Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros











Intervalo de año de publicación
1.
New Phytol ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39238150

RESUMEN

Analyses of leaf gas exchange rely on an Ohmic analogy that arrays single stomatal, internal air space, and mesophyll conductances in series. Such models underlie inferences of mesophyll conductance and the relative humidity of leaf airspaces, reported to fall as low as 80%. An unresolved question is whether such series models are biased with respect to real leaves, whose internal air spaces are chambered at various scales by vasculature. To test whether unsaturation could emerge from modeling artifacts, we compared series model estimates with true parameter values for a chambered leaf with varying distributions and magnitudes of leaf surface conductance ('patchiness'). Distributions of surface conductance can create large biases in gas exchange calculations. Both apparent unsaturation and internal CO2 gradient inversion can be produced by the evolution of broader distributions of stomatal apertures consistent with a decrease in surface conductance, as might occur under increasing vapor pressure deficit. In gas exchange experiments, the behaviors of derived quantities defined by simple series models are highly sensitive to the true partitioning of flux and stomatal apertures across leaf surfaces. New methods are needed to disentangle model artifacts from real biological responses.

2.
Environ Res ; 261: 119673, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39067803

RESUMEN

Ozone uptake through the stomata in tree leaves is an important process for improving air quality by urban trees. Stomatal conductance (gs) is a key determinant of stomatal ozone uptake. The parameterization of gs models for estimating stomatal ozone uptake of trees has mainly been carried out using gs data measured in seedling leaves although the leaf traits may differ between mature trees and seedlings. In the present study, we compared stomatal ozone uptake estimated by gs models parameterised with data from mature trees and seedlings of Zelkova serrata. We measured gs in leaves of mature trees and seedlings of Z. serrata using a leaf porometer for 3-4 growing seasons. The Jarvis-type gs model was parameterised with data from mature trees and seedlings, separately. The maximum gs, and the functions of the seedling gs estimation model regarding the response to air temperature, vapour pressure deficit and atmospheric ozone concentration were the factors inducing lower stomatal ozone uptake. In contrast, the function of the seedling gs estimation model regarding the response to irradiance resulted in a higher estimated stomatal ozone uptake. The estimated stomatal ozone uptake for one growing season (April-September) by the seedling gs estimation model was 27% lower than that by the mature tree gs estimation model. These results indicate that leaf gas exchange traits of Z. serrata were different between mature trees and seedlings, and that estimating ozone uptake in mature tree leaves using a model based on seedling gs measurements results in an underestimation.


Asunto(s)
Ozono , Estomas de Plantas , Plantones , Ozono/metabolismo , Plantones/metabolismo , Estomas de Plantas/metabolismo , Estomas de Plantas/fisiología , Hojas de la Planta/metabolismo , Contaminantes Atmosféricos/metabolismo , Contaminantes Atmosféricos/análisis , Ulmaceae/metabolismo , Árboles/metabolismo
3.
Am J Bot ; 111(7): e16376, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39020509

RESUMEN

PREMISE: The Aptian-Albian (121.4-100.5 Ma) was a greenhouse period with global temperatures estimated as 10-15°C warmer than pre-industrial conditions, so it is surprising that the most reliable CO2 estimates from this time are <1400 ppm. This low CO2 during a warm period implies a very high Earth-system sensitivity in the range of 6 to 9°C per CO2 doubling between the Aptian-Albian and today. METHODS: We applied a well-vetted paleo-CO2 proxy based on leaf gas-exchange principles (Franks model) to two Pseudotorellia species from three stratigraphically similar samples at the Tevshiin Govi lignite mine in central Mongolia (~119.7-100.5 Ma). RESULTS: Our median estimated CO2 concentration from the three respective samples was 2132, 2405, and 2770 ppm. The primary reason for the high estimated CO2 but with relatively large uncertainties is the very low stomatal density in both species, where small variations propagate to large changes in estimated CO2. Indeed, we found that at least 15 leaves are required before the aggregate estimated CO2 approaches that of the full data set. CONCLUSIONS: Our three CO2 estimates all exceeded 2000 ppm, translating to an Earth-system sensitivity (~3-5°C/CO2 doubling) that is more in keeping with the current understanding of the long-term climate system. Because of our large sample size, the directly measured inputs did not contribute much to the overall uncertainty in estimated CO2; instead, the inferred inputs were responsible for most of the overall uncertainty and thus should be scrutinized for their value choices.


Asunto(s)
Atmósfera , Dióxido de Carbono , Estomas de Plantas , Dióxido de Carbono/análisis , Mongolia , Estomas de Plantas/fisiología , Atmósfera/química , Isótopos de Carbono/análisis , Fósiles , Isótopos de Oxígeno/análisis , Hojas de la Planta/química
4.
Plants (Basel) ; 13(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39065488

RESUMEN

Zinc enrichment of edible food products, through the soil and/or foliar application of fertilizers, is a strategy that can increase the contents of some nutrients, namely Zn. In this context, a workflow for agronomic enrichment with zinc was carried out on irrigated Vitis vinifera cv. Syrah, aiming to evaluate the mobilization of photoassimilates to the winegrapes and the consequences of this for winemaking. During three productive cycles, foliar applications were performed with ZnSO4 or ZnO, at concentrations ranging between 150 and 1350 g.ha-1. The normal vegetation index as well as some photosynthetic parameters indicated that the threshold of Zn toxicity was not reached; it is even worth noting that with ZnSO4, a significant increase in several cases was observed in net photosynthesis (Pn). At harvest, Zn biofortification reached a 1.2 to 2.3-fold increase with ZnSO4 and ZnO, respectively (being significant relative to the control, in two consecutive years, with ZnO at a concentration of 1350 g.ha-1). Total soluble sugars revealed higher values with grapes submitted to ZnSO4 and ZnO foliar applications, which can be advantageous for winemaking. It was concluded that foliar spraying was efficient with ZnO and ZnSO4, showing potential benefits for wine quality without evidencing negative impacts.

5.
New Phytol ; 243(3): 894-908, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38853424

RESUMEN

The 'assimilates inhibition hypothesis' posits that accumulation of nonstructural carbohydrates (NSCs) in leaves reduces leaf net photosynthetic rate, thus internally regulating photosynthesis. Experimental work provides equivocal support mostly under controlled conditions without identifying a particular NSC as involved in the regulation. We combined 3-yr in situ leaf gas exchange observations (natural dynamics) in the upper crown of mature Betula pendula simultaneously with measurements of concentrations of sucrose, hexoses (glucose and fructose), and starch, and similar measurements during several one-day shoot girdling (perturbation dynamics). Leaf water potential and water and nitrogen content were measured to account for their possible contribution to photosynthesis regulation. Leaf photosynthetic capacity (A/Ci) was temporally negatively correlated with NSC accumulation under both natural and perturbation states. For developed leaves, leaf hexose concentration explained A/Ci variation better than environmental variables (temperature history and daylength); the opposite was observed for developing leaves. The weaker correlations between NSCs and A/Ci in developing leaves may reflect their strong internal sink strength for carbohydrates. By contrast, the strong decline in photosynthetic capacity with NSCs accumulation in mature leaves, observed most clearly with hexose, and even more tightly with its constituents, provides support for the role of assimilates in regulating photosynthesis under natural conditions.


Asunto(s)
Betula , Hexosas , Fotosíntesis , Hojas de la Planta , Estaciones del Año , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Betula/fisiología , Betula/metabolismo , Hexosas/metabolismo , Secuestro de Carbono , Agua/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Almidón/metabolismo
6.
Front Plant Sci ; 15: 1291630, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606074

RESUMEN

Climate change, characterized by rising atmospheric CO2 levels and temperatures, poses significant challenges to global crop production. Sweet sorghum, a prominent C4 cereal extensively grown in arid areas, emerges as a promising candidate for sustainable bioenergy production. This study investigated the responses of photosynthesis and leaf-scale water use efficiency (WUE) to varying light intensity (I) in sweet sorghum under different temperature and CO2 conditions. Comparative analyses were conducted between the A n-I, g s-I, T r-I, WUEi-I, and WUEinst-I models proposed by Ye et al. and the widely utilized the non-rectangular hyperbolic (NRH) model for fitting light response curves. The Ye's models effectively replicated the light response curves of sweet sorghum, accurately capturing the diminishing intrinsic WUE (WUEi) and instantaneous WUE (WUEinst) trends with increasing I. The fitted maximum values of A n, g s, T r, WUEi, and WUEinst and their saturation light intensities closely matched observations, unlike the NRH model. Despite the NRH model demonstrating high R 2 values for A n-I, g s-I, and T r-I modelling, it returned the maximum values significantly deviating from observed values and failed to generate saturation light intensities. It also inadequately represented WUE responses to I, overestimating WUE. Across different leaf temperatures, A n, g s, and T r of sweet sorghum displayed comparable light response patterns. Elevated temperatures increased maximum A n, g s, and T r but consistently declined maximum WUEi and WUEinst. However, WUEinst declined more sharply due to the disproportionate transpiration increase over carbon assimilation. Critically, sweet sorghum A n saturated at current atmospheric CO2 levels, with no significant gains under 550 µmol mol-1. Instead, stomatal closure enhanced WUE under elevated CO2 by coordinated g s and T r reductions rather than improved carbon assimilation. Nonetheless, this response diminished under simultaneously high temperature, suggesting intricate interplay between CO2 and temperature in modulating plant responses. These findings provide valuable insights into photosynthetic dynamics of sweet sorghum, aiding predictions of yield and optimization of cultivation practices. Moreover, our methodology serves as a valuable reference for evaluating leaf photosynthesis and WUE dynamics in diverse plant species.

7.
Physiol Mol Biol Plants ; 30(3): 435-452, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38633276

RESUMEN

Due to substantial topographic variations in the Himalaya, incident solar radiation in the forest canopy is highly unequal. This results in significant environmental differences at finer scales and may lead to considerable differences in photosynthetic productivity in montane forests. Therefore, local-scale ecophysiological investigations, may be more effective and instructive than landscape-level inventories and models. We investigated leaf ecophysiological differences and related adaptations between two Quercus semecarpifolia forests in aspect-mediated, significantly varying light regimes in the same mountain catchment. Seasonal and diurnal rates of photosynthesis (A) were significantly higher in south aspect (S) than the north (N). Although temperature was a key contributor to seasonal fluctuations in photosynthetic physiology, photoperiod significantly determined intraspecific variations in seasonal and diurnal plasticity of leaf ecophysiological traits between the two topography-mediated light environments. The regression model for A as a function of stomatal conductivity (gsw) explained the critical role of gsw in triggering photosynthetic plasticity as an adaptive function against varying environmental stresses due to seasonal solar differences. We also examined, modifications in chlorophyll content between the two light regimes across seasons to determine the chlorophyll adaptation strategy. The N aspect had higher leaf chl a, b, and chl a + b and a lower chl-allocation ratio (a/b) than S, which helped to optimize the required light reception in the photoreaction centers for improved photosynthetic performance. The leaf light response curves for A and gsw were observed against varying incident photosynthetic photon flux densities (0-2000 mol.m2 s-1 PPFD) for both aspects. We found that the same species developed significantly distinct light response strategies and photosynthetic capacities in S than in N for the given magnitudes of PPFD. Such acquired ecophysiological adaptations owing to varying light environments may provide significant clues for understanding the impact of future climate change on Himalayan tree species.

8.
Plants (Basel) ; 13(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38475549

RESUMEN

The mesic-origin species Robinia pseudoacacia L. (black locust) is widely planted in the semiarid and sub-humid areas of the Loess Plateau for the reforestation of vegetation-degraded land. Under the scenario of changing precipitation patterns, exploring the response of photosynthesis to drought allows us to assess the risk to sustainable development of these plantations. In this study, paired plots were established including the control and a treatment of 30% exclusion of throughfall (since 2018). The photosynthetic characteristics were investigated using a portable photosynthesis system for four periods in the full-leaf growing season of 2021-2022, the fourth and fifth years, on both treated and controlled sampling trees. Leaf gas exchange parameters derived from diurnal changing patterns, light response curves, and CO2 response curves showed significant differences except for period II (9-11 September 2021) between the two plots. The photosynthetic midday depression was observed in 2022 in the treated plot. Meanwhile, the decline of net photosynthetic rate in the treated plot was converted from stomatal limitation to non-stomatal limitation. Furthermore, we observed that black locust adapted to long-term water deficiency by reducing stomatal conductance, increasing water use efficiency and intrinsic water use efficiency. The results demonstrate that reduction in precipitation would cause photosynthesis decrease, weaken the response sensitivity to light and CO2, and potentially impair photosynthetic resilience of the plantations. They also provide insights into the changes in photosynthetic functions under global climate change and a reference for management of plantations.

9.
Plant Signal Behav ; 19(1): 2329842, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38493504

RESUMEN

Blueberries confront substantial challenges from climate change, such as rising temperatures and extreme heat, necessitating urgent solutions to ensure productivity. We hypothesized that ericoid mycorrhizal fungi (ErM) and plant growth-promoting bacteria (PGPB) would establish symbiotic relationships and increase heat stress tolerance in blueberries. A growth chamber study was designed with low (25/20°C) and high temperature (35/30°C) conditions with micropropagated blueberry plantlets inoculated with ErM, PGPB, and both. Gas exchange and chlorophyll fluorescence properties of the leaves were monitored throughout the growth. At harvest, biochemical assays and biomass analysis were performed to evaluate potential oxidative stress induced by elevated temperatures. ErM application boosted root biomass under 25/20°C conditions but did not impact photosynthetic efficiency. In contrast, PGPB demonstrated a dual role: enhancing photosynthetic capacity and reducing stomatal conductance notably under 35/30°C conditions. Moreover, PGPB showcased conflicting effects, reducing oxidative damage under 25/20°C conditions while intensifying it during 47°C heat shock. A significant highlight lies in the opposing effects of ErM and PGPB on root growth and stomatal conductance, signifying their reciprocal influence on blueberry plant behavior, which may lead to increased water uptake or reduced water use. Understanding these complex interactions holds promise for refining sustainable strategies to overcome climate challenges.


Asunto(s)
Arándanos Azules (Planta) , Micorrizas , Resiliencia Psicológica , Bacterias , Agua
10.
Methods Mol Biol ; 2791: 127-131, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532100

RESUMEN

Ranges of portable systems to measure leaf gas-exchange parameters are available. They allow real-time measurements of the photosynthesis rate (A), transpiration rate (E), stomatal conductance (gs), and intercellular CO2 concentration (Ci). Photosynthetic CO2 uptake is one of the most frequently studied plant physiological processes. The measurement is precise, simple, and noninvasive to perform in vivo. We describe the use of this method in environmental-controlled plant production systems at different temperatures on the growth and development of common buckwheat.


Asunto(s)
Fotosíntesis , Hojas de la Planta , Dióxido de Carbono , Hojas de la Planta/fisiología , Transpiración de Plantas/fisiología , Plantas
11.
Plant Physiol Biochem ; 208: 108446, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422579

RESUMEN

Adaptive responses to abiotic stresses such as soil acidity in Eucalyptus-the most widely planted broad-leaf forest genus globally-are poorly understood. This is particularly evident in physiological and anatomical disorders that inhibit plant development and wood quality. We aimed to explore how the supply of Ca and Mg through liming (lime), combined with Cu and Zn fertilization (CZF), influences physiological and anatomical responses during Eucalyptus grandis seedlings growth in tropical acid soil. Therefore, related parameters of leaf area and leaf anatomy, stomatal size, leaf gas exchange, antioxidant system, nutrient partitioning, and biomass allocation responses were monitored. Liming alone in Eucalyptus increased specific leaf area, stomatal density on the abaxial leaf surface, and Ca and Mg content. Also, Eucalyptus exposed only to CZF increased Cu and Zn content. Lime and CZF increased leaf blade and adaxial epidermal thickness, and improved the structural organization of the spongy mesophyll, promoting increased net CO2 assimilation, and stomatal conductance. Fertilization with Ca, Mg, Cu, and Zn positively affects plant nutrition, light utilization, photosynthetic rate, and antioxidant performance, improving growth. Our results indicate that lime and CZF induce adaptive responses in the physiological and anatomical adjustments of Eucalyptus plantation, thereby promoting biomass accumulation.


Asunto(s)
Compuestos de Calcio , Eucalyptus , Óxidos , Plantones , Plantones/metabolismo , Eucalyptus/metabolismo , Antioxidantes/metabolismo , Hojas de la Planta/metabolismo , Fotosíntesis/fisiología , Suelo , Zinc/metabolismo
12.
New Phytol ; 241(6): 2366-2378, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38303410

RESUMEN

The strong covariation of temperature and vapour pressure deficit (VPD) in nature limits our understanding of the direct effects of temperature on leaf gas exchange. Stable isotopes in CO2 and H2 O vapour provide mechanistic insight into physiological and biochemical processes during leaf gas exchange. We conducted combined leaf gas exchange and online isotope discrimination measurements on four common European tree species across a leaf temperature range of 5-40°C, while maintaining a constant leaf-to-air VPD (0.8 kPa) without soil water limitation. Above the optimum temperature for photosynthesis (30°C) under the controlled environmental conditions, stomatal conductance (gs ) and net photosynthesis rate (An ) decoupled across all tested species, with gs increasing but An decreasing. During this decoupling, mesophyll conductance (cell wall, plasma membrane and chloroplast membrane conductance) consistently and significantly decreased among species; however, this reduction did not lead to reductions in CO2 concentration at the chloroplast surface and stroma. We question the conventional understanding that diffusional limitations of CO2 contribute to the reduction in photosynthesis at high temperatures. We suggest that stomata and mesophyll membranes could work strategically to facilitate transpiration cooling and CO2 supply, thus alleviating heat stress on leaf photosynthetic function, albeit at the cost of reduced water-use efficiency.


Asunto(s)
Dióxido de Carbono , Estomas de Plantas , Estomas de Plantas/fisiología , Temperatura , Dióxido de Carbono/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Isótopos , Agua/fisiología
13.
Plant Cell Environ ; 47(5): 1685-1700, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38282477

RESUMEN

Trichomes are common in plants from dry environments, and despite their recognized role in protection and defense, little is known about their role as absorptive structures and in other aspects of leaf ecophysiology. We combine anatomical and ecophysiological data to evaluate how trichomes affect leaf gas exchange and water balance during drought. We studied two congeneric species with pubescent leaves which co-occur in Brazilian Caatinga: Croton blanchetianus (dense trichomes) and Croton adenocalyx (sparse trichomes). We found a novel foliar water uptake (FWU) pathway in C. blanchetianus composed of stellate trichomes and underlying epidermal cells and sclereids that interconnect the trichomes from both leaf surfaces. The water absorbed by these trichomes is redistributed laterally by pectin protuberances on mesophyll cell walls. This mechanism enables C. blanchetianus leaves to absorb water more efficiently than C. adenocalyx. Consequently, the exposure of C. blanchetianus to dew during drought improved its leaf gas exchange and water status more than C. adenocalyx. C. blanchetianus trichomes also increase their leaf capacity to reflect light and maintain lower temperatures during drought. Our results emphasize the multiple roles that trichomes might have on plant functioning and the importance of FWU for the ecophysiology of Caatinga plants during drought.


Asunto(s)
Croton , Tricomas/metabolismo , Hojas de la Planta/metabolismo , Células del Mesófilo , Agua/metabolismo
14.
Plant Cell Environ ; 47(5): 1701-1715, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38294051

RESUMEN

Leaf gas exchange measurements are an important tool for inferring a plant's photosynthetic biochemistry. In most cases, the responses of photosynthetic CO2 assimilation to variable intercellular CO2 concentrations (A/Ci response curves) are used to model the maximum (potential) rate of carboxylation by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, Vcmax) and the rate of photosynthetic electron transport at a given incident photosynthetically active radiation flux density (PAR; JPAR). The standard Farquhar-von Caemmerer-Berry model is often used with default parameters of Rubisco kinetic values and mesophyll conductance to CO2 (gm) derived from tobacco that may be inapplicable across species. To study the significance of using such parameters for other species, here we measured the temperature responses of key in vitro Rubisco catalytic properties and gm in cotton (Gossypium hirsutum cv. Sicot 71) and derived Vcmax and J2000 (JPAR at 2000 µmol m-2 s-1 PAR) from cotton A/Ci curves incrementally measured at 15°C-40°C using cotton and other species-specific sets of input parameters with our new automated fitting R package 'OptiFitACi'. Notably, parameterisation by a set of tobacco parameters produced unrealistic J2000:Vcmax ratio of <1 at 25°C, two- to three-fold higher estimates of Vcmax above 15°C, up to 2.3-fold higher estimates of J2000 and more variable estimates of Vcmax and J2000, for our cotton data compared to model parameterisation with cotton-derived values. We determined that errors arise when using a gm,25 of 2.3 mol m-2 s-1 MPa-1 or less and Rubisco CO2-affinities in 21% O2 (KC 21%O2) at 25°C outside the range of 46-63 Pa to model A/Ci responses in cotton. We show how the A/Ci modelling capabilities of 'OptiFitACi' serves as a robust, user-friendly, and flexible extension of 'plantecophys' by providing simplified temperature-sensitivity and species-specificity parameterisation capabilities to reduce variability when modelling Vcmax and J2000.


Asunto(s)
Gossypium , Ribulosa-Bifosfato Carboxilasa , Gossypium/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Dióxido de Carbono , Temperatura , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo
15.
Plants (Basel) ; 12(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38068627

RESUMEN

Grapevine leaves contain abundant CaOx crystals located either within the mesophyll in the form of raphides, or in the bundle sheaths as druses. CaOx crystals function as internal carbon pools providing CO2 for a baseline level of photosynthesis, named "alarm photosynthesis", despite closed stomata; thus, preventing the photoinhibition and the oxidative risk due to carbon starvation under adverse conditions. Structural and functional leaf traits of acclimated grapevine plants (Vitis vinifera L. cv. Assyrtiko) were investigated in response to water availability, in order to evaluate the dynamic functionality of CaOx. Leaf water potential, leaf area, leaf mass per area, stomatal properties, gas exchange parameters and performance index (PI) were decreased in leaves of vines acclimated to water deficit in comparison to the leaves of well-irrigated vines, although the chlorophyll fluorescence parameters showed that the operational efficiency of the photosystem II (PSII) photochemistry (Fv/Fm) did not change, indicating that the photosynthetic apparatus was not subjected to water stress. During the afternoon, more than half of the morning's existing druses disappeared in the drought-acclimated leaves. Also, the raphides' area of the drought-acclimated leaves was reduced more than that of the well-watered leaves. The substantial decomposition of druses under water deficit conditions compared to that of the raphides may have important implications for the maintenance of their different though overlapping roles. According to the results, it seems likely that, under water deficit conditions, a mechanism of "alarm photosynthesis" provides an additional tolerance trait in the leaves of Vitis vinifera cv. Assyrtiko; hence, leaf structure relates to function.

16.
Front Plant Sci ; 14: 1274195, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38155849

RESUMEN

Rootstocks are used in modern apple production to increase productivity, abiotic and biotic stress tolerance, and fruit quality. While dwarfing for apple rootstocks has been well characterized, the physiological mechanisms controlling dwarfing have not. Previous research has reported rootstock effects on scion water relations. Root architecture and variability in soil moisture across rooting depths can also contribute to these differences among rootstocks in the field. To exclude these effects on rootstock behavior, scions were grafted onto four different rootstocks with varying effects on scion vigor (B.9, M.9, G.41 and G.890). Non-grafted rootstocks were also grown to examine whether the effects of rootstock occurred independently from scion grafting. Plants were grown in a greenhouse under near steady-state hydroponic conditions. Carbon (δ13C), oxygen (δ18O) and nitrogen (δ15N) isotope composition were evaluated and relationships with carbon assimilation, water relations, and shoot growth were tested. Rootstocks affected scion shoot growth, aligning with known levels of vigor for these four rootstocks, and were consistent between the two scion cultivars. Furthermore, changes in water relations influenced by rootstock genotype significantly affected leaf, stem, and root δ13C, δ18O, and δ15N. Lower δ13C and δ18O were inconsistently associated with rootstock genotypes with higher vigor in leaves, stems, and roots. G.41 had lower δ15N in roots, stems, and leaves in both grafted and ungrafted trees. The effects of rootstock on aboveground water relations were also similar for leaves of ungrafted rootstocks. This study provides further evidence that dwarfing for apple rootstocks is linked with physiological limitations to water delivery to the developing scion.

17.
Environ Sci Pollut Res Int ; 30(54): 115646-115665, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37884715

RESUMEN

Manganese (Mn) is one of the essential mineral micronutrients most demanded by cacao. Cadmium (Cd) is highly toxic to plants and other living beings. There are indications that Mn can interact with Cd and mitigate its toxicity. The objective of this study was to evaluate the action of Mn on the toxic effect of Cd in young plants of the CCN 51 cacao genotype, subjected to different doses of Mn, Cd, and Mn+Cd in soil, through physiological, biochemical, molecular, and micromorphological and ultrastructural changes. High soil Mn doses favored the maintenance and performance of adequate photosynthetic processes in cacao. However, high doses of Cd and Mn+Cd in soil promoted damage to photosynthesis, alterations in oxidative metabolism, and the uptake, transport, and accumulation of Cd in roots and leaves. In addition, high Cd concentrations in roots and leaf tissues caused irreversible damage to the cell ultrastructure, compromising cell function and leading to programmed cell death. However, there was a mitigation of Cd toxicity when cacao was grown in soils with low Cd doses and in the presence of Mn. Thus, damage to the root and leaf tissues of cacao caused by Cd uptake from contaminated soils can be attenuated or mitigated by the presence of high Mn doses in soil.


Asunto(s)
Cacao , Contaminantes del Suelo , Manganeso/metabolismo , Cadmio/metabolismo , Suelo/química , Antioxidantes/metabolismo , Cacao/química , Fotosíntesis , Expresión Génica , Contaminantes del Suelo/análisis
18.
New Phytol ; 240(5): 1817-1829, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37658674

RESUMEN

Shrub encroachment is a common ecological state transition in global drylands and has myriad adverse effects on grasslands and the services they provide. This physiognomic shift is often ascribed to changes in climate (e.g. precipitation) and disturbance regimes (e.g. grazing and fire), but this remains debated. Aeolian processes are known to impact resource distribution in drylands, but their potential role in grassland-to-shrubland state changes has received little attention. We quantified the effects of 'sandblasting' (abrasive damage by wind-blown soil) on the ecophysiology of dryland grass vs shrub functional types using a portable wind tunnel to test the hypothesis that grasses would be more susceptible to sandblasting than shrubs and, thus, reinforce transitions to shrub dominance in wind-erodible grasslands when climate- or disturbance-induced reductions in ground cover occur. Grasses and shrubs responded differently to sandblasting, wherein water-use efficiency declined substantially in grasses, but only slightly in shrubs, owing to grasses having greater increases in day/nighttime leaf conductance and transpiration. The differential ecophysiological response to sandblasting exhibited by grass and shrub functional types could consequently alter the vegetation dynamics in dryland grasslands in favour of the xerophytic shrubs. Sandblasting could thus be an overlooked driver of shrub encroachment in wind-erodible grasslands.


Asunto(s)
Ecosistema , Pradera , Clima Desértico , Poaceae/fisiología , Suelo
19.
Tree Physiol ; 43(12): 2050-2063, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37758447

RESUMEN

Despite multiple studies of the impact of climate change on temperate tree species, experiments on tropical and economically important tree crops, such as cacao (Theobroma cacao L.), are still limited. Here, we investigated the combined effects of increased temperature and atmospheric carbon dioxide concentration ([CO2]) on the growth, photosynthesis and development of juvenile plants of two contrasting cacao genotypes: SCA 6 and PA 107. The factorial growth chamber experiment combined two [CO2] treatments (410 and 700 p.p.m.) and three day/night temperature regimes (control: 31/22 °C, control + 2.5 °C: 33.5/24.5 °C and control + 5.0 °C: 36/27 °C) at a constant vapour pressure deficit (VPD) of 0.9 kPa. At elevated [CO2], the final dry weight and the total and individual leaf areas increased in both genotypes, while the duration for individual leaf expansion declined in PA 107. For both genotypes, elevated [CO2] also improved light-saturated net photosynthesis (Pn) and intrinsic water-use efficiency (iWUE), whereas leaf transpiration (E) and stomatal conductance (gs) decreased. Under a constant low VPD, increasing temperatures above 31/22 °C enhanced the rates of Pn, E and gs in both genotypes, suggesting that photosynthesis responds positively to higher temperatures than previously reported for cacao. However, dry weight and the total and individual leaf areas declined with increases in temperature, which was more evident in SCA 6 than PA 107, suggesting the latter genotype was more tolerant to elevated temperature. Our results suggest that the combined effect of elevated [CO2] and temperature is likely to improve the early growth of high temperature-tolerant genotypes, while elevated [CO2] appeared to ameliorate the negative effects of increased temperatures on growth parameters of more sensitive material. The evident genotypic variation observed in this study demonstrates the scope to select and breed cacao varieties capable of adapting to future climate change scenarios.


Asunto(s)
Cacao , Temperatura , Cambio Climático , Árboles , Dióxido de Carbono , Hojas de la Planta/fisiología , Fotosíntesis/fisiología
20.
Plants (Basel) ; 12(16)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37631222

RESUMEN

With the current increases in environmental stress, understanding species-specific responses to multiple stress agents is needed. This science is especially important for managing ecosystems that are already confronted with considerable pollution. In this study, responses to ozone (O3, ambient daily course values + 20 ppb) and mixed metal contamination in soils (MC, cadmium/copper/lead/zinc = 25/1100/2500/1600 mg kg-1), separately and in combination, were evaluated for three plant species (Picea abies, Acer pseudoplatanus, Tanacetum vulgare) with different life forms and ecological strategies. The two treatments elicited similar stress reactions, as shown by leaf functional traits, gas exchange, tannin, and nutrient markers, irrespective of the plant species and life form, whereas the reactions to the treatments differed in magnitude. Visible and microscopic injuries at the organ or cell level appeared along the penetration route of ozone and metal contamination. At the whole plant level, the MC treatment caused more severe injuries than the O3 treatment and few interactions were observed between the two stress factors. Picea trees, with a slow-return strategy, showed the highest stress tolerance in apparent relation to an enhancement of conservative traits and an exclusion of stress agents. The ruderal and more acquisitive Tanacetum forbs translocated large amounts of contaminants above ground, which may be of concern in a phytostabilisation context. The deciduous Acer trees-also with an acquisitive strategy-were most sensitive to both stress factors. Hence, species with slow-return strategies may be of particular interest for managing metal-polluted sites in the current context of multiple stressors and for safely confining soil contaminants below ground.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA