Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Viruses ; 16(6)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38932168

RESUMEN

Seroprevalence of lyssaviruses in certain bat species has been proven in the Republic of Croatia, but there have been no confirmed positive bat brain isolates or human fatalities associated with bat injuries/bites. The study included a retrospective analysis of bat injuries/bites, post-exposure prophylaxis (PEP) and geographic distribution of bat injuries in persons examined at the Zagreb Antirabies Clinic, the Croatian Reference Centre for Rabies. In the period 1995-2020, we examined a total of 21,910 patients due to animal injuries, of which 71 cases were bat-related (0.32%). Of the above number of patients, 4574 received rabies PEP (20.87%). However, for bat injuries, the proportion of patients receiving PEP was significantly higher: 66 out of 71 patients (92.95%). Of these, 33 received only the rabies vaccine, while the other 33 patients received the vaccine with human rabies immunoglobulin (HRIG). In five cases, PEP was not administered, as there was no indication for treatment. Thirty-five of the injured patients were biologists or biology students (49.29%). The bat species was confirmed in only one of the exposure cases. This was a serotine bat (Eptesicus serotinus), a known carrier of Lyssavirus hamburg. The results showed that the bat bites were rather sporadic compared to other human injuries caused by animal bites. All bat injuries should be treated as if they were caused by a rabid animal, and according to WHO recommendations. People who come into contact with bats should be strongly advised to be vaccinated against rabies. Entering bat habitats should be done with caution and in accordance with current recommendations, and nationwide surveillance should be carried out by competent institutions and in close collaboration between bat experts, epidemiologists and rabies experts.


Asunto(s)
Mordeduras y Picaduras , Quirópteros , Profilaxis Posexposición , Vacunas Antirrábicas , Rabia , Rabia/epidemiología , Rabia/prevención & control , Quirópteros/virología , Humanos , Animales , Croacia/epidemiología , Femenino , Mordeduras y Picaduras/epidemiología , Adulto , Masculino , Estudios Retrospectivos , Persona de Mediana Edad , Adulto Joven , Vacunas Antirrábicas/inmunología , Vacunas Antirrábicas/administración & dosificación , Adolescente , Niño , Virus de la Rabia/inmunología , Virus de la Rabia/genética , Anciano , Preescolar , Estudios Seroepidemiológicos , Lyssavirus/inmunología , Lyssavirus/genética
2.
Viruses ; 15(9)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37766204

RESUMEN

Rabies is a fatal zoonosis that is considered a re-emerging infectious disease. Although rabies remains endemic in canines throughout much of the world, vaccination programs have essentially eliminated dog rabies in the Americas and much of Europe. However, despite the goal of eliminating dog rabies in the European Union by 2020, sporadic cases of dog rabies still occur in Eastern Europe, including Georgia. To assess the genetic diversity of the strains recently circulating in Georgia, we sequenced seventy-eight RABV-positive samples from the brain tissues of rabid dogs and jackals using Illumina short-read sequencing of total RNA shotgun libraries. Seventy-seven RABV genomes were successfully assembled and annotated, with seventy-four of them reaching the coding-complete status. Phylogenetic analyses of the nucleoprotein (N) and attachment glycoprotein (G) genes placed all the assembled genomes into the Cosmopolitan clade, consistent with the Georgian origin of the samples. An amino acid alignment of the G glycoprotein ectodomain identified twelve different sequences for this domain among the samples. Only one of the ectodomain groups contained a residue change in an antigenic site, an R264H change in the G5 antigenic site. Three isolates were cultured, and these were found to be efficiently neutralized by the human monoclonal antibody A6. Overall, our data show that recently circulating RABV isolates from Georgian canines are predominantly closely related phylogroup I viruses of the Cosmopolitan clade. Current human rabies vaccines should offer protection against infection by Georgian canine RABVs. The genomes have been deposited in GenBank (accessions: OQ603609-OQ603685).


Asunto(s)
Vacunas Antirrábicas , Virus de la Rabia , Rabia , Perros , Animales , Humanos , Filogenia , Chacales , Glicoproteínas/genética , Genómica
3.
BMC Immunol ; 24(1): 7, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085747

RESUMEN

BACKGROUND: Coevolution between pathogens and their hosts decreases host morbidity and mortality. Bats host and can tolerate viruses which can be lethal to other vertebrate orders, including humans. Bat adaptations to infection include localized immune response, early pathogen sensing, high interferon expression without pathogen stimulation, and regulated inflammatory response. The immune reaction is costly, and bats suppress high-cost metabolism during torpor. In the temperate zone, bats hibernate in winter, utilizing a specific behavioural adaptation to survive detrimental environmental conditions and lack of energy resources. Hibernation torpor involves major physiological changes that pose an additional challenge to bat-pathogen coexistence. Here, we compared bat cellular reaction to viral challenge under conditions simulating hibernation, evaluating the changes between torpor and euthermia. RESULTS: We infected the olfactory nerve-derived cell culture of Myotis myotis with an endemic bat pathogen, European bat lyssavirus 1 (EBLV-1). After infection, the bat cells were cultivated at two different temperatures, 37 °C and 5 °C, to examine the cell response during conditions simulating euthermia and torpor, respectively. The mRNA isolated from the cells was sequenced and analysed for differential gene expression attributable to the temperature and/or infection treatment. In conditions simulating euthermia, infected bat cells produce an excess signalling by multitude of pathways involved in apoptosis and immune regulation influencing proliferation of regulatory cell types which can, in synergy with other produced cytokines, contribute to viral tolerance. We found no up- or down-regulated genes expressed in infected cells cultivated at conditions simulating torpor compared to non-infected cells cultivated under the same conditions. When studying the reaction of uninfected cells to the temperature treatment, bat cells show an increased production of heat shock proteins (HSPs) with chaperone activity, improving the bat's ability to repair molecular structures damaged due to the stress related to the temperature change. CONCLUSIONS: The lack of bat cell reaction to infection in conditions simulating hibernation may contribute to the virus tolerance or persistence in bats. Together with the cell damage repair mechanisms induced in response to hibernation, the immune regulation may promote bats' ability to act as reservoirs of zoonotic viruses such as lyssaviruses.


Asunto(s)
Quirópteros , Hibernación , Lyssavirus , Virus , Animales , Quirópteros/fisiología , Transcriptoma
4.
Viruses ; 15(3)2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36992389

RESUMEN

Rabies is a zoonotic and fatal encephalitis caused by members of the Lyssavirus genus. Among them, the most relevant species is Lyssavirus rabies, which is estimated to cause 60,000 human and most mammal rabies deaths annually worldwide. Nevertheless, all lyssaviruses can invariably cause rabies, and therefore their impact on animal and public health should not be neglected. For accurate and reliable surveillance, diagnosis should rely on broad-spectrum tests able to detect all known lyssaviruses, including the most divergent ones. In the present study, we evaluated four different pan-lyssavirus protocols widely used at an international level, including two real-time RT-PCR assays (namely LN34 and JW12/N165-146), a hemi-nested RT-PCR and a one-step RT-PCR. Additionally, an improved version of the LN34 assay ((n) LN34) was developed to increase primer-template complementarity with respect to all lyssavirus species. All protocols were evaluated in silico, and their performance was compared in vitro employing 18 lyssavirus RNAs (encompassing 15 species). The (n) LN34 assay showed enhanced sensitivity in detecting most lyssavirus species, with limits of detection ranging from 10 to 100 RNA copies/µL depending on the strain, while retaining high sensitivity against Lyssavirus rabies. The development of this protocol represents a step forward towards improved surveillance of the entire Lyssavirus genus.


Asunto(s)
Quirópteros , Lyssavirus , Rabia , Infecciones por Rhabdoviridae , Animales , Humanos , Lyssavirus/genética , Rabia/diagnóstico , Rabia/veterinaria , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , ARN Viral/genética , ARN Viral/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Infecciones por Rhabdoviridae/diagnóstico , Infecciones por Rhabdoviridae/veterinaria
5.
Epidemiol Infect ; 150: e137, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-35900135

RESUMEN

Rabies, a fatal and vaccine-preventable disease, is endemic throughout Africa. In 2016, a rabies outbreak occurred in black-backed jackals (Canis mesomelas) along the western boundary of Gauteng Province, South Africa. We investigated the possible drivers of the 2016 outbreak and established its origin. Using spatio-temporal locations of cases, we applied logistic regression and Geographic Information System techniques to investigate environmental covariates driving occurrences of emerging rabies cases in Gauteng Province. About 53.8% of laboratory-confirmed lyssaviruses in Gauteng Province in 2016 originated from jackals. Phylogenetic trees reconstructed from a partial region of the glycoprotein gene of these and historical rabies viruses (RABVs) demonstrated the lyssaviruses to be of canid origin with 97.7% nucleotide sequence similarity. The major cluster comprised jackal RABVs from the 2012 KwaZulu/Natal outbreak and the 2016 outbreak in Gauteng Province. The second cluster was composed of both jackal and dog RABVs. Both clusters correlated with independent RABV introductions into Gauteng by dogs and jackals, respectively. This study demonstrated an expansion of a jackal rabies cycle from north-west Province into Gauteng Province during the 2016 dry period, as jackals ranged widely in search for food resources leading to increased jackal-dog interactions, reminiscent of the intricate links of domestic and wildlife rabies cycles in South Africa.


Asunto(s)
Lyssavirus , Vacunas Antirrábicas , Virus de la Rabia , Rabia , Animales , Brotes de Enfermedades , Chacales , Filogenia , Rabia/epidemiología , Rabia/veterinaria , Sudáfrica/epidemiología
6.
Vet Clin North Am Equine Pract ; 38(2): 323-338, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35811198

RESUMEN

Several viruses transmitted by biological vectors or through direct contact, air, or ingestion cause neurologic disease in equids. Of interest are viruses of the Togaviridae, Flaviviridae, Rhabdoviridae, Herpesviridae, Bornaviridae, and Bunyaviridae families. Variable degree of inflammation is present with these viruses but lack of an inflammatory response does not rule out their presence. The goal of this article is to provide an overview on pathophysiologic and clinical aspects of nonarboviral equine encephalitides, specifically on lyssaviruses (rabies) and bornaviruses (Borna disease).


Asunto(s)
Enfermedades de los Caballos , Rabia , Animales , Caballos , Rabia/veterinaria
7.
Ann Agric Environ Med ; 29(1): 44-49, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35352904

RESUMEN

INTRODUCTION: Bats are considered natural reservoirs for lyssaviruses. A total of 17 out of 19 known lyssaviruses circulate in bat populations. Lyssaviruses cause rabies in animals and humans. The transmission of lyssaviruses from European bats to terrestrial animals and humans is rare, but the risk of infection still exists even in developed countries. Slovakia is currently a rabies-free country. OBJECTIVE: The aim of the study was to assess the potential circulation of EBLV-1 in synanthropic bats present in human inhabited buildings, and to give an overview of human exposure to bats. MATERIAL AND METHODS: A passive serological survey targeted the prevalence of antibodies to bat lyssaviruses in synanthropic bats between 2009 - 2019. A total of 598 bats of the species Pipistrellus pipistrellus, Pipistrellus pygmaeus, Eptesicus serotinus, Nyctalus noctula and Vespertilio murinus were captured in buildings mainly in Eastern Slovakia, and examined by the rapid fluorescent focus inhibition test (RFFIT). RESULTS: Lyssavirus-specific antibodies were detected in 2 (0.3%) of the 598 examined bats. Additionally, brain tissues of bats found dead were examined using the standard fluorescent antibody test (FAT) with negative results. An overview of available data on human exposure to bats recorded in Slovakia from 2007 - 2019 is also included. CONCLUSIONS: The study confirmed the presence of lyssavirus antibodies in synanthropic bats in Slovakia, suggesting the active circulation of bat lyssaviruses in bat populations exploiting human buildings. Although the seroprevalence was found to be extremely low, the results show that any case of human exposure to bats must be treated with caution in order to protect public health.


Asunto(s)
Quirópteros , Lyssavirus , Rabia , Animales , Humanos , Rabia/epidemiología , Estudios Seroepidemiológicos , Eslovaquia/epidemiología
8.
Aust Vet J ; 100(4): 172-180, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35043394

RESUMEN

Australian Bat lyssaviruses (ABLV) are known to be endemic in bats in New South Wales (NSW), Australia. These viruses pose a public health risk because they cause a fatal disease in humans that is indistinguishable from classical rabies infection. All potentially infectious contact between bats and humans, or between bats and domestic animals, should be investigated to assess the risk of virus transmission by submitting the bat for testing to exclude ABLV infection. The aim of this study was to establish the prevalence of ABLV infection in bats submitted for testing in NSW and to document any trends or changes in submission and bat details. We examined all submissions of samples for ABLV testing received by the NSW Department of Primary Industries Virology Laboratory for the 13-year period between 1 May 2008 and 30 April 2021. Fifty-four (4.9%) ABLV-infected bats were detected, with some clustering of positive results. This is greater than the prevalence estimated from wild-caught bats. All bats should be considered a potential source of ABLV. In particular, flying-foxes with rabies-like clinical signs, and with known or possible human interaction, pose the highest public health risk because they are more likely to return a positive result for ABLV infection. This review of ABLV cases in NSW will help veterinarians to recognise the clinical presentations of ABLV infection in bats and emphasises the importance of adequate rabies vaccination for veterinarians.


Asunto(s)
Quirópteros , Lyssavirus , Rabia , Infecciones por Rhabdoviridae , Animales , Australia/epidemiología , Nueva Gales del Sur/epidemiología , Rabia/epidemiología , Rabia/veterinaria , Infecciones por Rhabdoviridae/epidemiología , Infecciones por Rhabdoviridae/veterinaria
9.
Viruses ; 13(10)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34696409

RESUMEN

Lyssaviruses are an important genus of zoonotic viruses which cause the disease rabies. The United Kingdom is free of classical rabies (RABV). However, bat rabies due to European bat lyssavirus 2 (EBLV-2), has been detected in Daubenton's bats (Myotis daubentonii) in Great Britain since 1996, including a fatal human case in Scotland in 2002. Across Europe, European bat lyssavirus 1 (EBLV-1) is commonly associated with serotine bats (Eptesicus serotinus). Despite the presence of serotine bats across large parts of southern England, EBLV-1 had not previously been detected in this population. However, in 2018, EBLV-1 was detected through passive surveillance in a serotine bat from Dorset, England, using a combination of fluorescent antibody test, reverse transcription-PCR, Sanger sequencing and immunohistochemical analysis. Subsequent EBLV-1 positive serotine bats have been identified in South West England, again through passive surveillance, during 2018, 2019 and 2020. Here, we confirm details of seven cases of EBLV-1 and present similarities in genetic sequence indicating that emergence of EBLV-1 is likely to be recent, potentially associated with the natural movement of bats from the near continent.


Asunto(s)
Quirópteros/virología , Lyssavirus/patogenicidad , Animales , Lyssavirus/genética , Rabia/virología , Infecciones por Rhabdoviridae/epidemiología , Infecciones por Rhabdoviridae/virología , Reino Unido/epidemiología
10.
Viruses ; 13(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33804519

RESUMEN

Australian bat lyssavirus (ABLV) is a rhabdovirus that circulates in four species of pteropid bats (ABLVp) and the yellow-bellied sheath-tailed bat (ABLVs) in mainland Australia. In the three confirmed human cases of ABLV, rabies illness preceded fatality. As with rabies virus (RABV), post-exposure prophylaxis (PEP) for potential ABLV infections consists of wound cleansing, administration of the rabies vaccine and injection of rabies immunoglobulin (RIG) proximal to the wound. Despite the efficacy of PEP, the inaccessibility of human RIG (HRIG) in the developing world and the high immunogenicity of equine RIG (ERIG) has led to consideration of human monoclonal antibodies (hmAbs) as a passive immunization option that offers enhanced safety and specificity. Using a recombinant vesicular stomatitis virus (rVSV) expressing the glycoprotein (G) protein of ABLVs and phage display, we identified two hmAbs, A6 and F11, which completely neutralize ABLVs/ABLVp, and RABV at concentrations ranging from 0.39 and 6.25 µg/mL and 0.19 and 0.39 µg/mL respectively. A6 and F11 recognize overlapping epitopes in the lyssavirus G protein, effectively neutralizing phylogroup 1 lyssaviruses, while having little effect on phylogroup 2 and non-grouped diverse lyssaviruses. These results suggest that A6 and F11 could be effective therapeutic and diagnostic tools for phylogroup 1 lyssavirus infections.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Reacciones Cruzadas/inmunología , Lyssavirus/clasificación , Lyssavirus/inmunología , Filogenia , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Australia , Mordeduras y Picaduras , Técnicas de Visualización de Superficie Celular , Quirópteros/virología , Epítopos/inmunología , Células HEK293 , Caballos , Humanos , Lyssavirus/genética , Pruebas de Neutralización , Profilaxis Posexposición , Rabia/prevención & control , Vacunas Antirrábicas/inmunología , Virus de la Rabia/inmunología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/prevención & control , Infecciones por Rhabdoviridae/terapia , Vesiculovirus/genética
11.
Front Immunol ; 12: 622516, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679766

RESUMEN

Rabies virus (RABV) is able to reach the central nervous system (CNS) without triggering a strong immune response, using multiple mechanisms to evade and suppress the host immune system. After infection via a bite or scratch from a rabid animal, RABV comes into contact with macrophages, which are the first antigen-presenting cells (APCs) that are recruited to the area and play an essential role in the onset of a specific immune response. It is poorly understood how RABV affects macrophages, and if the interaction contributes to the observed immune suppression. This study was undertaken to characterize the interactions between RABV and human monocyte-derived macrophages (MDMs). We showed that street RABV does not replicate in human MDMs. Using a recombinant trimeric RABV glycoprotein (rRABV-tG) we showed binding to the nicotinic acetylcholine receptor alpha 7 (nAChr α7) on MDMs, and confirmed the specificity using the nAChr α7 antagonist alpha-bungarotoxin (α-BTX). We found that this binding induced the cholinergic anti-inflammatory pathway (CAP), characterized by a significant decrease in tumor necrosis factor α (TNF-α) upon LPS challenge. Using confocal microscopy we found that induction of the CAP is associated with significant cytoplasmic retention of nuclear factor κB (NF-κB). Co-cultures of human MDMs exposed to street RABV and autologous T cells further revealed that the observed suppression of MDMs might affect their function as T cell activators as well, as we found a significant decrease in proliferation of CD8+ T cells and an increased production of the anti-inflammatory cytokine IL-10. Lastly, using flow cytometric analysis we observed a significant increase in expression of the M2-c surface marker CD163, hinting that street RABV might be able to affect macrophage polarization. Taken together, these results show that street RABV is capable of inducing an anti-inflammatory state in human macrophages, possibly affecting T cell functioning.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Macrófagos/inmunología , Virus de la Rabia/fisiología , Rabia/inmunología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Antiinflamatorios , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Diferenciación Celular , Células Cultivadas , Colinérgicos , Técnicas de Cocultivo , Humanos , Interleucina-10/metabolismo , Activación de Linfocitos , FN-kappa B/metabolismo , Neuroinmunomodulación , Unión Proteica , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Células Th2/inmunología
12.
Emerg Infect Dis ; 26(12): 3056-3060, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33219800

RESUMEN

We detected 3 lyssaviruses in insectivorous bats sampled in South Africa during 2003-2018. We used phylogenetic analysis to identify Duvenhage lyssavirus and a potentially new lyssavirus, provisionally named Matlo bat lyssavirus, that is related to West Caucasian bat virus. These new detections highlight that much about lyssaviruses remains unknown.


Asunto(s)
Quirópteros , Lyssavirus , Rabia , Infecciones por Rhabdoviridae , Animales , Lyssavirus/genética , Filogenia , Infecciones por Rhabdoviridae/epidemiología , Infecciones por Rhabdoviridae/veterinaria , Sudáfrica/epidemiología
13.
Euro Surveill ; 25(38)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32975184

RESUMEN

Rabies is enzootic in over one hundred countries worldwide. In the European Union/European Economic Area (EU/EEA), the vast majority of human rabies cases are travellers bitten by dogs in rabies-enzootic countries, mostly in Asia and Africa. Thus, EU/EEA travellers visiting rabies enzootic countries should be aware of the risk of being infected with the rabies virus when having physical contact with mammals. They should consider pre-exposure vaccination following criteria recommended by the World Health Organization and if unvaccinated, immediately seek medical attention in case of bites or scratches from mammals. As the majority of the EU/EEA countries are free from rabies in mammals, elimination of the disease (no enzootic circulation of the virus and low number of imported cases) has been achieved by 2020. However, illegal import of potentially infected animals, mainly dogs, poses a risk to public health and might threaten the elimination goal. Additionally, newly recognised bat lyssaviruses represent a potential emerging threat as the rabies vaccine may not confer protective immunity. To support preparedness activities in EU/EEA countries, guidance for the assessment and the management of the public health risk related to rabies but also other lyssaviruses, should be developed.


Asunto(s)
Lyssavirus , Vacunas Antirrábicas/administración & dosificación , Rabia/prevención & control , Infecciones por Rhabdoviridae/prevención & control , Viaje , Zoonosis , Animales , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/prevención & control , Perros , Europa (Continente)/epidemiología , Unión Europea , Humanos , Rabia/epidemiología , Rabia/transmisión , Infecciones por Rhabdoviridae/epidemiología , Infecciones por Rhabdoviridae/transmisión , Medición de Riesgo
14.
Cell Rep ; 32(3): 107920, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32697993

RESUMEN

Rabies is nearly 100% lethal in the absence of treatment, killing an estimated 59,000 people annually. Vaccines and biologics are highly efficacious when administered properly. Sixteen rabies-related viruses (lyssaviruses) are similarly lethal, but some are divergent enough to evade protection from current vaccines and biologics, which are based only on the classical rabies virus (RABV). Here we present the development and characterization of LyssaVax, a vaccine featuring a structurally designed, functional chimeric glycoprotein (G) containing immunologically important domains from both RABV G and the highly divergent Mokola virus (MOKV) G. LyssaVax elicits high titers of antibodies specific to both RABV and MOKV Gs in mice. Immune sera also neutralize a range of wild-type lyssaviruses across the major phylogroups. LyssaVax-immunized mice are protected against challenge with recombinant RABV and MOKV. Altogether, LyssaVax demonstrates the utility of structural modeling in vaccine design and constitutes a broadened lyssavirus vaccine candidate.


Asunto(s)
Glicoproteínas/metabolismo , Lyssavirus/inmunología , Filogenia , Proteínas Recombinantes/metabolismo , Vacunas Virales/inmunología , Administración Intranasal , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Glicoproteínas/química , Inmunidad Humoral , Inyecciones Intramusculares , Vacunas Antirrábicas/inmunología , Proteínas Recombinantes/química , Replicación Viral/fisiología
15.
Vopr Virusol ; 65(1): 41-48, 2020.
Artículo en Ruso | MEDLINE | ID: mdl-32496720

RESUMEN

INTRODUCTION: Rabies caused by the neurotropic virus of the genus Lyssavirus, Rhabdoviridae family, which infects all warm-blooded vertebrates including human beings. The homology level of the amino acid sequences for Lyssaviruses nucleoprotein reaches 78-93%. Aim - study the genetic diversity and molecular epidemiology of Lyssaviruses circulated in the Russian Federation in 1985-2016. MATERIAL AND METHODS: 54 isolates of rabies virus isolated from animals, and 2 isolates from humans, 4 vaccine strains of rabies virus: RV-97, ERA, Shchelkovo 51, ERAG333 used in phylogenetic study. Phylogenetic analysis was performed using Genbank data on genome fragments of 73 rabies virus isolates and 9 EBLV-1 isolates. DNASTAR V.3.12, Bio Edit 7.0.4.1 and MEGA v.10.0.5, Primer Premier 5 programs have been used. RESULTS: Comparative molecular genetic analysis of genomes fragments of 130 Lissaviruses, isolated on the territory of the RF, Ukraine in 1985-2016, vaccine strains of rabies virus, showed their distribution by geographical feature. Comparison of the nucleoprotein fragments of the rabies virus isolates with vaccine strains revealed 4 marker mutations: V56I (Eurasian group), L/V95W (Central group), D101N/S/T, and N/G106D. Phylogenetic analysis of the isolate «Juli¼, isolated from a human bitten by a bat proved his belonging to the European Bat lyssavirus-1a. DISCUSSION: Study of the molecular epidemiology of rabies within the Russian Federation allows for the genotyping of the viruses and helps to study the hidden mechanisms of rabies infection in animal and human populations, and to characterize vaccine strains, including during oral vaccination. CONCLUSION: Further study of the molecular epidemiology of rabies within the Russian Federation and the countries bordering it is important.


Asunto(s)
Filogenia , Vacunas Antirrábicas/genética , Virus de la Rabia/genética , Rabia/genética , Secuencia de Aminoácidos/genética , Animales , Quirópteros/virología , Humanos , Rabia/epidemiología , Rabia/prevención & control , Rabia/virología , Vacunas Antirrábicas/inmunología , Virus de la Rabia/patogenicidad , Federación de Rusia/epidemiología
16.
Viruses ; 12(3)2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121200

RESUMEN

Background: Bats are known to host a number of nonpathogenic viruses, as well as highly pathogenic viruses causing fatal diseases like rabies. Serological surveys as part of active and passive bat rabies surveillance mainly use seroneutralization assays, demonstrating the presence of lyssavirus-specific antibodies in a variety of European bats, particularly against European bat lyssaviruses type 1 (EBLV-1). Here, we present the first serological survey in European bats of this kind during which European bats from Poland collected in the frame of passive rabies surveillance between 2012 and 2018, as well as Serotine bats (Eptesicus serotinus) and North American Big Brown bats (Eptesicus fuscus) from previous experimental studies, were tested using a commercial ELISA kit for the detection of anti-lyssavirus antibodies. Results: Lyssavirus-specific antibodies were detected in 35 (30.4%) out of 115 Polish bats of both sexes, representing nine out of 13 identified bat species endemic mainly to Central Southern Europe and Western Asia, i.e., Eptesicus serotinus, Nyctalus noctula, Myotis daubentonii, Plecotus auritus, Vespertillo murinus,Pipistrellus pipistrellus, Pipistrellus pipilstrellus/Pipistrellus pygmaeus, Myotis brandtii, and Barbastella barbastellus. Seroprevalence was highest in bat species of Nyctalus noctula, Eptesicus serotinus, Plecotus auritus, and Myotis daubentonii. More than 60% of the ELISA seropositive bats originated from the voivodeships of Silesia, Lower-Silesian, Warmian-Mazurian, and Mazowian. Rabies-specific antibodies were also found in Eptesicus fuscus bats from North America. Conclusions: The study demonstrates the principal application of the BioPro Rabies ELISA Ab Kit for the detection of anti-lyssavirus specific antibodies in body fluids and serum samples of bats. However, results may only be reliable for North American bats, whereas interpretation of results for European bats per se is difficult because proper validation of the test is hampered by the protected status of these species.


Asunto(s)
Quirópteros/virología , Lyssavirus/clasificación , Rabia/epidemiología , Rabia/virología , Infecciones por Rhabdoviridae/epidemiología , Infecciones por Rhabdoviridae/virología , Animales , Anticuerpos Antivirales/inmunología , Líquidos Corporales/virología , Ensayo de Inmunoadsorción Enzimática , Femenino , Geografía Médica , Lyssavirus/genética , Lyssavirus/inmunología , Masculino , Polonia/epidemiología , Vigilancia en Salud Pública , Estudios Seroepidemiológicos , Pruebas Serológicas
18.
Viruses ; 11(10)2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614675

RESUMEN

Human rabies vaccines have been shown to induce partial protection against members of phylogroup I bat lyssaviruses. Here, we investigated the capacity of a widely used rabies inactivated vaccine (Rabisin, Boehringer-Ingelheim) for veterinary use to cross-protect mice experimentally infected with European bat lyssavirus 1 (EBLV-1b), European bat lyssavirus 2 (EBLV-2), and Bokeloh bat lyssavirus (BBLV) occurring in Europe. For each lyssavirus, we investigated the efficacy of two different doses of vaccine against two viral doses administrated by either central or peripheral routes. In parallel, seroconversion following pre-exposure vaccination was investigated. In this study, we demonstrated that the three investigated bat isolates were pathogenic, even at low dose, when inoculated by the central route but were not/less pathogenic when administrated peripherally. The Rabisin vaccine was capable of significantly cross-protecting mice inoculated intramuscularly with EBLV-1b and EBLV-2 and intracerebrally with BBLV. The level of rabies neutralizing antibodies induced by the Rabisin was quite high against the bat lyssaviruses, but with no significant differences between immunization with 1 and 5 IU/dose. The study emphasizes that the quality of rabies-inactivated vaccines for veterinary use is of utmost importance to optimize the cross-protection of pets against phylogroup I bat lyssaviruses occurring in Europe.


Asunto(s)
Protección Cruzada , Lyssavirus/inmunología , Vacunas Antirrábicas , Infecciones por Rhabdoviridae/prevención & control , Vacunación/veterinaria , Vacunas de Productos Inactivados , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Quirópteros/virología , Europa (Continente)/epidemiología , Ratones , Rabia/veterinaria , Infecciones por Rhabdoviridae/veterinaria
19.
Euro Surveill ; 23(39)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30280687

RESUMEN

The epidemiology of rabies in France and western Europe has changed during the past 22 years. In France, rabies in non-flying terrestrial mammals was declared to be eliminated in 2001, and the risk of rabies is now limited to contact with bats, rabid animals illegally imported from rabies-enzootic countries and traveller exposure in enzootic areas. We analysed the epidemiology of rabies in France from 1995 to 2016, describing and analysing data on human rabies surveillance as well as data on post-exposure prophylaxis (PEP) collected from the network of French antirabies clinics. Over the study period, seven individuals were diagnosed with rabies in France, all of whom were infected outside mainland France. PEP data analysis revealed an expected overall decrease in PEP administration for individuals exposed in mainland France, but there was still overuse of anti-rabies drugs, given the very low epidemiological risk. On the other hand, a significant increase in PEP delivered to individuals exposed abroad was evidenced. These epidemiological trends indicate that clear guidelines should be provided to support physicians' efforts to adjust rabies risk assessment to the evolution of the epidemiological situation.


Asunto(s)
Profilaxis Posexposición , Vacunas Antirrábicas/administración & dosificación , Rabia/epidemiología , Animales , Mordeduras y Picaduras , Perros , Femenino , Francia/epidemiología , Humanos , Rabia/prevención & control , Medición de Riesgo , Vigilancia de Guardia
20.
Int J Mol Sci ; 19(8)2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30110957

RESUMEN

Rabies virus (RABV) and other lyssaviruses can cause rabies and rabies-like diseases, which are a persistent public health threat to humans and other mammals. Lyssaviruses exhibit distinct characteristics in terms of geographical distribution and host specificity, indicative of a long-standing diversification to adapt to the environment. However, the evolutionary diversity of lyssaviruses, in terms of codon usage, is still unclear. We found that RABV has the lowest codon usage bias among lyssaviruses strains, evidenced by its high mean effective number of codons (ENC) (53.84 ± 0.35). Moreover, natural selection is the driving force in shaping the codon usage pattern of these strains. In summary, our study sheds light on the codon usage patterns of lyssaviruses, which can aid in the development of control strategies and experimental research.


Asunto(s)
Codón , Evolución Molecular , Virus de la Rabia/genética , Selección Genética , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA