Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 423
Filtrar
1.
Front Pharmacol ; 15: 1406238, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39211784

RESUMEN

The synapses between parallel fibers and Purkinje cells play a pivotal role in cerebellar function. They are intricately governed by a variety of presynaptic receptors, notably by type 4 metabotropic glutamate (mGlu4) receptors and type 1 adenosine (A1) receptors both of which curtail glutamate release upon activation. Despite their pivotal role in regulating synaptic transmission within the cerebellar cortex, functional interactions between mGlu4 and A1 receptors have remained relatively unexplored. To bridge this gap, our study delves into how mGlu4 receptor activity influences A1 receptor-mediated alterations in excitatory transmission. Employing a combination of whole-cell patch clamp recordings of Purkinje cells and parallel fiber presynaptic fluorometric calcium measurements in acute rat and mouse cerebellar cortical slices, our results reveal functional interactions between these receptor types. These findings hold implications for understanding potential roles of these presynaptic receptors in neuroprotection during pathophysiological conditions characterized by elevated glutamate and adenosine levels.

2.
Pharmacol Rep ; 76(5): 1174-1183, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39088104

RESUMEN

BACKGROUND: - Alcohol-induced pro-inflammatory activation might influence cellular and synaptic pathology, thus contributing to the behavioral phenotypes associated with alcohol use disorders. In the present study, the possible anti-inflammatory properties of N-[(4-trifluoromethyl)-benzyl]4-methoxybutyramide (GET73), a promising therapeutic agent for alcohol use disorder treatment, were evaluated in primary cultures of rat cortical microglia. METHODS: - Primary cultures of cerebral cortex microglial cells were treated with 100 ng/ml lipopolysaccharide (LPS; 8 h, 37 °C) or 75 mM ethanol (EtOH; 4 days, 37 °C) alone or in the presence of GET73 (1-30 µM). At the end of the incubation period, multiparametric quantification of cytokines/chemokines was performed by using the xMAP technology and Luminex platform. Furthermore, cultured microglial cell viability following the treatment with EtOH and GET73, alone or in combination, has been measured by a colorimetric assay (i.e. MTT assay). RESULTS: - GET73 (10 and 30 µM) partially or fully prevented the LPS-induced increase of IL-6, IL-1ß, RANTES/CCL5 protein and MCP-1/CCL2 levels. On the contrary, GET73 failed to attenuate the TNF-α level increase induced by LPS. Furthermore, GET73 treatment (10-30 µM) significantly attenuated or prevented the EtOH-induced increase of TNF-α, IL-6, IL-1ß and MCP-1/CCL2 levels. Finally, at all the concentrations tested (1-30 µM), the GET73 treatment did not alter the EtOH-induced reduction of microglial cell viability. CONCLUSIONS: - The current results provide the first in vitro evidence of GET73 protective properties against EtOH-induced neuroinflammation. These data add more information on the complex and multifactorial profile of action of the compound, further supporting the significance of developing GET73 as a therapeutic tool for the treatment of individuals with alcohol use disorders.


Asunto(s)
Supervivencia Celular , Corteza Cerebral , Citocinas , Etanol , Lipopolisacáridos , Microglía , Animales , Ratas , Antiinflamatorios/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Quimiocinas/metabolismo , Citocinas/metabolismo , Etanol/farmacología , Lipopolisacáridos/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Ratas Wistar
3.
Brain Behav Immun Health ; 39: 100808, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38983774

RESUMEN

The metabotropic glutamate receptor 7 (mGluR7) is a presynaptic G-protein-coupled glutamate receptor that modulates neurotransmitter release and synaptic plasticity at presynaptic terminals. It is encoded by GRM7, and recently variants have been identified in patients with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), developmental delay (DD), intellectual disability (ID), and brain malformations. To gain updated insights into the function of GRM7 and the phenotypic spectrum of genetic variations within this gene, we conducted a systematic review of relevant literature utilizing PubMed, Web of Science, and Scopus databases. Among the 14 articles meeting the inclusion criteria, a total of 42 patients (from 28 families) harboring confirmed mutations in the GRM7 gene have been documented. Specifically, there were 17 patients with heterozygous mutations, 20 patients with homozygous mutations, and 5 patients with compound heterozygous mutations. Common clinical features included intellectual behavioral disability, seizure/epilepsy, microcephaly, developmental delay, peripheral hypertonia and hypomyelination. Genotype-phenotype correlation was not clear and each variant had unique characteristics including gene dosage, mutant protein surface expression, and degradation pathway that result with a spectrum of phenotype manifestations through ASD or ADHD to severe DD/ID with brain malformations. Neuroinflammation may play a role in the development and/or progression of GRM7-related neurodegeneration along with excitotoxicity. The clinical and functional data presented here demonstrate that both autosomal dominant and recessive inheritance of GRM7 mutation can cause disease spectrum phenotypes through ASD or ADHD to severe DD/ID and seizure with brain malformations.

4.
J Neurosci ; 44(31)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38918065

RESUMEN

Metabotropic glutamate receptor 8 (mGlu8) is a heterogeneously expressed and poorly understood glutamate receptor with potential pharmacological significance. The thalamic reticular nucleus (TRN) is a critical inhibitory modulator of the thalamocortical-corticothalamic (TC-CT) network and plays a crucial role in information processing throughout the brain, is implicated in a variety of psychiatric conditions, and is also a site of significant mGlu8 expression. Using both male and female mice, we determined via fluorescent in situ hybridization that parvalbumin-expressing cells in the TRN core and shell matrices (identified by spp1+ and ecel1+ expression, respectively), as well as the cortical layers involved in CT signaling, express grm8 mRNA. We then assayed the physiological and behavioral impacts of perturbing grm8 signaling in the TC circuit through conditional (adeno-associated virus-CRE mediated) and cell-type-specific constitutive deletion strategies. We show that constitutive parvalbumin grm8 knock-out (PV grm8 knock-out) mice exhibited (1) increased spontaneous excitatory drive onto dorsal thalamus relay cells and (2) impaired sensorimotor gating, measured via paired-pulse inhibition, but observed no differences in locomotion and thigmotaxis in repeated bouts of open field test (OFT). Conversely, we observed hyperlocomotive phenotypes and anxiolytic effects of AAV-mediated conditional knockdown of grm8 in the TRN (TRN grm8 knockdown) in repeated OFT. Our findings underscore a role for mGlu8 in regulating excitatory neurotransmission as well as anxiety-related locomotor behavior and sensorimotor gating, revealing potential therapeutic applications for various neuropsychiatric disorders and guiding future research endeavors into mGlu8 signaling and TRN function.


Asunto(s)
Ratones Noqueados , Receptores de Glutamato Metabotrópico , Animales , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética , Ratones , Masculino , Femenino , Transmisión Sináptica/fisiología , Ratones Endogámicos C57BL , Tálamo/fisiología , Tálamo/metabolismo , Corteza Cerebral/fisiología , Corteza Cerebral/metabolismo , Vías Nerviosas/fisiología , Parvalbúminas/metabolismo
5.
IBRO Neurosci Rep ; 16: 629-634, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38832089

RESUMEN

The precise cause of autism spectrum disorder (ASD) is not fully understood. Despite the involvement of glutamatergic dysregulation in autism, the specific contribution of mGlu4 receptors to synaptic plasticity remains unclear. Using the positive allosteric modulator VU0155041, we aimed to restore long-term potentiation (LTP) in the perforant path-dentate gyrus (PP-DG) pathway in VPA-induced autistic rat model. High-frequency stimulation was applied to the PP-DG synapse to induce LTP, while the VU0155041 was administered into the DG. Unexpectedly, VU0155041 failed to alleviate the observed LTP reduction in VPA-exposed rats, further resulting in a significant decrease in population spike LTP. This unexpected outcome prompts discussion on the complex nature of mGlu4 receptor modulation, highlighting potential interference with physiological processes underlying synaptic plasticity.

6.
Sci Rep ; 14(1): 13168, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849397

RESUMEN

Autism spectrum disorder (ASD) is a pervasive neurodevelopmental condition characterized by social interaction deficits, communication impairments, repetitive behaviors, and sensory sensitivities. While the etiology of ASD is multifaceted, abnormalities in glutamatergic neurotransmission and synaptic plasticity have been implicated. This study investigated the role of metabotropic glutamate receptor 8 (mGlu8) in modulating long-term potentiation (LTP) in a rat model of ASD induced by prenatal valproic acid (VPA) exposure. To induce an animal model with autism-like characteristics, pregnant rats received an intraperitoneal injection of 500 mg/kg of sodium valproate (NaVPA) on embryonic day 12.5. High-frequency stimulation was applied to the perforant path-dentate gyrus (PP-DG) synapse to induce LTP, while the mGlu8 receptor agonist (S)-3,4-dicarboxyphenylglycine (DCPG) was administered into the DG. The results revealed that VPA-exposed rats exhibited reduced LTP compared to controls. DCPG had contrasting effects, inhibiting LTP in controls and enhancing it in VPA-exposed rats. Moreover, reduced social novelty preference index (SNPI) in VPA-exposed rats was reversed by intra-DG administration of S-3,4-DCPG. In conclusion, our study advances our understanding of the complex relationship between glutamatergic neurotransmission, synaptic plasticity, and VPA-induced autism model. The findings suggest that mGlu8 receptor dysfunction plays a role in the impaired synaptic plasticity seen in ASD.


Asunto(s)
Giro Dentado , Modelos Animales de Enfermedad , Potenciación a Largo Plazo , Efectos Tardíos de la Exposición Prenatal , Receptores de Glutamato Metabotrópico , Sinapsis , Ácido Valproico , Animales , Ácido Valproico/farmacología , Ácido Valproico/efectos adversos , Potenciación a Largo Plazo/efectos de los fármacos , Femenino , Embarazo , Ratas , Giro Dentado/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Vía Perforante/efectos de los fármacos , Trastorno Autístico/inducido químicamente , Glicina/análogos & derivados , Glicina/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratas Sprague-Dawley , Trastorno del Espectro Autista/inducido químicamente , Masculino
7.
Eur J Neurosci ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38936819

RESUMEN

Activation of metabotropic glutamate 2 (mGlu2) receptors is a potential novel therapeutic approach for the treatment of parkinsonism. Thus, when administered as monotherapy or as adjunct to a low dose of L-3,4-dihydroxyphenylalanine (L-DOPA), the mGlu2 positive allosteric modulator (PAM) LY-487,379 alleviated parkinsonism in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned primates. Here, we sought to investigate the effect of biphenyl-indanone A (BINA), a highly selective mGlu2 PAM whose chemical scaffold is unrelated to LY-487,379, to determine if a structurally different mGlu2 PAM would also confer anti-parkinsonian benefit. In monotherapy experiments, MPTP-lesioned marmosets were injected with either vehicle, L-DOPA/benserazide (15/3.75 mg/kg, positive control) or BINA (0.1, 1, 10 mg/kg). In adjunct to a low L-DOPA dose experiments, MPTP-lesioned marmosets were injected with L-DOPA/benserazide (7.5/1.875 mg/kg) in combination with vehicle or BINA (0.1, 1, 10 mg/kg). Parkinsonism, dyskinesia and psychosis-like behaviours (PLBs) were then quantified. When administered alone, BINA 1 and 10 mg/kg decreased parkinsonism severity by ~22% (p < 0.01) and ~47% (p < 0.001), when compared with vehicle, which was comparable with the global effect of a high L-DOPA dose. When administered in combination with a low L-DOPA dose, BINA 1 and 10 mg/kg decreased global parkinsonism by ~38% (p < 0.001) and ~53% (p < 0.001). BINA 10 mg/kg decreased global dyskinesia by ~94% (p < 0.01) and global PLBs by ~92% (p < 0.01). Our results provide additional evidence that mGlu2 positive allosteric modulation elicits anti-parkinsonian effects. That this benefit is not related to a particular chemical scaffold suggests that it may be a class effect rather than the effect of a specific molecule.

8.
Proc Natl Acad Sci U S A ; 121(21): e2401079121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739800

RESUMEN

Homomeric dimerization of metabotropic glutamate receptors (mGlus) is essential for the modulation of their functions and represents a promising avenue for the development of novel therapeutic approaches to address central nervous system diseases. Yet, the scarcity of detailed molecular and energetic data on mGlu2 impedes our in-depth comprehension of their activation process. Here, we employ computational simulation methods to elucidate the activation process and key events associated with the mGlu2, including a detailed analysis of its conformational transitions, the binding of agonists, Gi protein coupling, and the guanosine diphosphate (GDP) release. Our results demonstrate that the activation of mGlu2 is a stepwise process and several energy barriers need to be overcome. Moreover, we also identify the rate-determining step of the mGlu2's transition from the agonist-bound state to its active state. From the perspective of free-energy analysis, we find that the conformational dynamics of mGlu2's subunit follow coupled rather than discrete, independent actions. Asymmetric dimerization is critical for receptor activation. Our calculation results are consistent with the observation of cross-linking and fluorescent-labeled blot experiments, thus illustrating the reliability of our calculations. Besides, we also identify potential key residues in the Gi protein binding position on mGlu2, mGlu2 dimer's TM6-TM6 interface, and Gi α5 helix by the change of energy barriers after mutation. The implications of our findings could lead to a more comprehensive grasp of class C G protein-coupled receptor activation.


Asunto(s)
Receptores de Glutamato Metabotrópico , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/química , Humanos , Multimerización de Proteína , Simulación de Dinámica Molecular , Conformación Proteica , Unión Proteica
9.
Pharmacol Rep ; 76(3): 504-518, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38632187

RESUMEN

BACKGROUND: Partial negative allosteric modulators (NAM) of the metabotropic glutamate 5 (mGlu5) receptor are an excellent alternative to full antagonists and NAMs because they retain therapeutic effects and have a much broader therapeutic window. Here, we investigated whether partial mGlu5 NAM, 2-(2-(3-methoxyphenyl)ethynyl)-5-methylpyridine (M-5MPEP), induced a fast and sustained antidepressant-like effect, characteristic of rapid-acting antidepressant drugs (RAADs) like ketamine, in mice. METHODS: A tail suspension test (TST) was used to investigate acute antidepressant-like effects. Sustained effects were studied 24 h after the four intraperitoneal (ip) administrations using the splash test, designed to measure apathy-like state, the sucrose preference test (SPT), reflecting anhedonia, and the TST. Western blot and ELISA techniques were used to measure brain-derived neurotrophic factor (BDNF) and selected protein levels. METHODS: A tail suspension test (TST) was used to investigate acute antidepressant-like effects. Sustained effects were studied 24 h after the four intraperitoneal (ip) administrations using the splash test, designed to measure apathy-like state, the sucrose preference test (SPT), reflecting anhedonia, and the TST. Western blot and ELISA techniques were used to measure brain-derived neurotrophic factor (BDNF) and selected protein levels. CONCLUSION: Partial mGlu5 receptor NAM, M-5MPEP, induced rapid and sustained antidepressant-like effects in the BDNF-dependent mechanism and enhanced (R)-ketamine action in mice, indicating both substances' convergent mechanisms of action and the possibility of their practical use in treating depression as RAAD.


Asunto(s)
Antidepresivos , Factor Neurotrófico Derivado del Encéfalo , Suspensión Trasera , Ketamina , Piridinas , Receptor del Glutamato Metabotropico 5 , Animales , Masculino , Ratones , Regulación Alostérica/efectos de los fármacos , Anhedonia/efectos de los fármacos , Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Ketamina/farmacología , Ketamina/administración & dosificación , Piridinas/farmacología , Receptor del Glutamato Metabotropico 5/metabolismo , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores
10.
Phytother Res ; 38(7): 3296-3306, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38619875

RESUMEN

Bergamot essential oil shows anxiolytic-relaxant effects devoid of sedative action and motor impairment typical of benzodiazepines. Considering the potential for clinical of these effects, it is important to understand the underlying mechanisms of the phytocomplex. Modulation of glutamate group I and II metabotropic receptors is involved in stress and anxiety disorders, in cognition and emotions and increases locomotor activity and wakefulness. Interestingly, early data indicate that bergamot essential oil modulates glutamatergic transmission in specific manifestations of the central nervous system. The aim of this work is to investigate if selective antagonists of metabotropic glutamate 2/3 and 5 receptors affect behavioral parameters modulated by the phytocomplex. Male Wistar rats were used to measure behavioral parameters to correlate anxiety and motor activity using elevated plus maze (EPM), open field (OF), and rotarod tasks. Bergamot essential oil increases in EPM the time spent in open/closed arms and reduces total number of entries. The essential oil also increases immobility in EPM and OF and not affect motor coordination in rotarod. Pretreatment with the metabotropic glutamate antagonists does not affect the time spent in open/close arms, however, differently affects motor behavior measured after administration of phytocomplex. Particularly, glutamate 2/3 antagonist reverts immobility and glutamate 5 antagonist potentiates this parameter induced by the phytocomplex. Our data show that modulation of both metabotropic glutamate receptors is likely involved in some of behavioral effects of bergamot essential oil.


Asunto(s)
Actividad Motora , Aceites Volátiles , Aceites de Plantas , Ratas Wistar , Receptores de Glutamato Metabotrópico , Animales , Masculino , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/metabolismo , Aceites Volátiles/farmacología , Ratas , Actividad Motora/efectos de los fármacos , Aceites de Plantas/farmacología , Conducta Animal/efectos de los fármacos , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Receptor del Glutamato Metabotropico 5/metabolismo , Ansiolíticos/farmacología , Ansiedad/tratamiento farmacológico , Aprendizaje por Laberinto/efectos de los fármacos
11.
J Chem Neuroanat ; 138: 102422, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38657828

RESUMEN

L-3,4-dihydroxyphenylalanine (L-DOPA) is the treatment of choice for Parkinson's disease (PD) motor symptoms, but its chronic use is hindered by complications such as dyskinesia. Pre-clinical studies discovered that activation of metabotropic glutamate type 2 and 3 (mGlu2/3) receptors alleviates L-DOPA-induced dyskinesia. To gain mechanistic insight into the anti-dyskinetic activity of mGlu2/3 activation, we performed autoradiographic binding with [3H]-LY-341,495 in brain sections from L-DOPA-treated 6-hydroxydopamine (6-OHDA)-lesioned rats that developed mild or severe dyskinesia, as well as L-DOPA-untreated 6-OHDA-lesioned and sham-lesioned animals. In the ipsilateral hemisphere, mildly dyskinetic 6-OHDA-lesioned rats showed a decrease in [3H]-LY-341,495 binding in the entopeduncular nucleus (EPN, 30 % vs sham-lesioned rats, P<0.05), globus pallidus (GP, 28 % vs sham-lesioned rats, P<0.05; 23 % vs L-DOPA-untreated 6-OHDA-lesioned rats, P<0.001), and primary motor cortex (49 % vs sham-lesioned rats, P<0.05; 45 % vs L-DOPA-untreated 6-OHDA-lesioned rats, P<0.001). Severely dyskinetic 6-OHDA-lesioned rats exhibited an increase in binding in the primary motor cortex (43 % vs mildly dyskinetic 6-OHDA-lesioned rats, P<0.05). In the contralateral hemisphere, mildly dyskinetic 6-OHDA-lesioned rats harboured a decrease in binding in the EPN (30 % vs sham-lesioned rats; 24 % vs L-DOPA-untreated 6-OHDA-lesioned rats, both P<0.05), GP (34 % vs sham-lesioned rats, P<0.05; 23 % vs L-DOPA-untreated 6-OHDA-lesioned rats, P<0.001), and primary motor cortex (50 % vs sham-lesioned rats; 44 % vs L-DOPA-untreated 6-OHDA-lesioned rats, both P<0.05). Severely dyskinetic 6-OHDA-lesioned rats presented a decrease in binding in the GP (30 % vs sham-lesioned rats; 19 % vs L-DOPA-untreated 6-OHDA-lesioned rats, both P<0.05). Abnormal involuntary movements scores of 6-OHDA-lesioned animals were positively correlated with [3H]-LY-341,495 binding in the ipsilateral striatum, ipsilateral EPN, ipsilateral primary motor cortex and contralateral primary motor cortex (all P<0.05). These results suggest that alterations in mGlu2/3 receptor levels may be part of an endogenous compensatory mechanism to alleviate dyskinesia.


Asunto(s)
Autorradiografía , Encéfalo , Levodopa , Oxidopamina , Receptores de Glutamato Metabotrópico , Animales , Ratas , Receptores de Glutamato Metabotrópico/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Masculino , Oxidopamina/toxicidad , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Ratas Sprague-Dawley , Discinesia Inducida por Medicamentos/metabolismo
12.
Pharmacol Biochem Behav ; 239: 173752, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38521210

RESUMEN

RATIONALE: Antipsychotic medications that are used to treat psychosis are often limited in their efficacy by high rates of severe side effects. Treatment success in schizophrenia is further complicated by high rates of comorbid nicotine use. Dopamine D2 heteroreceptor complexes have recently emerged as targets for the development of more efficacious pharmaceutical treatments for schizophrenia. OBJECTIVE: The current study sought to explore the use of the positive allosteric modulator of the mGlu5 receptor 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) as a treatment to reduce symptoms related to psychosis and comorbid nicotine use. METHODS: Neonatal treatment of animals with the dopamine D2-like receptor agonist quinpirole (NQ) from postnatal day (P)1-21 produces a lifelong increase in D2 receptor sensitivity, showing relevance to psychosis and comorbid tobacco use disorder. Following an 8-day conditioning paradigm, brain tissue in the mesolimbic pathway was analyzed for several plasticity markers, including brain derived neurotrophic factor (BDNF), phosphorylated p70 ribosomal S6 kinase (phospho-p70S6K), and cadherin-13 (Cdh13). RESULTS: Pretreatment with CDPPB was effective to block enhanced nicotine conditioned place preference observed in NQ-treated animals. Pretreatment was additionally effective to block the nicotine-induced increase in BDNF and sex-dependent increases in cadherin-13 in the ventral tegmental area (VTA), as well as increased phospho-p70S6K in the nucleus accumbens (NAcc) shell found in NQ-treated animals. CONCLUSION: In conjunction with prior work, the current study suggests positive allosteric modulation of the mGlu5 receptor, an emerging target for schizophrenia therapeutics, may be effective for the treatment of comorbid nicotine abuse in psychosis.


Asunto(s)
Benzamidas , Nicotina , Receptor del Glutamato Metabotropico 5 , Recompensa , Animales , Nicotina/farmacología , Masculino , Benzamidas/farmacología , Benzamidas/uso terapéutico , Receptor del Glutamato Metabotropico 5/metabolismo , Ratas , Plasticidad Neuronal/efectos de los fármacos , Fumar Cigarrillos , Femenino , Quinpirol/farmacología , Pirazoles/farmacología , Ratas Sprague-Dawley , Trastornos Psicóticos/tratamiento farmacológico , Trastornos Psicóticos/metabolismo , Regulación Alostérica/efectos de los fármacos , Sistema Límbico/metabolismo , Sistema Límbico/efectos de los fármacos , Animales Recién Nacidos , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos
13.
Br J Pharmacol ; 181(12): 1793-1811, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38369690

RESUMEN

BACKGROUND AND PURPOSE: Voltage sensitivity is a common feature of many membrane proteins, including some G-protein coupled receptors (GPCRs). However, the functional consequences of voltage sensitivity in GPCRs are not well understood. EXPERIMENTAL APPROACH: In this study, we investigated the voltage sensitivity of the post-synaptic metabotropic glutamate receptor mGlu5 and its impact on synaptic transmission. Using biosensors and electrophysiological recordings in non-excitable HEK293T cells or neurons. KEY RESULTS: We found that mGlu5 receptor function is optimal at resting membrane potentials. We observed that membrane depolarization significantly reduced mGlu5 receptor activation, Gq-PLC/PKC stimulation, Ca2+ release and mGlu5 receptor-gated currents through transient receptor potential canonical, TRPC6, channels or glutamate ionotropic NMDA receptors. Notably, we report a previously unknown activity of the NMDA receptor at the resting potential of neurons, enabled by mGlu5. CONCLUSIONS AND IMPLICATIONS: Our findings suggest that mGlu5 receptor activity is directly regulated by membrane voltage which may have a significant impact on synaptic processes and pathophysiological functions.


Asunto(s)
Receptor del Glutamato Metabotropico 5 , Transmisión Sináptica , Animales , Humanos , Células HEK293 , Potenciales de la Membrana , Neuronas/metabolismo , Neuronas/fisiología , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/fisiología , Ratones
14.
Molecules ; 29(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338372

RESUMEN

The role of endothelial nitric oxide synthase (eNOS) in the regulation of a variety of biological processes is well established, and its dysfunction contributes to brain pathologies, including schizophrenia or Alzheimer's disease (AD). Positive allosteric modulators (PAMs) of metabotropic glutamate (mGlu) receptors were shown to be effective procognitive compounds, but little is known about their impact on eNOS expression and stability. Here, we investigated the influence of the acute and chronic administration of LY487379 or CDPPB (mGlu2 and mGlu5 PAMs), on eNOS expression in the mouse brain and the effect of the joint administration of the ligands with nitric oxide (NO) releasers, spermineNONOate or DETANONOate, in different combinations of doses, on MK-801- or scopolamine-induced amnesia in the novel object recognition (NOR) test. Our results indicate that both compounds provoked eNOS monomer formation, and CDPPB at a dose of 5 mg/kg exaggerated the effect of MK-801 or scopolamine. The coadministration of spermineNONOate or DETANONOate enhanced the antiamnesic effect of CDPPB or LY487379. The best activity was observed for ineffective or moderate dose combinations. The results indicate that treatment with mGluR2 and mGluR5 PAMs may be burdened with the risk of promoting eNOS uncoupling through the induction of dimer dissociation. Administration of the lowest possible doses of the compounds with NO• donors, which themselves have procognitive efficacy, may be proposed for the treatment of schizophrenia or AD.


Asunto(s)
Benzamidas , Disfunción Cognitiva , Maleato de Dizocilpina , Compuestos Nitrosos , Pirazoles , Piridinas , Sulfonamidas , Ratones , Animales , Maleato de Dizocilpina/farmacología , Óxido Nítrico/farmacología , Escopolamina/farmacología , Óxido Nítrico Sintasa de Tipo III , Disfunción Cognitiva/tratamiento farmacológico , Encéfalo , Regulación Alostérica
15.
Addict Biol ; 29(1): e13358, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38221806

RESUMEN

Addictions are thought to be fostered by the emergence of poorly regulated mesocorticolimbic responses to drug-related cues. The development and persistence of these responses might be promoted by altered glutamate transmission, including changes to type 5 metabotropic glutamate receptors (mGluR5s). Unknown, however, is when these changes arise and whether the mGluR5 and mesocorticolimbic alterations are related. To investigate, non-dependent cocaine polydrug users and cocaine-naïve healthy controls underwent a positron emission tomography scan (15 cocaine users and 14 healthy controls) with [11 C]ABP688, and a functional magnetic resonance imaging scan (15/group) while watching videos depicting activities with and without cocaine use. For some drug videos, participants were instructed to use a cognitive strategy to lower craving. Both groups exhibited drug cue-induced mesocorticolimbic activations and these were larger in the cocaine polydrug users than healthy controls during the session's second half. During the cognitive regulation trials, the cocaine users' corticostriatal responses were reduced. [11 C]ABP688 binding was unaltered in cocaine users, relative to healthy controls, but post hoc analyses found reductions in those with 75 or more lifetime cocaine use sessions. Finally, among cocaine users (n = 12), individual differences in prefrontal [11 C]ABP688 binding were associated with midbrain and limbic region activations during the regulation trials. Together, these preliminary findings raise the possibility that (i) recreational polydrug cocaine users show biased brain processes towards cocaine-related cues and (ii) repeated cocaine use can lower cortical mGluR5 levels, diminishing the ability to regulate drug cue responses. These alterations might promote susceptibility to addiction and identify early intervention targets.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Oximas , Piridinas , Humanos , Señales (Psicología) , Encéfalo , Cocaína/efectos adversos , Cocaína/metabolismo , Cognición
16.
Biol Psychiatry ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38061467

RESUMEN

BACKGROUND: Polymorphisms in the gene encoding for metabotropic glutamate receptor 3 (mGlu3) are associated with an increased likelihood of schizophrenia diagnosis and can predict improvements in negative symptoms following treatment with antipsychotics. However, the mechanisms by which mGlu3 can regulate brain circuits involved in schizophrenia pathophysiology are not clear. METHODS: We employed selective pharmacological tools and a variety of approaches including whole-cell patch-clamp electrophysiology, slice optogenetics, and fiber photometry to investigate the effects of mGlu3 activation on phencyclidine (PCP)-induced impairments in thalamo-accumbal transmission and sociability deficits. A chemogenetic approach was used to evaluate the role of thalamo-accumbal transmission in PCP-induced sociability deficits. RESULTS: We first established that PCP treatment augmented excitatory transmission onto dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) in the nucleus accumbens (NAc) and induced sociability deficits. Our studies revealed a selective increase in glutamatergic synaptic transmission from thalamic afferents to D1-MSNs in the NAc shell. Chemogenetic silencing of thalamo-accumbal inputs rescued PCP-induced sociability deficits. Pharmacological activation of mGlu3 normalized PCP-induced impairments in thalamo-accumbal transmission and sociability deficits. Mechanistic studies revealed that mGlu3 activation induced robust long-term depression at synapses from the thalamic projections onto D1-MSNs in the NAc shell. CONCLUSIONS: These data demonstrate that activation of mGlu3 decreases thalamo-accumbal transmission and thereby rescues sociability deficits in mouse modeling schizophrenia-like symptoms. These findings provide novel insights into the NAc-specific mechanisms and suggest that agents modulating glutamatergic signaling in the NAc may provide a promising approach for treating negative symptoms in schizophrenia.

17.
Pharmacol Rep ; 75(6): 1341-1349, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37932583

RESUMEN

The desire to find a gold-standard therapy for depression is still ongoing. Developing one universal and effective pharmacotherapy remains troublesome due to the high complexity and variety of symptoms. Over the last decades, the understanding of the mechanism of pathophysiology of depression and its key consequences for brain functioning have undergone significant changes, referring to the monoaminergic theory of the disease. After the breakthrough discovery of ketamine, research began to focus on the modulation of glutamatergic transmission as a new pharmacological target. Glutamate is a crucial player in mechanisms of a novel class of antidepressants, including hallucinogens such as ketamine. The role of glutamatergic transmission is also suggested in the antidepressant (AD) action of scopolamine and psilocybin. Despite fast, robust, and sustained AD action hallucinogens belonging to a group of rapid-acting antidepressants (RAA) exert significant undesired effects, which hamper their use in the clinic. Thus, the synergistic action of more than one substance in lower doses instead of monotherapy may alleviate the likelihood of adverse effects while improving therapeutic outcomes. In this review, we explore AD-like behavioral, synaptic, and molecular action of RAAs such as ketamine, scopolamine, and psilocybin, in combination with mGlu2/3 receptor antagonists.


Asunto(s)
Alucinógenos , Ketamina , Receptores de Glutamato Metabotrópico , Ketamina/farmacología , Ketamina/uso terapéutico , Alucinógenos/farmacología , Psilocibina , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Escopolamina/farmacología
18.
Biomolecules ; 13(10)2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37892131

RESUMEN

Repeated maternal separation (MS) is a useful experimental model in rodents for studying the long-term influence of early-life stress on brain neurophysiology. In our work, we assessed the effect of repeated MS (postnatal day (PND)1-21, 180 min/day) on the postnatal development of rat brain regions involved in memory using proton magnetic resonance spectroscopy (1HMRS) for tissue volume and the level of amino acids such as glutamate, aspartate, glutamine, glycine and gamma-aminobutyric acid (GABA) in the hippocampus. We assessed whether these effects are sex dependent. We also use novel object recognition (NOR) task to examine the effect of MS on memory and the effect of ethanol on it. Finally, we attempted to ameliorate postnatal stress-induced memory deficits by using VU-29, a positive allosteric modulator (PAM) of the metabotropic glutamate type 5 (mGlu5) receptor. In males, we noted deficits in the levels of glutamate, glycine and glutamine and increases in GABA in the hippocampus. In addition, the values of perirhinal cortex, prefrontal cortex and insular cortex and CA3 were decreased in these animals. MS females, in contrast, demonstrated significant increase in glutamate levels and decrease in GABA levels in the hippocampus. Here, the CA1 values alone were increased. VU-29 administration ameliorated these cognitive deficits. Thus, MS stress disturbs amino acids levels mainly in the hippocampus of adult male rats, and enhancement of glutamate neurotransmission reversed recognition memory deficits in these animals.


Asunto(s)
Aminoácidos , Disfunción Cognitiva , Femenino , Ratas , Masculino , Animales , Aminoácidos/metabolismo , Glutamina/metabolismo , Caracteres Sexuales , Privación Materna , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Ácido Glutámico/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Trastornos de la Memoria , Receptor del Glutamato Metabotropico 5/metabolismo , Hipocampo/metabolismo , Glicina/metabolismo
19.
Psychopharmacology (Berl) ; 240(12): 2617-2629, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37707611

RESUMEN

RATIONALE: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction and restricted/stereotyped behavior. Prenatal exposure to valproic acid (VPA) is associated with an increased risk of developing ASD in humans and autistic-like behaviors in rodents. Increasing evidence indicates that dysfunctions of glutamate receptors at synapses are associated with ASD. In the VPA rat model, an involvement of glutamate receptors in autism-like phenotypes has been suggested; however, few studies were carried out on metabotropic glutamate (mGlu) receptors. OBJECTIVES: We examined the protein expression levels of group I (mGlu1 and mGlu5) and group II (mGlu2/3) mGlu receptors in rats prenatally exposed to VPA and evaluated the effect of mGlu receptor modulation on an early autism-like phenotype in these animals. METHODS: We used western blotting analysis on synaptosomes obtained from forebrain of control and VPA rats at different ages (postnatal day P13, 35, 90) and carried out ultrasonic vocalization (USV) emission test in infant control and VPA rats. RESULTS: The expression levels of all these receptors were significantly increased in infant VPA rats. No changes were detected in adolescent and adult rats. An acute treatment with the preferential mGlu2/3 antagonist, LY341495, attenuated the impairment in the USV emission in VPA rats. No effect was observed after a treatment with the mGlu5 selective antagonist, MTEP. CONCLUSIONS: Our findings demonstrate that the expression of group I and group II mGlu receptors is upregulated at synapses of infant VPA rats and suggest that mGlu2/3 receptor modulation may have a therapeutic potential in ASD.


Asunto(s)
Trastorno del Espectro Autista , Efectos Tardíos de la Exposición Prenatal , Receptores de Glutamato Metabotrópico , Humanos , Embarazo , Femenino , Ratas , Animales , Adolescente , Ácido Valproico/efectos adversos , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/tratamiento farmacológico , Conducta Social , Sinapsis , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Modelos Animales de Enfermedad , Conducta Animal
20.
Biomolecules ; 13(9)2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37759748

RESUMEN

(1) Background: Recently, we found that adenosine A2A receptor (A2AR) stimulation results in an increase in STEP phosphatase activity. In order to delve into the mechanism through which A2AR stimulation induced STEP activation, we investigated the involvement of mGlu5R since it is well documented that A2AR and mGlu5R physically and functionally interact in several brain areas. (2) Methods: In a neuroblastoma cell line (SH-SY5Y) and in mouse hippocampal slices, we evaluated the enzymatic activity of STEP by using a para-nitrophenyl phosphate colorimetric assay. A co-immunoprecipitation assay and a Western blot analysis were used to evaluate STEP/mGlu5R binding. (3) Results: We found that the A2AR-dependent activation of STEP was mediated by the mGlu5R. Indeed, the A2AR agonist CGS 21680 significantly increased STEP activity, and this effect was prevented not only by the A2AR antagonist ZM 241385, as expected, but also by the mGlu5R antagonist MPEP. In addition, we found that mGlu5R agonist DHPG-induced STEP activation was reversed not only by the mGlu5R antagonist MPEP but also by ZM 241385. Finally, via co-immunoprecipitation experiments, we found that mGlu5R and STEP physically interact when both receptors are activated (4) Conclusions: These results demonstrated a close functional interaction between mGlu5 and A2A receptors in the modulation of STEP activity.


Asunto(s)
Neuroblastoma , Receptor de Adenosina A2A , Humanos , Ratones , Animales , Receptor de Adenosina A2A/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Adenosina/farmacología , Línea Celular , Hipocampo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA