Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
J Hazard Mater ; 480: 135742, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39276742

RESUMEN

By 2040, tire particles (TP) are expected to dominate marine plastic contamination, raising concerns about their effects on marine animals. This study employed a multidisciplinary and multigenerational approach on the Pacific oyster Magallana gigas to investigate the effects of TP and their leachates (LEA). Effects were analyzed at the individual scale, from cellular, molecular, and microbiota changes to reproductive outputs and offspring performance. Microbiota characterization revealed potential dysbiosis in oysters treated with high concentration of both TP and LEA. RNA-seq analyses highlighted the activation of energy metabolism and stress responses in the LEA treatment. Additionally, transcriptional changes in oocytes and the reduction of motile spermatozoa suggested potential effects on gamete quality. Notably, possible oyster resilience was pointed out by the lack of significant ecophysiological modifications in adults and impacts on the growth and reproductive outputs of the offspring. Overall, the implications of the observed oyster resilience under our experimental setting are discussed in relation to available toxicity data and within a comprehensive view of coastal ecosystems, where a higher diversity of plastic/rubber materials and harsher environmental conditions occur.

2.
Heliyon ; 10(18): e38007, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39347387

RESUMEN

The potential of the most prevalent weeds should be characterized biologically and chemically in infected soil and crops for sustainable agriculture. Therefore, the allelopathic potential of Avena fatua L. and Lolium temulentum L. weeds were compared via leachates, root exudates, decayed residues in soil, and the decomposition in water pathways. Chemical measurements were taken on wheat (Triticum aestivum L.), and soil decomposed solution. Based on EC50, the allelopathic effect of leachates were higher in aboveground parts than in subterranean parts, influenced by plant parts and concentrations. The root exudates show EC50 by 655.9 µg. ml-1 for A. fatua and 625.66 µg. ml-1 for L. temulentumin the seedling biomass fresh weights of T. aestivum. The systematic inhibition by decayed residues was affected by plant types, concentration, and time and correlated with soil parameters and crop performance. The decomposition rate was higher under aerobic conditions than anaerobic conditions, with the inhibition pattern showing the reverse trend. These finding highlight the importance of environmental conditions in mediating allelopathic effects. The highest quantities of phenolic acids determined by LC-ES/MS in decomposed solutions were citric acid, with concentrations of 7.71 and 13.31 µg/ml in A. fatua under aerobic conditions, and coumaric acid, with concentrations of 9.21 and 16.99 µg/ml in L. temulentum under aerobic conditions. The allelopathic potentials of A. fatua and L. temulentum may play a crucial role in T. aestivum crop growth and soil parameters. In general weed residues can suppress crop growth and negatively affect soil parameters based on their quantity and type, therefore they should be managed carefully for sustainable crop production.

3.
Open Res Eur ; 4: 59, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39347455

RESUMEN

Background: Plastic contamination is one of the concerns of our age. With more than 150 million tons of plastic floating in the oceans, and a further 8 million tons arriving to the water each year, in recent times the scientific community has been studying the effects these plastics have on sea life both in the field and with experimental approaches. Laboratory based studies have been using both natural sea water and artificial sea water for testing various aspects of plastic contamination, including the study of chemicals leached from the plastic particles to the water. We set out to test this equivalence, looking at the leaching of heavy metals form plastic particles. Methods: We obtained leachates of PVC plastic pre-production nurdles both in natural and artificial sea water and determined the elements in excess from untreated water by Inductively coupled plasma - optical emission spectrometry. We then used these different leachates to assess developmental success in the tunicate Ciona intestinalis by treating fertilised eggs through their development to hatched larvae. Results: Here we report that chemical analysis of PVC plastic pre-production pellet leachates shows a different composition in natural and artificial sea water. We find that the Zn leaching from the plastic particles is reduced up to five times in artificial sea water, and this can have an effect in the toxicological studies derived. Indeed, we observe different effects in the development of C. intestinalis when using leachates in natural or artificial sea water. We also observe that not all artificial sea waters are suitable for studying the development of the tunicarte C. intestinalis. Conclusions: Our results show that, at least in this case, both types of water are not equivalent to produce plastic leachaetes and suggest that precaution should be taken when conclusions are derived from results obtained in artificial sea water.

4.
Front Plant Sci ; 15: 1441884, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39319005

RESUMEN

Cascade cropping systems (CCS) utilize leachate from a primary crop to grow secondary crops and enhance the efficient use of water and fertilizers in areas with scarce water resources. A preliminary study investigated the effect of melatonin in a cascade cropping system to potentially improve plant tolerance to abiotic stresses. This study aimed to cultivate Salicornia fruticosa in this cropping system to reduce nutrient discharge and assess the impact of exogenous melatonin on Salicornia growth and quality. The CCS included a primary crop of Salicornia grown in an agro-industrial compost or peat. Leachates from these media were used to cultivate the same plant once again in a floating system under four treatments: compost leachate (T1), peat leachate (T2), 100% nutrient solution (NS) (T3), 50% NS (T4) strength. Four concentrations of exogenous melatonin were applied in foliar spray: 0, 100, 200, and 400 µM. Melatonin application increased yield, with the highest values observed when plants were grown in T1. Water use efficiency was also maximized in T1 and with both 200 and 400 µM melatonin applications. The highest nitrogen use efficiency was achieved in plants grown in peat leachate. The lipid membrane damage was assessed revealing that plants grown in compost leachate exhibited the lowest MDA values regardless of melatonin concentrations. The accumulation of some antinutritional compounds (nitrate, oxalate, and sodium) were the highest in those plants grown in compost leachate. Overall, shoots grown in peat leachate exhibited the best phytochemical profile (total phenol content, total flavonoids, and antioxidant capacity), with peak values in plants treated with 200 µM melatonin. These findings suggest that S. fruticosa can be effectively cultivated using leachate from a previous crop in a floating system and that exogenous melatonin application enhances the yield and nutritional quality of Salicornia shoots.

5.
J Hazard Mater ; 479: 135647, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39217928

RESUMEN

In French Polynesia, the pearl farming industry relies entirely on collecting natural spat using a shade-mesh collector, which is reported to contribute to both plastic pollution and the release of toxic chemicals. With the aim of identifying more environment-friendly collectors, this study investigates the chemical toxicity of shade-mesh (SM) and alternative materials, including reusable plates (P), a newly developed biomaterial (BioM) and Coconut coir geotextile (Coco), on the embryo-larval development of Pinctada margaritifera. Embryos were exposed during 48 h to four concentrations (0, 0.1, 10 and 100 g L-1) of leachates produced from materials. Chemical screening of raw materials and leachates was performed to assess potential relationships with the toxicity observed on D-larvae development. Compared to the other tested materials, results demonstrated lower levels of chemical pollutants in BioM and no toxic effects of its leachates at 10 g L-1. No toxicity was observed at the lowest tested concentration (0.1 g L-1). These findings offer valuable insights for promoting safer spat collector alternatives such as BioM and contribute to the sustainable development of pearl farming.


Asunto(s)
Embrión no Mamífero , Larva , Pinctada , Contaminantes Químicos del Agua , Animales , Pinctada/efectos de los fármacos , Pinctada/crecimiento & desarrollo , Contaminantes Químicos del Agua/toxicidad , Embrión no Mamífero/efectos de los fármacos , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Cocos , Desarrollo Embrionario/efectos de los fármacos
6.
Sci Total Environ ; 950: 175268, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39111437

RESUMEN

The Greater Sydney (Australia) region is dissected by eleven major estuaries comprising a wide range of sizes, sediment and contaminant types, while the catchments also vary in size, land use type, populations size and geology/soils. The magnitude and breadth of the current study are rare and offered an unusual opportunity to provide new information on interactions between source, fate and effect relationships of a highly diverse estuarine-catchment environment using sedimentary metals (Co, Cr, Cu, Ni, Pb and Zn). Advanced methodologies used in this study revealed that although metal concentrations were generally high, ecological risk was surprisingly reduced due to the presence of metal-poor coarse sediment. Stormwater was identified as the dominant source of metals to estuaries of Greater Sydney and relates to development of high-density road networks. Industrial sources, frequently identified as a major contributor to estuarine contamination, was significantly reduced due to the decline of industry through decentralisation and gentrification and because waste is discharged to the sewer system, which is released offshore, or tertiary-treated to the Hawkesbury. Groundwater leachate associated with shoreline reclamation and wetland infilling and metals related to boating activities were important sources of metals impacting local bays and coastal lagoons. Temporal monitoring and unique modelling approaches indicated that the concentration of sedimentary metals is generally declining in these estuaries, (especially for Pb), except for areas with rapidly increasing urban populations. Multivariate statistical modelling was able to differentiate the 11 estuaries on a chemical basis by aligning Cu, Pb, Zn vectors with metal-rich estuaries and also identified catchment attributes (percent area, total yield, anthropogenic yield and population density) normalised to catchment areas as having a major influence on estuarine condition. The new knowledge derived from this study should be used to assess the environmental status of estuaries and to prioritise management actions in future investigations.

7.
Chemosphere ; 364: 143206, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39209043

RESUMEN

Recent advances in genetic manipulation such as triploid breeding and artificial selection, have rapidly emerged as valuable hatchery methodologies for enhancing seafood stocks. The Pacific oyster Magallana gigas is a leading aquaculture species worldwide and key ecosystem engineer that has received particular attention in this field of science. In light of the growing recognition of the ecological effects of intraspecific variation, oyster polyploids provide a valuable opportunity to assess whether intraspecific diversity affects physiological responses to environmental stressors. While the responses of diploid and triploid oysters to climate change have been extensively investigated, research on their sensitivity to environmental pollution remains scarce. Here, we assess whether genotypic (i.e., ploidy) variation within Magallana gigas affects physiological responses to microplastic pollution. We show that diploid and triploid M. gigas have similar clearance rates and ingest similar amounts of microplastics under laboratory-controlled condition. In addition, they exhibited similar heart rates after prolonged exposure to microplastic leachates. Our findings suggest that intraspecific variations within M. gigas ploidy does not affect oyster responses to microplastic pollution. However, regardless of ploidy, our work highlights significant adverse effects of microplastic leachates on the heart rate of M. gigas and provides evidence of microplastic ingestion in the laboratory.


Asunto(s)
Microplásticos , Ostreidae , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Ostreidae/genética , Ostreidae/efectos de los fármacos , Ostreidae/fisiología , Microplásticos/toxicidad , Ploidias , Acuicultura
8.
Environ Anal Health Toxicol ; 39(2): e2024022-0, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39054836

RESUMEN

Solid waste disposal generates leachate, a mixture of deleterious chemical, physical and microbial contaminants, which poses risk to human and wildlife health. Leachate toxicity on relative organ weight and histopathology of important viscera in mammalian body is scarce. Leachate induced toxic effects on organosomatic indices and histopathology of vital mammalian organs were investigated. Wister rats were orally exposed to 1 - 25 % of raw and simulated leachates from Aba-Eku and Olusosun landfills for 30 days. At post-exposure, organosomatic index and histoarchitectural assessment of major viscera (heart, spleen, thymus and lungs) were conducted. The physico-chemical and organic compositions of the leachates were analysed using standard protocol. The tested leachates decreased weekly and terminal body weights, and altered organosomatic index of examined viscera in rats. The histoarchitecture of the investigated viscera revealed pathologies that ranged from mild to severe degeneration, cellular infiltration, haemorrhage, congestion, necrosis, disorganization of tissues and vacuolations. Others include increased histiocytes within the bronchial associated lymphoid, lymphoid depletions, haemosiderin deposits and apoptosis were observed in the examined viscera. Physico-chemical analysis of the leachates showed different concentrations of toxic metals, PAHs and PCBs that were higher than national and international permissible limits allowed in wastewaters. The physico-chemical compositions of the leachates are capable of eliciting the observed alterations in organosomatic indices and histopathological lesions in mammalian viscera. Xenobiotic components of the leachates possibly generated free radicals and/or directly disrupted the organ architectures. These findings suggest health risk to wildlife and human population exposed to emissions from waste landfills.

9.
Sci Rep ; 14(1): 15898, 2024 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987638

RESUMEN

Research was carried out on the removal of a group of six contaminants of emerging concern: bisphenol A, N,N-diethyl-m-toluamide, diethylstilbestrol, triclosan, estrone and estradiol from the water matrix during contact with small floating macrophytes Wolffia arrhiza and Lemna minor. The optimal conditions for the process, such as pH, light exposure per day, and plant mass, were determined using the design of experiments chemometric approach based on central composite design. Experiments conducted under the designated optimal conditions showed that after 7 days, the removal efficiency equals 88-98% in the case of W. arrhiza and 87-97% in the case of L. minor, while after 14 days of the experiment, these values are 93-99.6% and 89-98%, respectively. The primary mechanism responsible for removing CECs is the plant uptake, with the mean uptake rate constant equal to 0.299 day-1 and 0.277 day-1 for W. arrhiza and L. minor, respectively. Experiments conducted using municipal wastewater as a sample matrix showed that the treatment efficiency remains high (the average values 84% and 75%; in the case of raw wastewater, 93% and 89%, and in the case of treated wastewater, for W. arrhiza and L. minor, respectively). Landfill leachate significantly reduces plants' ability to remove pollutants (the average removal efficiency equals 59% and 56%, for W. arrhiza and L. minor, respectively).


Asunto(s)
Araceae , Contaminantes Químicos del Agua , Araceae/metabolismo , Araceae/química , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental , Aguas Residuales/química , Purificación del Agua/métodos
10.
Environ Pollut ; 357: 124428, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38914198

RESUMEN

Plastic pollution continuously accumulates in the environment and poses a global threat as it fragments into microplastics and nanoplastics that can harm ecosystems. To reduce the accumulation of microplastic and nanoplastic pollution, bioplastics made from biodegradable materials are promoted as a more sustainable alternative because it can degrade faster than plastics. However, plastics also leach out chemicals as they degrade and disintegrate, but the potential toxicity of these chemicals leaching out from plastics and especially bioplastics is poorly explored. Here, we determined the composition of leachates from plastics and bioplastics and tested their toxicity in Caenorhabditis elegans. LC-MS analysis of the leachates revealed that bioplastics leached a wider array of chemicals than their counterpart plastics. Toxicity testing in our study showed that the leachates from plastics and bioplastics reduced lifespan, decreased locomotion, and induced neurotoxicity in C. elegans. Leachates from bioplastics reduced C. elegans lifespan more compared to leachates from plastics: by 7%-31% for bioplastics and by 6%-15% for plastics. Leachates from plastics decreased locomotion in C. elegans more compared to leachates from bioplastics: by 8%-34% for plastics and by 11%-24% for bioplastics. No changes were observed in the ability of the C. elegans to respond to mechanical stimuli. The leachates induced neurotoxicity in the following neurons at varying trends: cholinergic neurons by 0%-53% for plastics and by 30%-42% for bioplastics, GABAergic neurons by 3%-29% for plastics and by 10%-23% for bioplastics, and glutamatergic neurons by 3%-11% for plastics and by 15%-29% for bioplastics. Overall, our study demonstrated that chemicals leaching out from plastics and bioplastics can be toxic, suggesting that both plastics and bioplastics pose ecotoxicological and human health risks.


Asunto(s)
Caenorhabditis elegans , Locomoción , Longevidad , Microplásticos , Plásticos , Animales , Caenorhabditis elegans/efectos de los fármacos , Plásticos/toxicidad , Locomoción/efectos de los fármacos , Longevidad/efectos de los fármacos , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad
11.
Heliyon ; 10(11): e31606, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38841478

RESUMEN

The recovery of gold by adsorption using activated carbon from sodium cyanide and thiourea leached solutions are reported in this study. The leached solutions were obtained under real operating conditions from the beneficiation plant "Paz Borja", Machala-Ecuador. Calgon Carbon DG-11 6X12 type, widely used in the local metallurgical industry was used as adsorbent material. The operational parameters varied during the adsorption process experiments included the concentration of leaching agent, agitation speed, dose of activated carbon and initial concentration of gold. The control parameters included density, percentage of solid, pH, temperature, and solution potential. The obtained results were adjusted to mass transfer model by diffusion through the interface and the Freundlich model for the equilibrium isotherms. The analysis of the results indicates a higher adsorption rate of the gold di-cyanide complex on activated carbon compared to gold-thiourea complexes.

12.
Polymers (Basel) ; 16(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38891454

RESUMEN

This paper demonstrates that ash composites, comprising fly ash and polyurethane, can be used to develop value-added products that exhibit an effective decrease in the leaching of coal ash inorganics to less than one-third of the Environmental Protection Agency (EPA)'s maximum contaminant level (MCL) when soaked in a water circulation system for 14 months. Furthermore, the composite blocks remain safe even with ruptured surfaces. The concept of encapsulating fly ash within ash composites by using a polar polymer to bind the fine inorganic particles, mimicking how nature does it in the original unburned coal, ensures the safety of the composite. The ash composites can be formulated to have designed mechanical, fire, and electrical properties by controlling the formulation and the density. The properties of typical density composites were produced, measured, and compared with commercial materials. This paper also demonstrates that ash composite technology can be extended to coal ash stored in ponds. Finally, a typical electric utility box cover was designed, fabricated, and test validated. The box cover has less than one-half the weight of the original box cover for the same design limits. Finally, the benefits of this ash-composite technology for product manufacturers, society, and ash producers are summarized.

13.
Microbiol Resour Announc ; 13(7): e0011924, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38899906

RESUMEN

Bacillus safensis strain WOIS2, a nitrile-metabolizing bacterium, was isolated from solid waste leachates at the Olusosun dumpsite, Ojota, Lagos State, Nigeria. Here, we present the draft genome sequence of strain WOIS2. These data provide valuable information on the bioprospecting of B. safensis nitrilase and other intriguing genes of interest.

14.
Environ Geochem Health ; 46(7): 220, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849607

RESUMEN

The aim of the study was to determine the content and leachability of Sr in ashes obtained through combusting municipal waste in household furnaces. The waste had been collected as a mixed stream and as separate fractions (i.e. furniture, sponges, waste paper, PCV packaging, plastic-coated paper cartons, imitation leather, rubber, textiles and polystyrene). Using single-step chemical extractions, (HCl + HNO3, H2O, 0.01 M CaCl2, 0.1 M CH3COOH), we determined the total content of Sr (TC) and proportions of the following fractions: water-leachable, phytoavailable and easily soluble and bound to carbonates. We also analyzed the effect of reducing pH in the extraction solutions on St leachability from the study material. The study showed that Sr concentration in ash generated from the combustion of conventional fuels, alternative fuels and municipal waste ranged from 114 to 1006 mg/kg. The largest amounts of Sr were found in ash generated from the combustion of alternative fuels (coal pellets 488-1006 mg/kg), conventional fuels (hard coal 430-670 mg/kg) and mixed waste (237-825 mg/kg). The most mobile fraction of Sr (water-leachable) comprised from 1.3% to nearly 91% TC; the phytoavailable fraction and the ion-exchange and carbonate-bound fraction comprised 3-92% TC and 9-72% TC, respectively. We also found that the greatest pH reductions do not always entail the greatest amounts of extracted Sr. A much more significant factor in this respect is the mineral and chemical composition of primary materials, which can buffer changes in pH. The Risk Assessment Code (RAC) values pointed to a varied environmental risk and the highest RAC values (> 70) were found for coal pellets, wood pellets, straw, rubber and plastic containers for mixed oils.


Asunto(s)
Incineración , Estroncio , Estroncio/análisis , Estroncio/química , Concentración de Iones de Hidrógeno , Residuos Sólidos/análisis , Contaminantes Químicos del Agua/análisis
15.
Int Endod J ; 57(9): 1293-1314, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38804676

RESUMEN

AIM: The present study examined the leaching and cytotoxicity of bismuth from ProRoot MTA and aimed to identify whether bismuth leaching was affected by the cement base and the immersion regime used. METHODOLOGY: The leaching profile of bismuth was examined from ProRoot MTA and compared with hydroxyapatite containing 20% bismuth oxide as well as hydroxyapatite and tricalcium silicate to investigate whether bismuth release changed depending on the cement base. Bismuth leaching was determined after 30 and 180 days of ageing immersed in Dulbecco's modified Eagle's medium (DMEM) using mass spectroscopy (ICP-MS). The media were either unchanged or regularly replenished. The pH, surface microstructure and phase changes of aged materials were assessed. Wistar rat femoral bone marrow stromal cells (BMSCs) and cutaneous fibroblasts were isolated, cultured and seeded for cell counting (trypan blue live/dead) after exposure to non-aged, 30- and 180-days-aged samples in regularly replenished DMEM. Aged DMEM in contact with materials was also used to culture BMSCs to investigate the effect of material leachates on the cells. Gene expression analysis was also carried out after direct exposure of cells to non-aged materials. Differences between groups were statistically tested at a significance level of 5%. RESULTS: All materials exhibited alterations after immersion in DMEM and this increased with longer exposure times. The bismuth leached from ProRoot MTA as detected by ICP-MS. Aged ProRoot MTA samples exhibited a black discolouration and surface calcium carbonate deposition. ProRoot MTA influenced cell counts after direct exposure and its 180-days leachates reduced BMSC viability. After direct BMSC contact with non-aged ProRoot MTA an upregulation of metallothionein (MT1 and MT2A) expression and down-regulation of collagen-1a (Col-1a) and bone sialoprotein (BSP) expression was identified. CONCLUSIONS: Bismuth leaching was observed throughout 180-days observation period from all materials containing bismuth oxide. This negatively influenced cell viability and gene expression associated with bismuth exposure. This is the first study to report that metallothionein gene expression was influenced by exposure to ProRoot MTA.


Asunto(s)
Bismuto , Compuestos de Calcio , Combinación de Medicamentos , Óxidos , Ratas Wistar , Materiales de Obturación del Conducto Radicular , Silicatos , Bismuto/toxicidad , Animales , Silicatos/toxicidad , Compuestos de Calcio/toxicidad , Compuestos de Calcio/farmacología , Compuestos de Calcio/química , Ratas , Óxidos/toxicidad , Materiales de Obturación del Conducto Radicular/toxicidad , Ensayo de Materiales , Fibroblastos/efectos de los fármacos , Compuestos de Aluminio/toxicidad , Células Cultivadas , Durapatita , Células Madre Mesenquimatosas/efectos de los fármacos
16.
Sci Rep ; 14(1): 10159, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698043

RESUMEN

Invasive alien species are becoming more and more prevalent worldwide, Erigeron bonariensis and Bidens pilosa are two invasive species of Asteraceae in Egypt. To mitigate their detrimental effects and understand their differences in invasiveness, we compared the allelopathic potentials of E. bonariensis and B. pilosa using leachates, decaying residues, and volatilization processes. Notably, the allelopathic variances in leachates were significant, influenced by plant types, concentrations, and response patterns of target plant traits, as indicated by EC50. The relative phytotoxicity of the invasive species decayed residues peaked between 20 and 25 days in the soil, with a positive correlation with concentrations and soil properties. The highest quantities of phenolic acids were chlorogenic acid and caffeic acid reaching (5.41 and 4.39 µg g-1) E. bonariensis and (4.53 and 4.46 µg g-1) B. pilosa, in leachates extracts respectively, while in the soil extract of decayed residues were coumaric acid and ferulic acid measuring (1.66 and 1.67 µg g-1) E. bonariensis and (1.47 and 1.57 µg g-1) B. pilosa, respectively. Using GC/MS analysis, the main volatile components in E. bonariensis were 1, 8 cineole (5.62%), and α-terpinene (5.43%) and iso-Caryophyllene (5.2%) which showed the greatest inhibitory effects. While B. pilosa main constituents were trans-sabinene (5.39%) and Camphene (5.11%), respectively. Finally, the high invasion level displayed from E. bonariensis (0.221) compared with B. pilosa (0.094) which correlated with the stronger allelopathic activities against plant species, and soil properties. Therefore, the allelopathic potentialities of these species are critically relevant to their invasion success.


Asunto(s)
Alelopatía , Bidens , Erigeron , Especies Introducidas , Suelo , Suelo/química , Erigeron/química , Egipto , Hidroxibenzoatos
17.
Sci Rep ; 14(1): 11784, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782918

RESUMEN

Microplastics, particles under 5 mm, pervade aquatic environments, notably in Tarragona's coastal region (NE Iberian Peninsula), hosting a major plastic production complex. To investigate weathering and yellowness impact on plastic pellets toxicity, sea-urchin embryo tests were conducted with pellets from three locations-near the source and at increasing distances. Strikingly, distant samples showed toxicity to invertebrate early stages, contrasting with innocuous results near the production site. Follow-up experiments highlighted the significance of weathering and yellowing in elevated pellet toxicity, with more weathered and colored pellets exhibiting toxicity. This research underscores the overlooked realm of plastic leachate impact on marine organisms while proposes that prolonged exposure of plastic pellets in the environment may lead to toxicity. Despite shedding light on potential chemical sorption as a toxicity source, further investigations are imperative to comprehend weathering, yellowing, and chemical accumulation in plastic particles.


Asunto(s)
Larva , Microplásticos , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Larva/efectos de los fármacos , Erizos de Mar/efectos de los fármacos , Plásticos/toxicidad , Plásticos/química , Monitoreo del Ambiente/métodos
18.
Waste Manag ; 184: 20-27, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38788499

RESUMEN

Municipal solid waste (MSW) landfill sites have been identified as a significant source of pharmaceuticals in the environment because unused or expired pharmaceuticals are discarded into MSW, which eventually percolate into leachates. However, the contamination of pharmaceuticals in landfill leachate in China is not comprehensively understood. Previous research into factors influencing pharmaceutical concentrations focused on a limited number and type of target pollutants or restricted study area. In the present study, 66 pharmaceuticals were analyzed (including 45 antibiotic and 21 non-antibiotic pharmaceuticals, also categorized as 59 prescription and 7 non-prescription pharmaceuticals) in leachate samples from landfill sites with various characteristics in different regions of China. The results indicated that non-antibiotic pollutants were present at significantly higher concentrations than antibiotic pollutants, with median concentrations of 1.74 µg/L and 527 ng/L, respectively. Non-antibiotic pollutants also presented a higher environmental risk than antibiotic pollutants, by 2 to 4 orders of magnitude, highlighting that non-antibiotic pharmaceuticals should not be overlooked during the assessment of landfill leachate. Pharmaceutical concentrations in landfill leachate samples exhibited regional differences; the population size served by the landfills was the dominant factor contributing to the observed differences. In addition, landfill characteristics such as the solid waste composition and MSW loading can also affect pharmaceutical concentrations in landfill leachate. Despite the implementation of the classification and disposal policy of MSW in Shanghai, China since July 2019, specifying that unused or expired pharmaceuticals should be discarded as hazardous waste, high levels of pharmaceutical contaminations were detected in leachate from the main components of classified MSW (i.e., residual and food waste). These findings emphasize the importance of pharmaceutical management in solid waste systems.


Asunto(s)
Monitoreo del Ambiente , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , China , Preparaciones Farmacéuticas/análisis , Eliminación de Residuos , Residuos Sólidos/análisis
19.
Membranes (Basel) ; 14(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38786949

RESUMEN

This paper describes a case study involving a revamping of a full-scale membrane bioreactor that treats landfill leachate and other liquid wastes. The main change was the introduction of nitritation/denitritation in alternating cycles instead of the classic denitrification/nitrification process, together with the installation of fine bubble diffusers, a reduction in the volume of the biological compartment, and an increase in the equalization volume. The most significant results were obtained for the biological compartment, with a decrease in the specific energy consumption of 46.6%. At the same time, the removal efficiency of COD, BOD, and TN substantially remained the same before and after plant revamping, while the removal efficiency of TP increased over the years, reaching an average value of almost 71%. Regarding the ultrafiltration unit, the specific flux (or permeability) was characterized by an increasing trend. At the same time, the specific energy consumption of this section decreased by 9.4%. These results led to the conclusion that the changes introduced with the revamp led to a more stable process, a reduction in membrane fouling, and important energy savings.

20.
Chemosphere ; 356: 141887, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583530

RESUMEN

Microplastics pose risks to marine organisms through ingestion, entanglement, and as carriers of toxic additives and environmental pollutants. Plastic pre-production pellet leachates have been shown to affect the development of sea urchins and, to some extent, mussels. The extent of those developmental effects on other animal phyla remains unknown. Here, we test the toxicity of environmental mixed nurdle samples and new PVC pellets for the embryonic development or asexual reproduction by regeneration of animals from all the major animal superphyla (Lophotrochozoa, Ecdysozoa, Deuterostomia and Cnidaria). Our results show diverse, concentration-dependent impacts in all the species sampled for new pellets, and for molluscs and deuterostomes for environmental samples. Embryo axial formation, cell specification and, specially, morphogenesis seem to be the main processes affected by plastic leachate exposure. Our study serves as a proof of principle for the potentially catastrophic effects that increasing plastic concentrations in the oceans and other ecosystems can have across animal populations from all major animal superphyla.


Asunto(s)
Invertebrados , Microplásticos , Plásticos , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Plásticos/toxicidad , Invertebrados/efectos de los fármacos , Microplásticos/toxicidad , Desarrollo Embrionario/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA