limit the loss of plantation productivity associated with such a succession of spring climate anomalies. Implications for seed transfer models in the context of climate change and productivity of spruce plantations are discussed in the light of lack of local adaptation to such pronounced climate instability and ensuing large-scale maladaptation.

3.
Plants (Basel) ; 10(2)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671188

RESUMEN

Current understanding of the effects of extreme temperature on alpine evergreens is very limited for ecosystems under Mediterranean climate (characterised by a drought period in summer), despite being exceptionally biodiverse systems and highly vulnerable under a global change scenario. We thus assessed (i) seasonal change and (ii) effect of ontogeny (young vs. mature leaves) on thermal sensitivity of Erysimum scoparium, a keystone evergreen of Teide mountain (Canary Islands). Mature leaves were comparatively much more vulnerable to moderately high leaf-temperature (≥+40 and <+50 °C) than other alpine species. Lowest LT50 occurred in autumn (-9.0 ± 1.6 °C as estimated with Rfd, and -12.9 ± 1.5 °C with Fv/Fm). Remarkably, young leaves showed stronger freezing tolerance than mature leaves in spring (LT50 -10.3 ± 2.1 °C vs. -5.6 ± 0.9 °C in mature leaves, as estimated with Rfd). Our data support the use of Rfd as a sensitive parameter to diagnose temperature-related damage in the leaves of mountain plants. On a global change scenario, E. scoparium appears as a well-prepared species for late-frost events, however rather vulnerable to moderately high temperatures.

4.
Sci Total Environ ; 775: 145860, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-33631566

RESUMEN

Climate change is increasing the frequency of extreme climate events, causing profound impacts on forest function and composition. Late frost defoliation (LFD) events, the loss of photosynthetic tissues due to low temperatures at the start of the growing season, might become more recurrent under future climate scenarios. Therefore, the detection of changes in late-frost risk in response to global change emerges as a high-priority research topic. Here, we used a tree-ring network from southern European beech (Fagus sylvatica L.) forests comprising Spain, Italy and the Austrian Alps, to assess the incidence of LFD events in the last seven decades. We fitted linear-mixed models of basal area increment using different LFD indicators considering warm spring temperatures and late-spring frosts as fixed factors. We reconstructed major LFD events since 1950, matching extreme values of LFD climatic indicators with sharp tree-ring growth reductions. The last LFD events were validated using remote sensing. Lastly, reconstructed LFD events were climatically and spatially characterized. Warm temperatures before the late-spring frost, defined by high values of growing-degree days, influenced beech growth negatively, particularly in the southernmost populations. The number of LFD events increased towards beech southern distribution edge. Spanish and the southernmost Italian beech forests experienced higher frequency of LFD events since the 1990s. Until then, LFD events were circumscribed to local scales, but since that decade, LFD events became widespread, largely affecting the whole beech southwestern distribution area. Our study, based on in-situ evidence, sheds light on the climatic factors driving LFD occurrence and illustrates how increased occurrence and spatial extension of late-spring frosts might constrain future southern European beech forests' growth and functionality. Observed alterations in the climate-phenology interactions in response to climate change represent a potential threat for temperate deciduous forests persistence in their drier/southern distribution edge.


Asunto(s)
Fagus , Austria , Cambio Climático , Bosques , Italia , España , Árboles
5.
Ecol Appl ; 31(3): e02288, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33423382

RESUMEN

Climate warming is driving an advance of leaf unfolding date in temperate deciduous forests, promoting longer growing seasons and higher carbon gains. However, an earlier leaf phenology also increases the risk of late frost defoliation (LFD) events. Compiling the spatiotemporal patterns of defoliations caused by spring frost events is critical to unveil whether the balance between the current advance in leaf unfolding dates and the frequency of LFD occurrence is changing and represents a threaten for the future viability and persistence of deciduous forests. We combined satellite imagery with machine learning techniques to reconstruct the spatiotemporal patterns of LFD events for the 2003-2018 period in the Iberian range of European beech (Fagus sylvatica), at the drier distribution edge of the species. We used MODIS Vegetation Index Products to generate a Normalized Difference Vegetation Index (NDVI) time series for each 250 × 250 m pixel in a total area of 1,013 km2 (16,218 pixels). A semi-supervised approach was used to train a machine learning model, in which a binary classifier called Support Vector Machine with Global Alignment Kernel was used to differentiate between late frost and non-late frost pixels. We verified the obtained estimates with photointerpretation and existing beech tree-ring chronologies to iteratively improve the model. Then, we used the model output to identify topographical and climatic factors that determined the spatial incidence of LFD. During the study period, LFD was a low recurrence phenomenon that occurred every 15.2 yr on average and showed high spatiotemporal heterogeneity. Most LFD events were condensed in 5 yr and clustered in western forests (86.5% in one-fifth of the pixels) located at high elevation with lower than average precipitation. Elevation and longitude were the major LFD risk factors, followed by annual precipitation. The synergistic effects of increasing drought intensity and rising temperature combined with more frequent late frost events may determine the future performance and distribution of beech forests. This interaction might be critical at the beech drier range edge, where the concentration of LFD at high elevations could constrain beech altitudinal shifts and/or favor species with higher resistance to late frosts.


Asunto(s)
Fagus , Cambio Climático , Bosques , Incidencia , Aprendizaje Automático , Estaciones del Año , Árboles
6.
Environ Monit Assess ; 190(3): 142, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29450721

RESUMEN

The daily minimum air temperature data from 18 stations located in the northwest of Iran during the period 1986-2015 was used to analyse the inter-annual variations and trends of thermal growing season indices (tGSI) and their relations with different atmospheric teleconnection patterns (ATPs). To analyze the changes in tGSI, tGSS (thermal growing season start), tGSE (thermal growing season end), and tGSL, the time period between tGSS and tGSE were considered. Using non-parametric Mann-Kendall and Spearman tests, the existence of a significant trend for time series of the tGSI and the correlation between ATPs and tGSI was evaluated. For eliminating the effect of serial correlation on test results, the trend-free pre-whitening approach was applied. Furthermore, residual bootstrap method was used to estimate the standard deviation of the Spearman correlation coefficient between tGSI and ATPs. The climate-based results showed the maximum tGSL increase (13.3 days per decade) for SA-C-M climate. For SH-K-W climate, the maximum significant trends for tGSS and tGSE were 9.6 (earlier start) and 10.8 (delay) days per decade, respectively. In general, in all statistically significant cases, the main cause of the extended tGSL was both earlier tGSS and delayed tGSE. In regional scale, it was found that the most effective teleconnection pattern on tGSS and tGSE are MEI (positive correlation), occurring during late winter and spring, and PDO index (negative correlation) in the summer, respectively. Moreover, the tGSL demonstrated the highest correlation (negative) with PDO with 1-month delay. The findings highlight that the inter-annual variations of tGSI in northwest of Iran can be attributed to the influence of certain atmospheric teleconnection patterns such as MEI, PDO, NAO, AO, EA, and AMO.


Asunto(s)
Atmósfera , Cambio Climático , Monitoreo del Ambiente/métodos , Estaciones del Año , Temperatura , Irán
7.
Int J Biometeorol ; 60(8): 1143-50, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26607274

RESUMEN

Trees are sensitive to extreme weather and environmental conditions. This sensitivity is visible in tree-ring widths and cell structure. In our study, we hypothesized that the sudden frost noted at the beginning of May in both 2007 and 2011 affected cambial activity and, consequently, the number and size of vessels in the tree rings. It was decided to test this hypothesis after damage to leaves was observed. The applied response function model did not show any significant relationships between spring temperature and growth. However, this method uses average values for long periods and sometimes misses the short-term effects. This is why we decided to study each ring separately, comparing them with rings unaffected by the late frost. Our study showed that the short-term effect of sudden frost in late spring did not affect tree rings and selected cell parameters. The most likely reasons for this are (i) cambial activity producing the earlywood vessels before the occurrence of the observed leaf damage, (ii) the forest micro-climate protecting the trees from the harsh frost and (iii) the temperature decline being too short-lived an event to affect the oaks. On the other hand, the visible damage may be occasional and not affect cambium activity and tree vitality at all. We conclude that oak is well-adapted to this phenomenon.


Asunto(s)
Frío , Quercus/crecimiento & desarrollo , Polonia , Estaciones del Año , Árboles/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA