Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 954: 176349, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299332

RESUMEN

As a widely used brominated flame retardant, the widespread presence of decabromodiphenyl ether (BDE-209) in the natural environment and the toxicity risks it poses are well established, but the recoverability of BDE-209-induced individual injuries remains unknown. Therefore, a 7-day depuration experiment following a 4-day exposure of zebrafish to BDE-209 was conducted to confirm the recoverability and its mode of action. Oxidative stress after depuration was significantly reduced compared with BDE-209 exposure as indicated by the decreased expression level of oxidative stress-related genes and the reduced MDA, Gpx, and GST in zebrafish, indicating a gradual recovery of antioxidant activity. However, BDE-209 inhibition of extracellular matrix (ECM) proteins worsened after depuration. Mechanistically, BDE-209 mediated ECM production and secretion by down-regulating integrin expression. Furthermore, BDE-209 inhibition of collagen synthesis worsened after depuration. Biochemical assays and histopathological observations revealed a same result in zebrafish. Mechanistically, lysine hydroxylation is inhibited thereby affecting collagen synthesis. Interestingly, zebrafish showed arrhythmia after depuration compared to BDE-209 exposure, and abnormal changes in ATPase levels indicated that disturbances in Ca2+ homeostasis contributed to arrhythmia. Collectively, BDE-209-induced interference with ECM production and collagen synthesis persisted after depuration, which will provide new insights for understanding the recovery patterns of individuals under BDE-209 stress.

2.
Front Oncol ; 13: 1194515, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397358

RESUMEN

Introduction: The composition and remodelling of the extracellular matrix (ECM) are important factors in the development and progression of cancers, and the ECM is implicated in promoting tumour growth and restricting anti-tumour therapies through multiple mechanisms. The characterisation of differences in ECM composition between normal and diseased tissues may aid in identifying novel diagnostic markers, prognostic indicators and therapeutic targets for drug development. Methods: Using tissue from non-small cell lung cancer (NSCLC) patients undergoing curative intent surgery, we characterised quantitative tumour-specific ECM proteome signatures by mass spectrometry. Results: We identified 161 matrisome proteins differentially regulated between tumour tissue and nearby non-malignant lung tissue, and we defined a collagen hydroxylation functional protein network that is enriched in the lung tumour microenvironment. We validated two novel putative extracellular markers of NSCLC, the collagen cross-linking enzyme peroxidasin and a disintegrin and metalloproteinase with thrombospondin motifs 16 (ADAMTS16), for discrimination of malignant and non-malignant lung tissue. These proteins were up-regulated in lung tumour samples, and high PXDN and ADAMTS16 gene expression was associated with shorter survival of lung adenocarcinoma and squamous cell carcinoma patients, respectively. Discussion: These data chart extensive remodelling of the lung extracellular niche and reveal tumour matrisome signatures in human NSCLC.

3.
Proc Natl Acad Sci U S A ; 119(32): e2201483119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35930668

RESUMEN

The Jumonji domain-containing protein JMJD6 is a 2-oxoglutarate-dependent dioxygenase associated with a broad range of biological functions. Cellular studies have implicated the enzyme in chromatin biology, transcription, DNA repair, mRNA splicing, and cotranscriptional processing. Although not all studies agree, JMJD6 has been reported to catalyze both hydroxylation of lysine residues and demethylation of arginine residues. However, despite extensive study and indirect evidence for JMJD6 catalysis in many cellular processes, direct assignment of JMJD6 catalytic substrates has been limited. Examination of a reported site of proline hydroxylation within a lysine-rich region of the tandem bromodomain protein BRD4 led us to conclude that hydroxylation was in fact on lysine and catalyzed by JMJD6. This prompted a wider search for JMJD6-catalyzed protein modifications deploying mass spectrometric methods designed to improve the analysis of such lysine-rich regions. Using lysine derivatization with propionic anhydride to improve the analysis of tryptic peptides and nontryptic proteolysis, we report 150 sites of JMJD6-catalyzed lysine hydroxylation on 48 protein substrates, including 19 sites of hydroxylation on BRD4. Most hydroxylations were within lysine-rich regions that are predicted to be unstructured; in some, multiple modifications were observed on adjacent lysine residues. Almost all of the JMJD6 substrates defined in these studies have been associated with membraneless organelle formation. Given the reported roles of lysine-rich regions in subcellular partitioning by liquid-liquid phase separation, our findings raise the possibility that JMJD6 may play a role in regulating such processes in response to stresses, including hypoxia.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Histona Demetilasas con Dominio de Jumonji , Proteínas de Ciclo Celular/metabolismo , Humanos , Hidroxilación , Proteínas Intrínsecamente Desordenadas/metabolismo , Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/metabolismo , Lisina/metabolismo , Dominios Proteicos , Factores de Transcripción/metabolismo
4.
Methods Mol Biol ; 1934: 309-324, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31256387

RESUMEN

Collagens represent a large family of structurally related proteins containing a unique triple-helical structure. Among them, the fibril-forming collagens are the most abundant in vertebrates providing tissues with form and stability. One of the characteristics of the fibrillar collagens is its sequential posttranslational modifications of specific lysine residues that have major effects on molecular assembly and stability of the fibrils in the extracellular space. Hydroxylation of lysine residues is the first modification catalyzed by lysyl hydroxylases, and is critical for the following glycosylation and in determining the fate of covalent cross-linking. This chapter presents an overview of lysine hydroxylation and cross-linking of collagen, and the analytical methods we have developed.


Asunto(s)
Colágeno/metabolismo , Lisina/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Colágeno/química , Humanos , Hidrólisis , Hidroxilación , Lisina/química , Procesamiento Proteico-Postraduccional
5.
Acta Odontol Scand ; 72(8): 753-61, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24694099

RESUMEN

OBJECTIVE: It is uncertain as to what extent the major bone matrix constituents, mineral and collagen, show inter-individual variation and dependence on age and sex in jawbones. The purpose of this study was to clarify this uncertainty using cadaveric mandibles and investigate the association of bone matrix with the number of existing teeth. MATERIALS AND METHODS: Cortical bone samples (1 × 1 cm) collected from the mental of 48 cadaveric mandibles (27 men and 21 women; age range = 56-93 years and 63-103 years, respectively) were used to quantify three bone matrix indices: mineral content, collagen content and extent of lysine hydroxylation of collagen. Associations with age and comparisons by sex were evaluated based on bone matrix indices and the numbers of existing teeth. The numbers of existing teeth were compared between the groups showing low and high bone matrix index values. RESULTS: A great amount of inter-individual variation was seen in all bone matrix indices. No bone matrix indices were associated with age, while the number of existing teeth was negatively associated with age. The bone matrix indices and number of existing teeth did not differ by sex. The number of existing teeth was nearly twice as high in the group showing high collagen content as in the low collagen group; however, an analysis of covariance showed a significant inter-group difference not from bone matrix indices, but rather from age. Interestingly, in comparison to femoral collagen, mandibular collagen showed lower lysine hydroxylation, which can represent an aspect of bone quality. CONCLUSIONS: Mandibular bone matrix shows great inter-individual variation and is independent of age and sex, but did not show as strong a relationship with tooth loss as age. Even so, mandibular collagen may represent a unique characteristic of bone matrix and deserves to be further investigated.


Asunto(s)
Matriz Ósea/química , Pérdida de Diente/etiología , Factores de Edad , Anciano , Anciano de 80 o más Años , Aminoácidos/análisis , Densidad Ósea/fisiología , Cadáver , Colágeno/análisis , Colágeno/química , Femenino , Fémur/química , Humanos , Hidroxilación , Lisina/análisis , Masculino , Mandíbula/química , Persona de Mediana Edad , Minerales/análisis , Factores Sexuales , Diente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA