Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Alzheimers Dement ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39193893

RESUMEN

INTRODUCTION: We investigated blood DNA methylation patterns associated with 15 well-established cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) pathophysiology, neuroinflammation, and neurodegeneration. METHODS: We assessed DNA methylation in 885 blood samples from the European Medical Information Framework for Alzheimer's Disease (EMIF-AD) study using the EPIC array. RESULTS: We identified Bonferroni-significant differential methylation associated with CSF YKL-40 (five loci) and neurofilament light chain (NfL; seven loci) levels, with two of the loci associated with CSF YKL-40 levels correlating with plasma YKL-40 levels. A co-localization analysis showed shared genetic variants underlying YKL-40 DNA methylation and CSF protein levels, with evidence that DNA methylation mediates the association between genotype and protein levels. Weighted gene correlation network analysis identified two modules of co-methylated loci correlated with several amyloid measures and enriched in pathways associated with lipoproteins and development. DISCUSSION: We conducted the most comprehensive epigenome-wide association study (EWAS) of AD-relevant CSF biomarkers to date. Future work should explore the relationship between YKL-40 genotype, DNA methylation, and protein levels in the brain. HIGHLIGHTS: Blood DNA methylation was assessed in the EMIF-AD MBD study. Epigenome-wide association studies (EWASs) were performed for 15 Alzheimer's disease (AD)-relevant cerebrospinal fluid (CSF) biomarker measures. Five Bonferroni-significant loci were associated with YKL-40 levels and seven with neurofilament light chain (NfL). DNA methylation in YKL-40 co-localized with previously reported genetic variation. DNA methylation potentially mediates the effect of single-nucleotide polymorphisms (SNPs) in YKL-40 on CSF protein levels.

2.
Cell Metab ; 36(9): 1979-1997.e13, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38964323

RESUMEN

Mature red blood cells (RBCs) lack mitochondria and thus exclusively rely on glycolysis to generate adenosine triphosphate (ATP) during aging in vivo or storage in blood banks. Here, we leveraged 13,029 volunteers from the Recipient Epidemiology and Donor Evaluation Study to identify associations between end-of-storage levels of glycolytic metabolites and donor age, sex, and ancestry-specific genetic polymorphisms in regions encoding phosphofructokinase 1, platelet (detected in mature RBCs); hexokinase 1 (HK1); and ADP-ribosyl cyclase 1 and 2 (CD38/BST1). Gene-metabolite associations were validated in fresh and stored RBCs from 525 Diversity Outbred mice and via multi-omics characterization of 1,929 samples from 643 human RBC units during storage. ATP and hypoxanthine (HYPX) levels-and the genetic traits linked to them-were associated with hemolysis in vitro and in vivo, both in healthy autologous transfusion recipients and in 5,816 critically ill patients receiving heterologous transfusions, suggesting their potential as markers to improve transfusion outcomes.


Asunto(s)
Conservación de la Sangre , Eritrocitos , Glucólisis , Humanos , Glucólisis/genética , Eritrocitos/metabolismo , Animales , Ratones , Masculino , Femenino , Fosfofructoquinasas/metabolismo , Fosfofructoquinasas/genética , Adulto , Persona de Mediana Edad , Adenosina Trifosfato/metabolismo , Hemólisis , Hexoquinasa/metabolismo , Hexoquinasa/genética , Metabolismo Energético/genética , Isoenzimas/metabolismo , Isoenzimas/genética , Transfusión Sanguínea , Anciano
3.
Front Plant Sci ; 15: 1386494, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39022610

RESUMEN

Powdery mildew (PM), caused by Blumeria graminis f. sp. tritici, poses a significant threat to wheat production, necessitating the development of genetically resistant varieties for long-term control. Therefore, exploring genetic architecture of PM in wheat to uncover important genomic regions is an important area of wheat research. In recent years, the utilization of meta-QTL (MQTL) analysis has gained prominence as an essential tool for unraveling the complex genetic architecture underlying complex quantitative traits. The aim of this research was to conduct a QTL meta-analysis to pinpoint the specific genomic regions in wheat responsible for governing PM resistance. This study integrated 222 QTLs from 33 linkage-based studies using a consensus map with 54,672 markers. The analysis revealed 39 MQTLs, refined to 9 high-confidence MQTLs (hcMQTLs) with confidence intervals of 0.49 to 12.94 cM. The MQTLs had an average physical interval of 41.00 Mb, ranging from 0.000048 Mb to 380.71 Mb per MQTL. Importantly, 18 MQTLs co-localized with known resistance genes like Pm2, Pm3, Pm8, Pm21, Pm38, and Pm41. The study identified 256 gene models within hcMQTLs, providing potential targets for marker-assisted breeding and genomic prediction programs to enhance PM resistance. These MQTLs would serve as a foundation for fine mapping, gene isolation, and functional genomics studies, facilitating a deeper understanding of molecular mechanisms. The identification of candidate genes opens up exciting possibilities for the development of PM-resistant wheat varieties after validation.

4.
medRxiv ; 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39040187

RESUMEN

Most genetic variants identified through genome-wide association studies (GWAS) are suspected to be regulatory in nature, but only a small fraction colocalize with expression quantitative trait loci (eQTLs, variants associated with expression of a gene). Therefore, it is hypothesized but largely untested that integration of disease GWAS with context-specific eQTLs will reveal the underlying genes driving disease associations. We used colocalization and transcriptomic analyses to identify shared genetic variants and likely causal genes associated with critically ill COVID-19 and idiopathic pulmonary fibrosis. We first identified five genome-wide significant variants associated with both diseases. Four of the variants did not demonstrate clear colocalization between GWAS and healthy lung eQTL signals. Instead, two of the four variants colocalized only in cell-type and disease-specific eQTL datasets. These analyses pointed to higher ATP11A expression from the C allele of rs12585036, in monocytes and in lung tissue from primarily smokers, which increased risk of IPF and decreased risk of critically ill COVID-19. We also found lower DPP9 expression (and higher methylation at a specific CpG) from the G allele of rs12610495, acting in fibroblasts and in IPF lungs, and increased risk of IPF and critically ill COVID-19. We further found differential expression of the identified causal genes in diseased lungs when compared to non-diseased lungs, specifically in epithelial and immune cell types. These findings highlight the power of integrating GWAS, context-specific eQTLs, and transcriptomics of diseased tissue to harness human genetic variation to identify causal genes and where they function during multiple diseases.

5.
Plant Cell Rep ; 43(7): 184, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951262

RESUMEN

KEY MESSAGE: Whole-genome QTL mining and meta-analysis in tomato for resistance to bacterial and fungal diseases identified 73 meta-QTL regions with significantly refined/reduced confidence intervals. Tomato production is affected by a range of biotic stressors, causing yield losses and quality reductions. While sources of genetic resistance to many tomato diseases have been identified and characterized, stability of the resistance genes or quantitative trait loci (QTLs) across the resources has not been determined. Here, we examined 491 QTLs previously reported for resistance to tomato diseases in 40 independent studies and 54 unique mapping populations. We identified 29 meta-QTLs (MQTLs) for resistance to bacterial pathogens and 44 MQTLs for resistance to fungal pathogens, and were able to reduce the average confidence interval (CI) of the QTLs by 4.1-fold and 6.7-fold, respectively, compared to the average CI of the original QTLs. The corresponding physical length of the CIs of MQTLs ranged from 56 kb to 6.37 Mb, with a median of 921 kb, of which 27% had a CI lower than 500 kb and 53% had a CI lower than 1 Mb. Comparison of defense responses between tomato and Arabidopsis highlighted 73 orthologous genes in the MQTL regions, which were putatively determined to be involved in defense against bacterial and fungal diseases. Intriguingly, multiple genes were identified in some MQTL regions that are implicated in plant defense responses, including PR-P2, NDR1, PDF1.2, Pip1, SNI1, PTI5, NSL1, DND1, CAD1, SlACO, DAD1, SlPAL, Ph-3, EDS5/SID1, CHI-B/PR-3, Ph-5, ETR1, WRKY29, and WRKY25. Further, we identified a number of candidate resistance genes in the MQTL regions that can be useful for both marker/gene-assisted breeding as well as cloning and genetic transformation.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo , Solanum lycopersicum , Sitios de Carácter Cuantitativo/genética , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Mapeo Cromosómico
6.
Cancers (Basel) ; 16(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38893190

RESUMEN

PURPOSE: To assess the association of a polygenic risk score (PRS) for functional genetic variants with the risk of developing breast cancer. METHODS: Summary data-based Mendelian randomization (SMR) and heterogeneity in dependent instruments (HEIDI) were used to identify breast cancer risk variants associated with gene expression and DNA methylation levels. A new SMR-based PRS was computed from the identified variants (functional PRS) and compared to an established 313-variant breast cancer PRS (GWAS PRS). The two scores were evaluated in 3560 breast cancer cases and 3383 non-cancer controls and also in a prospective study (n = 10,213) comprising 418 cases. RESULTS: We identified 149 variants showing pleiotropic association with breast cancer risk (eQTLHEIDI > 0.05 = 9, mQTLHEIDI > 0.05 = 165). The discriminatory ability of the functional PRS (AUCcontinuous [95% CI]: 0.540 [0.526 to 0.553]) was found to be lower than that of the GWAS PRS (AUCcontinuous [95% CI]: 0.609 [0.596 to 0.622]). Even when utilizing 457 distinct variants from both the functional and GWAS PRS, the combined discriminatory performance remained below that of the GWAS PRS (AUCcontinuous, combined [95% CI]: 0.561 [0.548 to 0.575]). A binary high/low-risk classification based on the 80th centile PRS in controls revealed a 6% increase in cases using the GWAS PRS compared to the functional PRS. The functional PRS identified an additional 12% of high-risk cases but also led to a 13% increase in high-risk classification among controls. Similar findings were observed in the SCHS prospective cohort, where the GWAS PRS outperformed the functional PRS, and the highest-performing PRS, a combined model, did not significantly improve over the GWAS PRS. CONCLUSIONS: While this study identified potentially functional variants associated with breast cancer risk, their inclusion did not substantially enhance the predictive accuracy of the GWAS PRS.

7.
Cell Genom ; 4(5): 100541, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38663408

RESUMEN

To better understand inter-individual variation in sensitivity of DNA methylation (DNAm) to immune activity, we characterized effects of inflammatory stimuli on primary monocyte DNAm (n = 190). We find that monocyte DNAm is site-dependently sensitive to lipopolysaccharide (LPS), with LPS-induced demethylation occurring following hydroxymethylation. We identify 7,359 high-confidence immune-modulated CpGs (imCpGs) that differ in genomic localization and transcription factor usage according to whether they represent a gain or loss in DNAm. Demethylated imCpGs are profoundly enriched for enhancers and colocalize to genes enriched for disease associations, especially cancer. DNAm is age associated, and we find that 24-h LPS exposure triggers approximately 6 months of gain in epigenetic age, directly linking epigenetic aging with innate immune activity. By integrating LPS-induced changes in DNAm with genetic variation, we identify 234 imCpGs under local genetic control. Exploring shared causal loci between LPS-induced DNAm responses and human disease traits highlights examples of disease-associated loci that modulate imCpG formation.


Asunto(s)
Islas de CpG , Metilación de ADN , Epigénesis Genética , Monocitos , Adulto , Femenino , Humanos , Masculino , Islas de CpG/genética , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Lipopolisacáridos/farmacología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Monocitos/inmunología , Persona de Mediana Edad , Anciano
8.
BMC Genomics ; 25(1): 338, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575927

RESUMEN

BACKGROUND: Due to rising costs, water shortages, and labour shortages, farmers across the globe now prefer a direct seeding approach. However, submergence stress remains a major bottleneck limiting the success of this approach in rice cultivation. The merger of accumulated rice genetic resources provides an opportunity to detect key genomic loci and candidate genes that influence the flooding tolerance of rice. RESULTS: In the present study, a whole-genome meta-analysis was conducted on 120 quantitative trait loci (QTL) obtained from 16 independent QTL studies reported from 2004 to 2023. These QTL were confined to 18 meta-QTL (MQTL), and ten MQTL were successfully validated by independent genome-wide association studies from diverse natural populations. The mean confidence interval (CI) of the identified MQTL was 3.44 times narrower than the mean CI of the initial QTL. Moreover, four core MQTL loci with genetic distance less than 2 cM were obtained. By combining differentially expressed genes (DEG) from two transcriptome datasets with 858 candidate genes identified in the core MQTL regions, we found 38 common differentially expressed candidate genes (DECGs). In silico expression analysis of these DECGs led to the identification of 21 genes with high expression in embryo and coleoptile under submerged conditions. These DECGs encode proteins with known functions involved in submergence tolerance including WRKY, F-box, zinc fingers, glycosyltransferase, protein kinase, cytochrome P450, PP2C, hypoxia-responsive family, and DUF domain. By haplotype analysis, the 21 DECGs demonstrated distinct genetic differentiation and substantial genetic distance mainly between indica and japonica subspecies. Further, the MQTL7.1 was successfully validated using flanked marker S2329 on a set of genotypes with phenotypic variation. CONCLUSION: This study provides a new perspective on understanding the genetic basis of submergence tolerance in rice. The identified MQTL and novel candidate genes lay the foundation for marker-assisted breeding/engineering of flooding-tolerant cultivars conducive to direct seeding.


Asunto(s)
Oryza , Mapeo Cromosómico , Oryza/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Genómica , Perfilación de la Expresión Génica
9.
Plant Biotechnol J ; 22(7): 2033-2050, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38408119

RESUMEN

Although forward-genetics-metabolomics methods such as mGWAS and mQTL have proven effective in providing myriad loci affecting metabolite contents, they are somehow constrained by their respective constitutional flaws such as the hidden population structure for GWAS and insufficient recombinant rate for QTL. Here, the combination of mGWAS and mQTL was performed, conveying an improved statistical power to investigate the flavonoid pathways in common wheat. A total of 941 and 289 loci were, respectively, generated from mGWAS and mQTL, within which 13 of them were co-mapped using both approaches. Subsequently, the mGWAS or mQTL outputs alone and their combination were, respectively, utilized to delineate the metabolic routes. Using this approach, we identified two MYB transcription factor encoding genes and five structural genes, and the flavonoid pathway in wheat was accordingly updated. Moreover, we have discovered some rare-activity-exhibiting flavonoid glycosyl- and methyl-transferases, which may possess unique biological significance, and harnessing these novel catalytic capabilities provides potentially new breeding directions. Collectively, we propose our survey illustrates that the forward-genetics-metabolomics approaches including multiple populations with high density markers could be more frequently applied for delineating metabolic pathways in common wheat, which will ultimately contribute to metabolomics-assisted wheat crop improvement.


Asunto(s)
Flavonoides , Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/enzimología , Flavonoides/metabolismo , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico , Metabolómica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Plant Commun ; 5(5): 100792, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38173227

RESUMEN

Despite recent advances in crop metabolomics, the genetic control and molecular basis of the wheat kernel metabolome at different developmental stages remain largely unknown. Here, we performed widely targeted metabolite profiling of kernels from three developmental stages (grain-filling kernels [FKs], mature kernels [MKs], and germinating kernels [GKs]) using a population of 159 recombinant inbred lines. We detected 625 annotated metabolites and mapped 3173, 3143, and 2644 metabolite quantitative trait loci (mQTLs) in FKs, MKs, and GKs, respectively. Only 52 mQTLs were mapped at all three stages, indicating the high stage specificity of the wheat kernel metabolome. Four candidate genes were functionally validated by in vitro enzymatic reactions and/or transgenic approaches in wheat, three of which mediated the tricin metabolic pathway. Metabolite flux efficiencies within the tricin pathway were evaluated, and superior candidate haplotypes were identified, comprehensively delineating the tricin metabolism pathway in wheat. Finally, additional wheat metabolic pathways were re-constructed by updating them to incorporate the 177 candidate genes identified in this study. Our work provides new information on variations in the wheat kernel metabolome and important molecular resources for improvement of wheat nutritional quality.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Sitios de Carácter Cuantitativo/genética , Valor Nutritivo/genética , Semillas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Metaboloma/genética , Mapeo Cromosómico , Metabolómica
11.
Front Genet ; 14: 1191264, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37415601

RESUMEN

Neuropsychiatric and substance use disorders (NPSUDs) have a complex etiology that includes environmental and polygenic risk factors with significant cross-trait genetic correlations. Genome-wide association studies (GWAS) of NPSUDs yield numerous association signals. However, for most of these regions, we do not yet have a firm understanding of either the specific risk variants or the effects of these variants. Post-GWAS methods allow researchers to use GWAS summary statistics and molecular mediators (transcript, protein, and methylation abundances) infer the effect of these mediators on risk for disorders. One group of post-GWAS approaches is commonly referred to as transcriptome/proteome/methylome-wide association studies, which are abbreviated as T/P/MWAS (or collectively as XWAS). Since these approaches use biological mediators, the multiple testing burden is reduced to the number of genes (∼20,000) instead of millions of GWAS SNPs, which leads to increased signal detection. In this work, our aim is to uncover likely risk genes for NPSUDs by performing XWAS analyses in two tissues-blood and brain. First, to identify putative causal risk genes, we performed an XWAS using the Summary-data-based Mendelian randomization, which uses GWAS summary statistics, reference xQTL data, and a reference LD panel. Second, given the large comorbidities among NPSUDs and the shared cis-xQTLs between blood and the brain, we improved XWAS signal detection for underpowered analyses by performing joint concordance analyses between XWAS results i) across the two tissues and ii) across NPSUDs. All XWAS signals i) were adjusted for heterogeneity in dependent instruments (HEIDI) (non-causality) p-values and ii) used to test for pathway enrichment. The results suggest that there were widely shared gene/protein signals within the major histocompatibility complex region on chromosome 6 (BTN3A2 and C4A) and elsewhere in the genome (FURIN, NEK4, RERE, and ZDHHC5). The identification of putative molecular genes and pathways underlying risk may offer new targets for therapeutic development. Our study revealed an enrichment of XWAS signals in vitamin D and omega-3 gene sets. So, including vitamin D and omega-3 in treatment plans may have a modest but beneficial effect on patients with bipolar disorder.

12.
Res Sq ; 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37398472

RESUMEN

DNA methylation (DNAm) provides a crucial epigenetic mark linking genetic variations to environmental influence. We analyzed array-based DNAm profiles of 160 human retinas with co-measured RNA-seq and > 8 million genetic variants, uncovering sites of genetic regulation in cis (37,453 mQTLs and 12,505 eQTLs) and 13,747 eQTMs (DNAm loci affecting gene expression), with over one-third specific to the retina. mQTLs and eQTMs show non-random distribution and enrichment of biological processes related to synapse, mitochondria, and catabolism. Summary data-based Mendelian randomization and colocalization analyses identify 87 target genes where methylation and gene-expression changes likely mediate the genotype effect on age-related macular degeneration (AMD). Integrated pathway analysis reveals epigenetic regulation of immune response and metabolism including the glutathione pathway and glycolysis. Our study thus defines key roles of genetic variations driving methylation changes, prioritizes epigenetic control of gene expression, and suggests frameworks for regulation of AMD pathology by genotype-environment interaction in retina.

13.
BMC Genomics ; 24(1): 259, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173660

RESUMEN

BACKGROUND: Yellow or stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici (Pst) is an important disease of wheat that threatens wheat production. Since developing resistant cultivars offers a viable solution for disease management, it is essential to understand the genetic basis of stripe rust resistance. In recent years, meta-QTL analysis of identified QTLs has gained popularity as a way to dissect the genetic architecture underpinning quantitative traits, including disease resistance. RESULTS: Systematic meta-QTL analysis involving 505 QTLs from 101 linkage-based interval mapping studies was conducted for stripe rust resistance in wheat. For this purpose, publicly available high-quality genetic maps were used to create a consensus linkage map involving 138,574 markers. This map was used to project the QTLs and conduct meta-QTL analysis. A total of 67 important meta-QTLs (MQTLs) were identified which were refined to 29 high-confidence MQTLs. The confidence interval (CI) of MQTLs ranged from 0 to 11.68 cM with a mean of 1.97 cM. The mean physical CI of MQTLs was 24.01 Mb, ranging from 0.0749 to 216.23 Mb per MQTL. As many as 44 MQTLs colocalized with marker-trait associations or SNP peaks associated with stripe rust resistance in wheat. Some MQTLs also included the following major genes- Yr5, Yr7, Yr16, Yr26, Yr30, Yr43, Yr44, Yr64, YrCH52, and YrH52. Candidate gene mining in high-confidence MQTLs identified 1,562 gene models. Examining these gene models for differential expressions yielded 123 differentially expressed genes, including the 59 most promising CGs. We also studied how these genes were expressed in wheat tissues at different phases of development. CONCLUSION: The most promising MQTLs identified in this study may facilitate marker-assisted breeding for stripe rust resistance in wheat. Information on markers flanking the MQTLs can be utilized in genomic selection models to increase the prediction accuracy for stripe rust resistance. The candidate genes identified can also be utilized for enhancing the wheat resistance against stripe rust after in vivo confirmation/validation using one or more of the following methods: gene cloning, reverse genetic methods, and omics approaches.


Asunto(s)
Basidiomycota , Triticum , Triticum/genética , Triticum/microbiología , Pan , Fitomejoramiento , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Basidiomycota/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
14.
Front Plant Sci ; 14: 1192425, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37089659

RESUMEN

[This corrects the article DOI: 10.3389/fpls.2022.881856.].

15.
Mol Biol Evol ; 40(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37039566

RESUMEN

As environmental fluctuations are becoming more common, organisms need to rapidly adapt to anthropogenic, climatic, and ecological changes. Epigenetic modifications and DNA methylation in particular provide organisms with a mechanism to shape their phenotypic responses during development. Studies suggest that environmentally induced DNA methylation might allow for adaptive phenotypic plasticity that could last throughout an organism's lifetime. Despite a number of studies demonstrating environmentally induced DNA methylation changes, we know relatively little about what proportion of the epigenome is affected by environmental factors, rather than being a consequence of genetic variation. In the current study, we use a partial cross-foster design in a natural great tit (Parus major) population to disentangle the effects of common origin from common rearing environment on DNA methylation. We found that variance in DNA methylation in 8,315 CpG sites was explained by a common origin and only in 101 by a common rearing environment. Subsequently, we mapped quantitative trait loci for the brood of origin CpG sites and detected 754 cis and 4,202 trans methylation quantitative trait loci, involving 24% of the CpG sites. Our results indicate that the scope for environmentally induced methylation marks independent of the genotype is limited and that the majority of variation in DNA methylation early in life is determined by genetic factors instead. These findings suggest that there may be little opportunity for selection to act on variation in DNA methylation. This implies that most DNA methylation variation likely does not evolve independently of genomic changes.


Asunto(s)
Metilación de ADN , Passeriformes , Animales , Epigénesis Genética , Sitios de Carácter Cuantitativo , Genotipo , Passeriformes/genética , Islas de CpG , Variación Genética
16.
Am J Hum Genet ; 110(3): 487-498, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36809768

RESUMEN

Genome-wide association studies (GWASs) have established the contribution of common and low-frequency variants to metabolic blood measurements in the UK Biobank (UKB). To complement existing GWAS findings, we assessed the contribution of rare protein-coding variants in relation to 355 metabolic blood measurements-including 325 predominantly lipid-related nuclear magnetic resonance (NMR)-derived blood metabolite measurements (Nightingale Health Plc) and 30 clinical blood biomarkers-using 412,393 exome sequences from four genetically diverse ancestries in the UKB. Gene-level collapsing analyses were conducted to evaluate a diverse range of rare-variant architectures for the metabolic blood measurements. Altogether, we identified significant associations (p < 1 × 10-8) for 205 distinct genes that involved 1,968 significant relationships for the Nightingale blood metabolite measurements and 331 for the clinical blood biomarkers. These include associations for rare non-synonymous variants in PLIN1 and CREB3L3 with lipid metabolite measurements and SYT7 with creatinine, among others, which may not only provide insights into novel biology but also deepen our understanding of established disease mechanisms. Of the study-wide significant clinical biomarker associations, 40% were not previously detected on analyzing coding variants in a GWAS in the same cohort, reinforcing the importance of studying rare variation to fully understand the genetic architecture of metabolic blood measurements.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Bancos de Muestras Biológicas , Biomarcadores , Lípidos , Reino Unido , Polimorfismo de Nucleótido Simple
17.
G3 (Bethesda) ; 13(2)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36458966

RESUMEN

A genome-wide association study (GWAS) was used to identify associated loci with early vigor under simulated water deficit and grain yield under field drought in a diverse collection of Iranian bread wheat landraces. In addition, a meta-quantitative trait loci (MQTL) analysis was used to further expand our approach by retrieving already published quantitative trait loci (QTL) from recombinant inbred lines, double haploids, back-crosses, and F2 mapping populations. In the current study, around 16%, 14%, and 16% of SNPs were in significant linkage disequilibrium (LD) in the A, B, and D genomes, respectively, and varied between 5.44% (4A) and 21.85% (6A). Three main subgroups were identified among the landraces with different degrees of admixture, and population structure was further explored through principal component analysis. Our GWAS identified 54 marker-trait associations (MTAs) that were located across the wheat genome but with the highest number found in the B sub-genome. The gene ontology (GO) analysis of MTAs revealed that around 75% were located within or closed to protein-coding genes. In the MQTL analysis, 23 MQTLs, from a total of 215 QTLs, were identified and successfully projected onto the reference map. MQT-YLD4, MQT-YLD9, MQT-YLD13, MQT-YLD17, MQT-YLD18, MQT-YLD19, and MQTL-RL1 contributed to the highest number of projected QTLs and were therefore regarded as the most reliable and stable QTLs under water deficit conditions. These MQTLs greatly facilitate the identification of putative candidate genes underlying at each MQTL interval due to the reduced confidence of intervals associated with MQTLs. These findings provide important information on the genetic basis of early vigor traits and grain yield under water deficit conditions and set the foundation for future investigations into adaptation to water deficit in bread wheat.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Triticum/genética , Pan , Irán , Fenotipo , Genómica , Grano Comestible/genética
18.
Front Plant Sci ; 14: 1319889, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38283973

RESUMEN

Improving barley grain quality is a major goal in barley breeding. In this study, a total of 35 papers focusing on quantitative trait loci (QTLs) mapping for barley quality traits published since 2000 were collected. Among the 454 QTLs identified in these studies, 349 of them were mapped onto high-density consensus maps, which were used for QTL meta-analysis. Through QTL meta-analysis, the initial QTLs were integrated into 41 meta-QTLs (MQTLs) with an average confidence interval (CI) of 1. 66 cM, which is 88.9% narrower than that of the initial QTLs. Among the 41 identified MQTLs, 25 were subsequently validated in publications using genome-wide association study (GWAS). From these 25 validated MQTLs, ten breeder's MQTLs were selected. Synteny analysis comparing barley and wheat MQTLs revealed orthologous relationships between eight breeder's MQTLs and 45 wheat MQTLs. Additionally, 17 barley homologs associated with rice quality traits were identified within the regions of the breeder's MQTLs through comparative analysis. The findings of this study provide valuable insights for molecular marker-assisted breeding and the identification of candidate genes related to quality traits in barley.

19.
BMC Plant Biol ; 22(1): 607, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36550393

RESUMEN

BACKGROUND: Kernel size-related traits, including kernel length (KL), kernel width (KW), kernel diameter ratio (KDR) and kernel thickness (KT), are critical determinants for wheat kernel weight and yield and highly governed by a type of quantitative genetic basis. Genome-wide identification of major and stable quantitative trait loci (QTLs) and functional genes are urgently required for genetic improvement in wheat kernel yield. A hexaploid wheat population consisting of 120 recombinant inbred lines was developed to identify QTLs for kernel size-related traits under different water environments. The meta-analysis and transcriptome evaluation were further integrated to identify major genomic regions and putative candidate genes. RESULTS: The analysis of variance (ANOVA) revealed more significant genotypic effects for kernel size-related traits, indicating the moderate to high heritability of 0.61-0.89. Thirty-two QTLs for kernel size-related traits were identified, explaining 3.06%-14.2% of the phenotypic variation. Eleven stable QTLs were detected in more than three water environments. The 1103 original QTLs from the 34 previous studies and the present study were employed for the MQTL analysis and refined into 58 MQTLs. The average confidence interval of the MQTLs was 3.26-fold less than that of the original QTLs. The 1864 putative candidate genes were mined within the regions of 12 core MQTLs, where 70 candidate genes were highly expressed in spikes and kernels by comprehensive analysis of wheat transcriptome data. They were involved in various metabolic pathways, such as carbon fixation in photosynthetic organisms, carbon metabolism, mRNA surveillance pathway, RNA transport and biosynthesis of secondary metabolites. CONCLUSIONS: Major genomic regions and putative candidate genes for kernel size-related traits in wheat have been revealed by an integrative strategy with QTL linkage mapping, meta-analysis and transcriptomic assessment. The findings provide a novel insight into understanding the genetic determinants of kernel size-related traits and will be useful for the marker-assisted selection of high yield in wheat breeding.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Sitios de Carácter Cuantitativo/genética , Triticum/genética , Fitomejoramiento , Cromosomas de las Plantas , Fenotipo , Agua
20.
Clin Epigenetics ; 14(1): 158, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36457128

RESUMEN

BACKGROUND: Epigenome-wide association studies (EWAS) have helped to define the associations between DNA methylation and many clinicopathologic and developmental traits. Since DNA methylation is affected by genetic variation at certain loci, EWAS associations may be potentially influenced by genetic effects. However, a formal assessment of the value of incorporating genetic variation in EWAS evaluations is lacking especially for multiethnic populations. METHODS: Using single nucleotide polymorphism (SNP) from Illumina Omni Express or Affymetrix PMDA arrays and DNA methylation data from the Illumina 450 K or EPIC array from 1638 newborns of diverse genetic ancestries, we generated DNA methylation quantitative trait loci (mQTL) databases for both array types. We then investigated associations between neonatal DNA methylation and birthweight (incorporating gestational age) using EWAS modeling, and reported how EWAS results were influenced by controlling for mQTLs. RESULTS: For CpGs on the 450 K array, an average of 15.4% CpGs were assigned as mQTLs, while on the EPIC array, 23.0% CpGs were matched to mQTLs (adjusted P value < 0.05). The CpGs associated with SNPs were enriched in the CpG island shore regions. Correcting for mQTLs in the EWAS model for birthweight helped to increase significance levels for top hits. For CpGs overlapping genes associated with birthweight-related pathways (nutrition metabolism, biosynthesis, for example), accounting for mQTLs changed their regression coefficients more dramatically (> 20%) than for other random CpGs. CONCLUSION: DNA methylation levels at circa 20% CpGs in the genome were affected by common SNP genotypes. EWAS model fit significantly improved when taking these genetic effects into consideration. Genetic effects were stronger on CpGs overlapping genetic elements associated with control of gene expression.


Asunto(s)
Epigenoma , Sitios de Carácter Cuantitativo , Recién Nacido , Humanos , Metilación de ADN , Peso al Nacer/genética , Islas de CpG
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA