Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Emerg Microbes Infect ; 13(1): 2369193, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38873898

RESUMEN

The global outbreak of Mpox, caused by the monkeypox virus (MPXV), has attracted international attention and become another major infectious disease event after COVID-19. The mRNA cap N7 methyltransferase (RNMT) of MPXV methylates the N7 position of the added guanosine to the 5'-cap structure of mRNAs and plays a vital role in evading host antiviral immunity. MPXV RNMT is composed of the large subunit E1 and the small subunit E12. How E1 and E12 of MPXV assembly remains unclear. Here, we report the crystal structures of E12, the MTase domain of E1 with E12 (E1CTD-E12) complex, and the E1CTD-E12-SAM ternary complex, revealing the detailed conformations of critical residues and the structural changes upon E12 binding to E1. Functional studies suggest that E1CTD N-terminal extension (Asp545-Arg562) and the small subunit E12 play an essential role in the binding process of SAM. Structural comparison of the AlphaFold2-predicted E1, E1CTD-E12 complex, and the homologous D1-D12 complex of vaccinia virus (VACV) indicates an allosteric activating effect of E1 in MPXV. Our findings provide the structural basis for the MTase activity stimulation of the E1-E12 complex and suggest a potential interface for screening the anti-poxvirus inhibitors.


Asunto(s)
Metiltransferasas , Monkeypox virus , Metiltransferasas/química , Metiltransferasas/metabolismo , Metiltransferasas/genética , Monkeypox virus/genética , Monkeypox virus/enzimología , Monkeypox virus/química , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Cristalografía por Rayos X , Caperuzas de ARN/metabolismo , Caperuzas de ARN/química , Modelos Moleculares , Humanos , Conformación Proteica , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/química
2.
Brain ; 147(4): 1197-1205, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38141063

RESUMEN

Dysfunctional RNA processing caused by genetic defects in RNA processing enzymes has a profound impact on the nervous system, resulting in neurodevelopmental conditions. We characterized a recessive neurological disorder in 18 children and young adults from 10 independent families typified by intellectual disability, motor developmental delay and gait disturbance. In some patients peripheral neuropathy, corpus callosum abnormalities and progressive basal ganglia deposits were present. The disorder is associated with rare variants in NUDT2, a mRNA decapping and Ap4A hydrolysing enzyme, including novel missense and in-frame deletion variants. We show that these NUDT2 variants lead to a marked loss of enzymatic activity, strongly implicating loss of NUDT2 function as the cause of the disorder. NUDT2-deficient patient fibroblasts exhibit a markedly altered transcriptome, accompanied by changes in mRNA half-life and stability. Amongst the most up-regulated mRNAs in NUDT2-deficient cells, we identified host response and interferon-responsive genes. Importantly, add-back experiments using an Ap4A hydrolase defective in mRNA decapping highlighted loss of NUDT2 decapping as the activity implicated in altered mRNA homeostasis. Our results confirm that reduction or loss of NUDT2 hydrolase activity is associated with a neurological disease, highlighting the importance of a physiologically balanced mRNA processing machinery for neuronal development and homeostasis.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Niño , Adulto Joven , Humanos , ARN Mensajero/genética , Monoéster Fosfórico Hidrolasas/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Hidrolasas Nudix
3.
Mol Cell ; 83(21): 3921-3930.e7, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37890482

RESUMEN

The enzymatic activity of the SARS-CoV-2 nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain is essential for viral propagation, with three distinct activities associated with modification of the nsp9 N terminus, NMPylation, RNAylation, and deRNAylation/capping via a GDP-polyribonucleotidyltransferase reaction. The latter two activities comprise an unconventional mechanism for initiating viral RNA 5' cap formation, while the role of NMPylation is unclear. The structural mechanisms for these diverse enzymatic activities have not been properly delineated. Here, we determine high-resolution cryoelectron microscopy (cryo-EM) structures of catalytic intermediates for the NMPylation and deRNAylation/capping reactions, revealing diverse nucleotide binding poses and divalent metal ion coordination sites to promote its repertoire of activities. The deRNAylation/capping structure explains why GDP is a preferred substrate for the capping reaction over GTP. Altogether, these findings enhance our understanding of the promiscuous coronaviral NiRAN domain, a therapeutic target, and provide an accurate structural platform for drug development.


Asunto(s)
COVID-19 , Nucleotidiltransferasas , Humanos , Nucleotidiltransferasas/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Microscopía por Crioelectrón , ARN Viral/genética
4.
bioRxiv ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37808858

RESUMEN

The enzymatic activity of the SARS-CoV-2 nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain is essential for viral propagation, with three distinct activities associated with modification of the nsp9 N-terminus, NMPylation, RNAylation, and deRNAylation/capping via a GDP-polyribonucleotidyltransferase reaction. The latter two activities comprise an unconventional mechanism for initiating viral RNA 5'-cap formation, while the role of NMPylation is unclear. The structural mechanisms for these diverse enzymatic activities have not been properly delineated. Here we determine high-resolution cryo-electron microscopy structures of catalytic intermediates for the NMPylation and deRNAylation/capping reactions, revealing diverse nucleotide binding poses and divalent metal ion coordination sites to promote its repertoire of activities. The deRNAylation/capping structure explains why GDP is a preferred substrate for the capping reaction over GTP. Altogether, these findings enhance our understanding of the promiscuous coronaviral NiRAN domain, a therapeutic target, and provide an accurate structural platform for drug development.

5.
Curr Protoc ; 3(8): e863, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37639626

RESUMEN

A facile, reliable, and efficient method for the synthesis of N2 -modified guanosine nucleotides such as N2 -[benzyl-N-(propyl)carbamate]-guanosine-5'-O-monophosphate, N2 -[benzyl-N-(propyl)carbamate]-guanosine-5'-O-diphosphate, N2 -[benzyl-N-(propyl)carbamate]-guanosine-5'-O-triphosphate, and N2 -[benzyl-N-(propyl)carbamate]-N7 -methyl-guanosine-5'-O-diphosphate, starting from the corresponding nucleotide is described. The general process entails condensation between the exocyclic amine of guanosine nucleotide and 3-[(benzyloxycarbonyl)amino]propionaldehyde in aqueous methanol, followed by reduction using sodium cyanoborohydride to furnish the corresponding N2 -modified guanosine nucleotide in moderate yield with high purity (>99.5%). © 2023 Wiley Periodicals LLC. Basic Protocol: Synthesis of N2 -modified guanosine derivatives.


Asunto(s)
Guanosina , Fosfatos , Difosfatos , Guanosina Difosfato , Guanosina Trifosfato , Carbamatos , ARN Mensajero/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-37211782

RESUMEN

An efficient method for the synthesis of N2-modified guanosine nucleotides such as N2-[benzyl-N-(propyl)carbamate]-guanosine-5'-O-monophosphate, N2-[benzyl-N-(propyl)carbamate]-guanosine-5'-O-diphosphate, N2-[benzyl-N-(propyl)carbamate]-guanosine-5'-O-triphosphate, and N2-[benzyl-N-(propyl)carbamate]-N7-methyl-guanosine-5'-O-diphosphate, starting from the corresponding nucleotide is described. The overall reaction involves the condensation between the exocyclic amine of guanosine nucleotide with 3-[(benzyloxycarbonyl)amino]propionaldehyde in aqueous methanol, followed by reduction using sodium cyanoborohydride to furnish the corresponding N2-modified guanosine nucleotide in moderate yield with high purity (>99.5%).

7.
J Virol ; 95(20): e0059221, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34379509

RESUMEN

The current pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to dramatic economic and health burdens. Although the worldwide SARS-CoV-2 vaccination campaign has begun, exploration of other vaccine candidates is needed due to uncertainties with the current approved vaccines, such as durability of protection, cross-protection against variant strains, and costs of long-term production and storage. In this study, we developed a methyltransferase-defective recombinant vesicular stomatitis virus (mtdVSV)-based SARS-CoV-2 vaccine candidate. We generated mtdVSVs expressing SARS-CoV-2 full-length spike (S) protein, S1, or its receptor-binding domain (RBD). All of these recombinant viruses grew to high titers in mammalian cells despite high attenuation in cell culture. The SARS-CoV-2 S protein and its truncations were highly expressed by the mtdVSV vector. These mtdVSV-based vaccine candidates were completely attenuated in both immunocompetent and immunocompromised mice. Among these constructs, mtdVSV-S induced high levels of SARS-CoV-2-specific neutralizing antibodies (NAbs) and Th1-biased T-cell immune responses in mice. In Syrian golden hamsters, the serum levels of SARS-CoV-2-specific NAbs triggered by mtdVSV-S were higher than the levels of NAbs in convalescent plasma from recovered COVID-19 patients. In addition, hamsters immunized with mtdVSV-S were completely protected against SARS-CoV-2 replication in lung and nasal turbinate tissues, cytokine storm, and lung pathology. Collectively, our data demonstrate that mtdVSV expressing SARS-CoV-2 S protein is a safe and highly efficacious vaccine candidate against SARS-CoV-2 infection. IMPORTANCE Viral mRNA cap methyltransferase (MTase) is essential for mRNA stability, protein translation, and innate immune evasion. Thus, viral mRNA cap MTase activity is an excellent target for development of live attenuated or live vectored vaccine candidates. Here, we developed a panel of MTase-defective recombinant vesicular stomatitis virus (mtdVSV)-based SARS-CoV-2 vaccine candidates expressing full-length S, S1, or several versions of the RBD. These mtdVSV-based vaccine candidates grew to high titers in cell culture and were completely attenuated in both immunocompetent and immunocompromised mice. Among these vaccine candidates, mtdVSV-S induces high levels of SARS-CoV-2-specific neutralizing antibodies (Nabs) and Th1-biased immune responses in mice. Syrian golden hamsters immunized with mtdVSV-S triggered SARS-CoV-2-specific NAbs at higher levels than those in convalescent plasma from recovered COVID-19 patients. Furthermore, hamsters immunized with mtdVSV-S were completely protected against SARS-CoV-2 challenge. Thus, mtdVSV is a safe and highly effective vector to deliver SARS-CoV-2 vaccine.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Virus de la Estomatitis Vesicular Indiana/genética , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Encéfalo/virología , COVID-19/inmunología , Línea Celular , Síndrome de Liberación de Citoquinas/prevención & control , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Humanos , Inmunogenicidad Vacunal , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Mesocricetus , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Dominios Proteicos , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Células TH1/inmunología , Vacunas Sintéticas/inmunología , Virus de la Estomatitis Vesicular Indiana/enzimología , Virus de la Estomatitis Vesicular Indiana/fisiología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
8.
Biochem J ; 478(13): 2481-2497, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34198328

RESUMEN

The COVID-19 pandemic has presented itself as one of the most critical public health challenges of the century, with SARS-CoV-2 being the third member of the Coronaviridae family to cause a fatal disease in humans. There is currently only one antiviral compound, remdesivir, that can be used for the treatment of COVID-19. To identify additional potential therapeutics, we investigated the enzymatic proteins encoded in the SARS-CoV-2 genome. In this study, we focussed on the viral RNA cap methyltransferases, which play key roles in enabling viral protein translation and facilitating viral escape from the immune system. We expressed and purified both the guanine-N7 methyltransferase nsp14, and the nsp16 2'-O-methyltransferase with its activating cofactor, nsp10. We performed an in vitro high-throughput screen for inhibitors of nsp14 using a custom compound library of over 5000 pharmaceutical compounds that have previously been characterised in either clinical or basic research. We identified four compounds as potential inhibitors of nsp14, all of which also showed antiviral capacity in a cell-based model of SARS-CoV-2 infection. Three of the four compounds also exhibited synergistic effects on viral replication with remdesivir.


Asunto(s)
Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Exorribonucleasas/antagonistas & inhibidores , Metiltransferasas/antagonistas & inhibidores , Caperuzas de ARN/metabolismo , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Animales , Antivirales/química , Clorobencenos/farmacología , Chlorocebus aethiops , Pruebas de Enzimas , Exorribonucleasas/genética , Exorribonucleasas/aislamiento & purificación , Exorribonucleasas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Indazoles/farmacología , Indenos/farmacología , Indoles/farmacología , Metiltransferasas/genética , Metiltransferasas/aislamiento & purificación , Metiltransferasas/metabolismo , Nitrilos/farmacología , Fenotiazinas/farmacología , Purinas/farmacología , Reproducibilidad de los Resultados , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Especificidad por Sustrato , Trifluperidol/farmacología , Células Vero , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/aislamiento & purificación , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/aislamiento & purificación , Proteínas Reguladoras y Accesorias Virales/metabolismo
9.
BMC Ecol Evol ; 21(1): 131, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162332

RESUMEN

BACKGROUND: ApaH like phosphatases (ALPHs) originate from the bacterial ApaH protein and have been identified in all eukaryotic super-groups. Only two of these proteins have been functionally characterised. We have shown that the ApaH like phosphatase ALPH1 from the Kinetoplastid Trypanosoma brucei is the mRNA decapping enzyme of the parasite. In eukaryotes, Dcp2 is the major mRNA decapping enzyme and mRNA decapping by ALPHs is unprecedented, but the bacterial ApaH protein was recently found decapping non-conventional caps of bacterial mRNAs. These findings prompted us to explore whether mRNA decapping by ALPHs is restricted to Kinetoplastida or could be more widespread among eukaryotes. RESULTS: We screened 827 eukaryotic proteomes with a newly developed Python-based algorithm for the presence of ALPHs and used the data to characterize the phylogenetic distribution, conserved features, additional domains and predicted intracellular localisation of this protein family. For most organisms, we found ALPH proteins to be either absent (495/827 organisms) or to have non-cytoplasmic localisation predictions (73% of all ALPHs), excluding a function in mRNA decapping. Although, non-cytoplasmic ALPH proteins had in vitro mRNA decapping activity. Only 71 non-Kinetoplastida have ALPH proteins with predicted cytoplasmic localisations. However, in contrast to Kinetoplastida, these organisms also possess a homologue of Dcp2 and in contrast to ALPH1 of Kinetoplastida, these ALPH proteins are very short and consist of the catalytic domain only. CONCLUSIONS: ALPH was present in the last common ancestor of eukaryotes, but most eukaryotes have either lost the enzyme, or use it exclusively outside the cytoplasm. The acceptance of mRNA as a substrate indicates that ALPHs, like bacterial ApaH, have a wide substrate range: the need to protect mRNAs from unregulated degradation is one possible explanation for the selection against the presence of cytoplasmic ALPH proteins in most eukaryotes. Kinetoplastida succeeded to exploit ALPH as their only or major mRNA decapping enzyme. 71 eukaryotic organisms outside the Kinetoplastid lineage have short ALPH proteins with cytoplasmic localisation predictions: whether these proteins are used as decapping enzymes in addition to Dcp2 or else have adapted to not accept mRNAs as a substrate, remains to be explored.


Asunto(s)
Eucariontes , Kinetoplastida , Endorribonucleasas/genética , Kinetoplastida/genética , Monoéster Fosfórico Hidrolasas , Filogenia , ARN Mensajero/genética
10.
Comput Struct Biotechnol J ; 19: 2027-2044, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995900

RESUMEN

During their life cycle, Leishmania parasites display a fine-tuned regulation of the mRNA translation through the differential expression of isoforms of eukaryotic translation initiation factor 4E (LeishIF4Es). The interaction between allosteric modulators such as 4E-interacting proteins (4E-IPs) and LeishIF4E affects the affinity of this initiation factor for the mRNA cap. Here, several computational approaches were employed to elucidate the molecular bases of the previously-reported allosteric modulation in L. major exerted by 4E-IP1 (Lm4E-IP1) on eukaryotic translation initiation factor 4E 1 (LmIF4E-1). Molecular dynamics (MD) simulations and accurate binding free energy calculations (ΔGbind ) were combined with network-based modeling of residue-residue correlations. We also describe the differences in internal motions of LmIF4E-1 apo form, cap-bound, and Lm4E-IP1-bound systems. Through community network calculations, the differences in the allosteric pathways of allosterically-inhibited and active forms of LmIF4E-1 were revealed. The ΔGbind values show significant differences between the active and inhibited systems, which are in agreement with the available experimental data. Our study thoroughly describes the dynamical perturbations of LmIF4E-1 cap-binding site triggered by Lm4E-IP1. These findings are not only essential for the understanding of a critical process of trypanosomatids' gene expression but also for gaining insight into the allostery of eukaryotic IF4Es, which could be useful for structure-based design of drugs against this protein family.

11.
Mol Cell Biochem ; 476(2): 1037-1049, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33169189

RESUMEN

Protein translation leading to polypeptide synthesis involves three distinct events, namely, initiation, elongation, and termination. Translation initiation is a multi-step process that is carried out by ribosomes on the mRNA with the assistance of a large number of proteins called translation initiation factors. Trypanosomatids are kinetoplastidas (flagellated protozoans), some of which cause acute disease syndromes in humans. Vector-borne transmission of protozoan parasites like Leishmania and Trypanosoma causes diseases that affect a large section of the world population and lead to significant morbidity and mortality. The mechanisms of translation initiation in higher eukaryotes are relatively well understood. However, structural and functional conservation of initiation factors in trypanosomatids are only beginning to be understood. Studies carried out so far suggests that at least in Leishmania and Trypanosoma eIF4E function may not be restricted to canonical translation initiation and some of the homologues may have alternate/non-canonical functions. Nonetheless, all of them bind the cap analogs, albeit with different efficiencies, indicating that this property may play an important role in the functionality of eIF4Es. Here, I give a brief background of trypanosomatid eIF4Es and revisit the cap-binding signatures of eIF4E orthologues in trypanosomatids, whose genome sequences are available, in detail, in comparison to human eIF4E1 and Trypanosoma cruzi eIF4E5, with an expanded list of members of this group in light of newer findings. The group 1 and 2 eIF4Es may use either a variation of heIF4E1 or T. cruzi eIF4E5 cap-4-binding signatures, while eIF4E5 and eIF4E6 use distinct amino acid contacts.


Asunto(s)
Factor 4E Eucariótico de Iniciación/clasificación , Factor 4E Eucariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Trypanosomatina/metabolismo , Secuencia de Aminoácidos , Factor 4E Eucariótico de Iniciación/genética , Humanos , Unión Proteica , ARN Mensajero/genética , Alineación de Secuencia , Trypanosomatina/genética
12.
Open Biol ; 10(11): 200313, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33234072

RESUMEN

The m7G cap marks the 5' end of all eukaryotic mRNAs, but there are also capped ends that map downstream within spliced exons. A portion of the mRNA transcriptome undergoes a cyclical process of decapping and recapping, termed cap homeostasis, which impacts the translation and stability of these mRNAs. Blocking cytoplasmic capping results in the appearance of uncapped 5' ends at native cap sites but also near downstream cap sites. If translation initiates at these sites the products would lack the expected N-terminal sequences, raising the possibility of a link between mRNA recapping and proteome complexity. We performed a shotgun proteomics analysis on cells carrying an inducible inhibitor of cytoplasmic capping. A total of 21 875 tryptic peptides corresponding to 3565 proteins were identified in induced and uninduced cells. Of these, only 29 proteins significantly increased, and 28 proteins significantly decreased, when cytoplasmic capping was inhibited, indicating mRNA recapping has little overall impact on protein expression. In addition, overall peptide coverage per protein did not change significantly when cytoplasmic capping was inhibited. Together with previous work, our findings indicate cap homeostasis functions primarily in gating mRNAs between translating and non-translating states, and not as a source of proteome complexity.


Asunto(s)
Biosíntesis de Proteínas , Caperuzas de ARN/genética , ARN Mensajero/genética , Línea Celular , Citoplasma , Doxiciclina/farmacología , Humanos , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/fisiología , Proteoma , Proteómica/métodos , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo
13.
Mol Cell ; 79(4): 561-574.e5, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32589966

RESUMEN

Translation regulation occurs largely during the initiation phase. Here, we develop selective 40S footprinting to visualize initiating 40S ribosomes on endogenous mRNAs in vivo. This reveals the positions on mRNAs where initiation factors join the ribosome to act and where they leave. We discover that in most human cells, most scanning ribosomes remain attached to the 5' cap. Consequently, only one ribosome scans a 5' UTR at a time, and 5' UTR length affects translation efficiency. We discover that eukaryotic initiation factor 3B (eIF3B,) eIF4G1, and eIF4E remain bound to 80S ribosomes as they begin translating, with a decay half-length of ∼12 codons. Hence, ribosomes retain these initiation factors while translating short upstream open reading frames (uORFs), providing an explanation for how ribosomes can reinitiate translation after uORFs in humans. This method will be of use for studying translation initiation mechanisms in vivo.


Asunto(s)
Regiones no Traducidas 5' , Huella de ADN/métodos , Iniciación de la Cadena Peptídica Traduccional , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Animales , Codón Iniciador , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Sistemas de Lectura Abierta , ARN Mensajero/genética , ARN de Transferencia de Metionina/genética , Subunidades Ribosómicas/genética , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética
14.
Bioorg Med Chem ; 28(13): 115523, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32362385

RESUMEN

Eukaryotic translation initiation factor 4E (eIF4E) is overexpressed in many cancers deregulating translational control of the cell cycle. mRNA 5' cap analogs targeting eIF4E are small molecules with the potential to counteract elevated levels of eIF4E in cancer cells. However, the practical utility of typical cap analogs is limited because of their reduced cell membrane permeability. Transforming the active analogs into their pronucleotide derivatives is a promising approach to overcome this obstacle. 7-Benzylguanosine monophosphate (bn7GMP) is a cap analog that has been successfully transformed into a cell-penetrating pronucleotide by conjugation of the phosphate moiety with tryptamine. In this work, we explored whether a similar strategy is applicable to other cap analogs, particularly phosphate-modified 7-methylguanine nucleotides. We report the synthesis of six new tryptamine conjugates containing N7-methylguanosine mono- and diphosphate and their analogs modified with thiophosphate moiety. These new potential pronucleotides and the expected products of their activation were characterized by biophysical and biochemical methods to determine their affinity towards eIF4E, their ability to inhibit translation in vitro, their susceptibility to enzymatic degradation and their turnover in cell extract. The results suggest that compounds containing the thiophosphate moiety may act as pronucleotides that release low but sustainable concentrations of 7-methylguanosine 5'-phosphorothioate (m7GMPS), which is a translation inhibitor with in vitro potency higher than bn7GMP.


Asunto(s)
Factor 4E Eucariótico de Iniciación/genética , Guanina/análogos & derivados , Nucleótidos/química , Fosfatos/química , Triptaminas/química , Endorribonucleasas/metabolismo , Variación Genética , Guanina/química , Guanosina/análogos & derivados , Guanosina/química , Humanos , Modelos Moleculares , Proteínas del Tejido Nervioso/metabolismo , Motivos de Nucleótidos , Nucleótidos/genética , Biosíntesis de Proteínas , Análogos de Caperuza de ARN/química , Análogos de Caperuza de ARN/genética , ARN Mensajero/química , ARN Mensajero/genética
15.
J Biol Chem ; 295(27): 9076-9086, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32381506

RESUMEN

RNA triphosphatase catalyzes the first step in mRNA cap formation, hydrolysis of the terminal phosphate from the nascent mRNA transcript. The RNA triphosphatase from the protozoan parasite Trypanosoma cruzi, TcCet1, belongs to the family of triphosphate tunnel metalloenzymes (TTMs). TcCet1 is a promising antiprotozoal drug target because the mechanism and structure of the protozoan RNA triphosphatases are completely different from those of the RNA triphosphatases found in mammalian and arthropod hosts. Here, we report several crystal structures of the catalytically active form of TcCet1 complexed with a divalent cation and an inorganic tripolyphosphate in the active-site tunnel at 2.20-2.51 Å resolutions. The structures revealed that the overall structure, the architecture of the tunnel, and the arrangement of the metal-binding site in TcCet1 are similar to those in other TTM proteins. On the basis of the position of three sulfate ions that cocrystallized on the positively charged surface of the protein and results obtained from mutational analysis, we identified an RNA-binding site in TcCet1. We conclude that the 5'-end of the triphosphate RNA substrate enters the active-site tunnel directionally. The structural information reported here provides valuable insight into designing inhibitors that could specifically block the entry of the triphosphate RNA substrate into the TTM-type RNA triphosphatases of T. cruzi and related pathogens.


Asunto(s)
Ácido Anhídrido Hidrolasas/ultraestructura , Caperuzas de ARN/metabolismo , ARN/metabolismo , Ácido Anhídrido Hidrolasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/fisiología , Dominio Catalítico/fisiología , Cinética , Metaloproteínas/metabolismo , Modelos Moleculares , ARN/ultraestructura , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/ultraestructura
16.
Protein Sci ; 29(6): 1373-1386, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31811670

RESUMEN

The mRNA cap-binding oncoprotein "eIF4E" is phosphorylated at residue S209 by Mnk kinases, and is closely associated with tumor development and progression. Despite being well-established, mechanistic details at the molecular level of mRNA recognition by eIF4E due to phosphorylation have not been clearly elucidated. We investigated this through molecular modeling and simulations of the S209 phosphorylated derivative of eIF4E and explored the associated implication on the binding of the different variants of mRNA-cap analogs. A key feature that emerges as a result of eIF4E phosphorylation is a salt-bridge network between the phosphorylated S209 (pS209) and a specific pair of lysine residues (K159 and K162) within the cap-binding interface on eIF4E. This interaction linkage stabilizes the otherwise dynamic C-terminal region of the protein, resulting in the attenuation of the overall plasticity and accessibility of the binding pocket. The pS209-K159 salt-bridge also results in an energetically less favorable environment for the bound mRNA-cap primarily due to electrostatic repulsion between the negative potentials from the phosphates in the cap and those appearing as a result of phosphorylation of S209. These observations collectively imply that the binding of the mRNA-cap will be adversely affected in the phosphorylated derivative of eIF4E. We propose a mechanistic model highlighting the role of eIF4E phosphorylation as a regulatory tool in modulating eIF4E: mRNA-cap recognition and its potential impact on translation initiation.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Caperuzas de ARN/metabolismo , Factor 4E Eucariótico de Iniciación/química , Humanos , Modelos Moleculares , Fosforilación , Conformación Proteica , Caperuzas de ARN/química , Especificidad por Sustrato
17.
Molecules ; 24(10)2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31108861

RESUMEN

The mRNA 5' cap consists of N7-methylguanosine bound by a 5',5'-triphosphate bridge to the first nucleotide of the transcript. The cap interacts with various specific proteins and participates in all key mRNA-related processes, which may be of therapeutic relevance. There is a growing demand for new biophysical and biochemical methods to study cap-protein interactions and identify the factors which inhibit them. The development of such methods can be aided by the use of properly designed fluorescent molecular probes. Herein, we synthesized a new class of m7Gp3G cap derivatives modified with an alkyne handle at the N1-position of guanosine and, using alkyne-azide cycloaddition, we functionalized them with fluorescent tags to obtain potential probes. The cap derivatives and probes were evaluated in the context of two cap-binding proteins, eukaryotic translation initiation factor (eIF4E) and decapping scavenger (DcpS). Biochemical and biophysical studies revealed that N1-propargyl moiety did not significantly disturb cap-protein interaction. The fluorescent properties of the probes turned out to be in line with microscale thermophoresis (MST)-based binding assays.


Asunto(s)
Análogos de Caperuza de ARN/síntesis química , Proteínas de Unión a Caperuzas de ARN/metabolismo , Química Clic , Reacción de Cicloadición , Guanosina/química , Humanos , Análogos de Caperuza de ARN/química , Análogos de Caperuza de ARN/metabolismo , Proteínas de Unión a Caperuzas de ARN/química
18.
New Phytol ; 223(3): 1388-1406, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31050354

RESUMEN

The translation initiation factor eIF4E-binding protein-mediated regulation of protein translation by interfering with assembly of mRNA cap-binding complex eIF4F is well described in mammalian and yeast cells. However, it remains unknown whether a signaling regulator or pathway interacts directly with any translation initiation factor to modulate assembly of eIF4F in plant cells. Here, we report that the two isoforms of Arabidopsis eIF4G, eIFiso4G1 and eIFiso4G2, interact with a cytoplasmic-nuclear dual-localized pentatricopeptide repeat protein SOAR1 to regulate abscisic acid (ABA) signaling. SOAR1 inhibits interactions of eIFiso4E, eIF4Es, eIF4A1, eIF4B2 and poly(A)-binding protein PAB6 with eIFiso4G1 and eIFiso4G2, thereby inhibiting eIFiso4F/mixed eIF4F assembly and repressing translation initiation. SOAR1 binds mRNA of a key ABA-responsive gene ABI5 and cooperates with eIFiso4G1/2 to repress translation of ABI5. The binding of SOAR1 to ABI5 mRNA is likely to inhibit the interaction of SOAR1 with eIFiso4G1/2, suggesting a regulatory loop. Our findings identify a novel translation initiation repressor interfering with cap-binding complex assembly, and establish a link between cap-binding complex assembly and ABA signaling.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Caperuzas de ARN/metabolismo , Transducción de Señal , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Germinación , Fenotipo , Polirribosomas/metabolismo , Unión Proteica , Subunidades de Proteína/metabolismo , ARN Mensajero/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Semillas/crecimiento & desarrollo
19.
Open Biol ; 9(4): 190052, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30991934

RESUMEN

Basic mechanisms in gene expression are currently being investigated as targets in cancer therapeutics. One such fundamental process is the addition of the cap to pre-mRNA, which recruits mediators of mRNA processing and translation initiation. Maturation of the cap involves mRNA cap guanosine N-7 methylation, catalysed by RNMT (RNA guanine-7 methyltransferase). In a panel of breast cancer cell lines, we investigated whether all are equivalently dependent on RNMT for proliferation. When cellular RNMT activity was experimentally reduced by 50%, the proliferation rate of non-transformed mammary epithelial cells was unchanged, whereas a subset of breast cancer cell lines exhibited reduced proliferation and increased apoptosis. Most of the cell lines which exhibited enhanced dependency on RNMT harboured oncogenic mutations in PIK3CA, which encodes the p110α subunit of PI3Kα. Conversely, all cell lines insensitive to RNMT depletion expressed wild-type PIK3CA. Expression of oncogenic PIK3CA mutants, which increase PI3K p110α activity, was sufficient to increase dependency on RNMT. Conversely, inhibition of PI3Kα reversed dependency on RNMT, suggesting that PI3Kα signalling is required. Collectively, these findings provide evidence to support RNMT as a therapeutic target in breast cancer and suggest that therapies targeting RNMT would be most valuable in a PIK3CA mutant background.


Asunto(s)
Neoplasias de la Mama/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Metiltransferasas/genética , Mutación , Caperuzas de ARN , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Humanos , Células MCF-7 , Metiltransferasas/metabolismo , ARN Mensajero/genética , Transducción de Señal/genética , Transcripción Genética
20.
Trends Biochem Sci ; 44(3): 183-185, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30679132

RESUMEN

The mRNA cap is a structure that protects mRNA from degradation and recruits processing and translation factors. A new mRNA capping enzyme has been identified, PCIF1/CAPAM, which methylates adenosine when it is the first transcribed nucleotide. This discovery is crucial for understanding the function of cap adenosine methylation.


Asunto(s)
Metiltransferasas/metabolismo , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Adenosina/metabolismo , Animales , Humanos , Metilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA