Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41.791
Filtrar
1.
J Environ Sci (China) ; 148: 336-349, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095169

RESUMEN

Catalytic destruction is an ascendant technology for the abatement of volatile organic compounds (VOCs) originating from solvent-based industrial processes. The varied composition tends to influence each VOC's catalytic behavior in the reaction mixture. We investigated the catalytic destruction of multi-component VOCs including dichloromethane (DCM) and ethyl acetate (EA), as representatives from pharmaceutical waste gases, over co-supported HxPO4-RuOx/CeO2 catalyst. A mutual inhibitory effect relating to concentrations because of competitive adsorption was verified in the binary VOCs oxidation and EA posed a more negative effect on DCM oxidation owing to EA's superior adsorption capacity. Preferential adsorption of EA on acidic sites (HxPO4/CeO2) promoted DCM activation on basic sites (O2-) and the dominating EA oxidation blocked DCM's access to oxidation centers (RuOx/CeO2), resulting in boosted monochloromethane yield and increased chlorine deposition for DCM oxidation. The impaired redox ability of Ru species owing to chlorine deposition in turn jeopardized deep oxidation of EA and its by-products, leading to increased gaseous by-products such as acetic acid originating from EA pyrolysis. Notably, DCM at low concentration slightly promoted EA conversion at low temperatures with or without water, consistent with the enhanced EA adsorption in co-adsorption analyses. This was mainly due to that DCM impeded the shielding effect of hydrolysate deposition from rapid EA hydrolysis depending on the decreased acidity. Moreover, water benefited EA hydrolysis but decreased CO2 selectivity while the generated water derived from EA was likely to affect DCM transformation. This work may provide theoretical guidance for the promotion of applied catalysts toward industrial applications.


Asunto(s)
Acetatos , Cerio , Cloruro de Metileno , Acetatos/química , Catálisis , Cloruro de Metileno/química , Cerio/química , Compuestos Orgánicos Volátiles/química , Adsorción , Oxidación-Reducción , Rutenio/química
2.
J Environ Sci (China) ; 148: 451-467, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095179

RESUMEN

After the ultralow emission transformation of coal-fired power plants, cement production became China's leading industrial emission source of nitrogen oxides. Flue gas dust contents at the outlet of cement kiln preheaters were as high as 80-100 g/m3, and the calcium oxide content in the dust exceeded 60%. Commercial V2O5(-WO3)/TiO2 catalysts suitable for coal-fired flue gas suffer from alkaline earth metal Ca poisoning of cement kiln flue gas. Recent studies have also identified the poisoning of cement kiln selective catalytic reaction (SCR) catalysts by the heavy metals lead and thallium. Investigation of the poisoning process is the primary basis for analyzing the catalytic lifetime. This review summarizes and analyzes the SCR catalytic mechanism and chronicles the research progress concerning this poisoning mechanism. Based on the catalytic and toxification mechanisms, it can be inferred that improving the anti-poisoning performance of a catalyst enhances its acidity, surface redox performance-active catalytic sites, and shell layer protection. The data provide support in guiding engineering practice and reducing operating costs of SCR plants. Finally, future research directions for SCR denitrification catalysts in the cement industry are discussed. This study provides critical support for the development and optimization of poisoning-resistant SCR denitrification catalysts.


Asunto(s)
Materiales de Construcción , Catálisis , Contaminantes Atmosféricos/química , Centrales Eléctricas , China
3.
J Environ Sci (China) ; 148: 489-501, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095183

RESUMEN

The chemistry of sulfur cycle contributes significantly to the atmospheric nucleation process, which is the first step of new particle formation (NPF). In the present study, cycloaddition reaction mechanism of sulfur trioxide (SO3) to hydrogen sulfide (H2S) which is a typical air pollutant and toxic gas detrimental to the environment were comprehensively investigate through theoretical calculations and Atmospheric Cluster Dynamic Code simulations. Gas-phase stability and nucleation potential of the product thiosulfuric acid (H2S2O3, TSA) were further analyzed to evaluate its atmospheric impact. Without any catalysts, the H2S + SO3 reaction is infeasible with a barrier of 24.2 kcal/mol. Atmospheric nucleation precursors formic acid (FA), sulfuric acid (SA), and water (H2O) could effectively lower the reaction barriers as catalysts, even to a barrierless reaction with the efficiency of cis-SA > trans-FA > trans-SA > H2O. Subsequently, the gas-phase stability of TSA was investigated. A hydrolysis reaction barrier of up to 61.4 kcal/mol alone with an endothermic isomerization reaction barrier of 5.1 kcal/mol under the catalytic effect of SA demonstrates the sufficient stability of TSA. Furthermore, topological and kinetic analysis were conducted to determine the nucleation potential of TSA. Atmospheric clusters formed by TSA and atmospheric nucleation precursors (SA, ammonia NH3, and dimethylamine DMA) were thermodynamically stable. Moreover, the gradually decreasing evaporation coefficients for TSA-base clusters, particularly for TSA-DMA, suggests that TSA may participate in NPF where the concentration of base molecules are relatively higher. The present new reaction mechanism may contributes to a better understanding of atmospheric sulfur cycle and NPF.


Asunto(s)
Contaminantes Atmosféricos , Sulfuro de Hidrógeno , Modelos Químicos , Sulfuro de Hidrógeno/química , Contaminantes Atmosféricos/química , Reacción de Cicloadición , Atmósfera/química , Óxidos de Azufre/química , Cinética , Azufre/química
4.
Skin Res Technol ; 30(8): e13867, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39101621

RESUMEN

BACKGROUND: Postherpetic neuralgia (PHN) is a classic chronic condition with multiple signs of peripheral and central neuropathy. Unfortunately, the pathogenesis of PHN is not well defined, limiting clinical treatment and disease management. OBJECTIVE: To describe the peripheral and central pathological axes of PHN, including peripheral nerve injury, inflammation induction, central nervous system sensitization, and brain functional and structural network activity. METHODS: A bibliographic survey was carried out, selecting relevant articles that evaluated the characterization of the pathogenesis of PHN, including peripheral and central pathological axes. RESULTS: Currently, due to the complexity of the pathophysiological mechanisms of PHN and the incomplete understanding of the exact mechanism of neuralgia. CONCLUSION: It is essential to conduct in-depth research to clarify the origins of PHN pathogenesis and explore effective and comprehensive therapies for PHN.


Asunto(s)
Neuralgia Posherpética , Neuralgia Posherpética/fisiopatología , Humanos , Sensibilización del Sistema Nervioso Central/fisiología , Traumatismos de los Nervios Periféricos/fisiopatología , Encéfalo/fisiopatología , Encéfalo/patología
5.
Int J Mol Sci ; 25(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125942

RESUMEN

The degradation of concrete and reinforced concrete structures is a significant technical and economic challenge, requiring continuous repair and rehabilitation throughout their service life. Geopolymers (GPs), known for their high mechanical strength, low shrinkage, and durability, are being increasingly considered as alternatives to traditional repair materials. However, there is currently a lack of understanding regarding the interface bond properties between new geopolymer layers and old concrete substrates. In this paper, using advanced computational techniques, including quantum mechanical calculations and stochastic modeling, we explored the adsorption behavior and interaction mechanism of aluminosilicate oligomers with different Si/Al ratios forming the geopolymer gel structure and calcium silicate hydrate as the substrate at the interface bond region. We analyzed the electron density distributions of the highest occupied and lowest unoccupied molecular orbitals, examined the reactivity indices based on electron density functional theory, performed Mulliken charge population analysis, and evaluated global reactivity descriptors for the considered oligomers. The results elucidate the mechanisms of local and global reactivity of the oligomers, the equilibrium low-energy configurations of the oligomer structures adsorbed on the surface of C-(A)-S-H(I) (100), and their adsorption energies. These findings contribute to a better understanding of the adhesion properties of geopolymers and their potential as effective repair materials.


Asunto(s)
Materiales de Construcción , Polímeros , Silicatos , Silicatos/química , Polímeros/química , Adsorción , Silicatos de Aluminio/química , Compuestos de Calcio/química , Modelos Moleculares
6.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125962

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by irreversible scarring of lung tissue, leading to death. Despite recent advancements in understanding its pathophysiology, IPF remains elusive, and therapeutic options are limited and non-curative. This review aims to synthesize the latest research developments, focusing on the molecular mechanisms driving the disease and on the related emerging treatments. Unfortunately, several phase 2 studies showing promising preliminary results did not meet the primary endpoints in the subsequent phase 3, underlying the complexity of the disease and the need for new integrated endpoints. IPF remains a challenging condition with a complex interplay of genetic, epigenetic, and pathophysiological factors. Ongoing research into the molecular keystones of IPF is critical for the development of targeted therapies that could potentially stop the progression of the disease. Future directions include personalized medicine approaches, artificial intelligence integration, growth in genetic insights, and novel drug targets.


Asunto(s)
Fibrosis Pulmonar Idiopática , Humanos , Fibrosis Pulmonar Idiopática/terapia , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/patología , Medicina de Precisión/métodos , Terapia Molecular Dirigida/métodos , Epigénesis Genética , Animales
7.
Crit Rev Food Sci Nutr ; : 1-14, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39086266

RESUMEN

Dietary flavonoids exhibit a variety of physiological functions in regulating glucose and lipid metabolism, improving cardiovascular function, and enhancing stress resistance. However, poor intestinal absorption limits their health benefits. Previous studies on improving the absorption efficiency of flavonoids have focused on targeted release, enhanced gastrointestinal stability and prolonged retention time in digestive tract. But less attention has been paid to promoting the uptake and transport of flavonoids by intestinal epithelial cells through modulation of transporter protein-mediated pathways. Interestingly, some dietary nutrients have been found to modulate the expression or function of transporter proteins, thereby synergistically or antagonistically affecting flavonoid absorption. Therefore, this paper proposed an innovative regulatory strategy known as the "intestinal transport protein-mediated pathway" to promote intestinal absorption of dietary flavonoids. The flavonoid absorption mechanism in the intestinal epithelium, mediated by intestinal transport proteins, was summarized. The functional differences between the uptake transporter and efflux transporters during flavonoid trans-intestinal cellular transport were discussed. Finally, from the perspective of nutritional synergy promotion of absorption, the feasibility of promoting flavonoid intestinal absorption by regulating the expression/function of transport proteins through dietary nutrients was emphasized. This review provides a new perspective and developing precise dietary nutrient combinations for efficient dietary flavonoid absorption.

8.
Sci Total Environ ; 950: 175287, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111446

RESUMEN

Rare earth elements (REEs) are integral to numerous high-tech industries, yet their biogeochemical cycling within ecosystems remains inadequately characterized. Recently, phytoliths have been identified as potentially significant sinks for REEs; however, their role in the cycling of these elements has been underestimated. In this work, we investigate the accumulation of REEs in phytoliths (PhytREEs) within the Greater Khingan Mountains region, employing an optimized wet oxidation method combined with heavy liquid flotation to quantify PhytREEs contents in surface soils. The results revealed an elevation-dependent pattern of PhytREEs concentration, with heightened levels at higher altitudes and diminishing concentrations towards the eastern plains. The enrichment coefficient of PhytREEs (ECPhytREEs) was found to be approximately 2.7 %, indicative of a moderately selective sequestration process. The multivariate analysis indicated that terrain complexity, climatic patterns, soil texture, and organic matter significantly influence the uptake and storage of REEs in plants, subsequently affecting their partitioning in phytoliths. Among these factors, the complexation of REEs with organic matter emerged as a pivotal mechanism facilitating their immobilization within phytoliths. Soil characteristics also play a non-negligible role in modulating REEs dynamics. Our findings highlight the predominant influence of climate on PhytREE storage, suggesting that climatic variables are the primary drivers modulating the bioavailability and ultimate sequestration of REEs within phytoliths. This study enhances our understanding of the biotic-abiotic interplay in the sequestration of REEs and underscores the need to incorporate phytoliths into models of terrestrial REE cycling.

9.
Int J Biol Macromol ; 277(Pt 4): 134507, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111502

RESUMEN

Alkali-induced preserved egg gel formation is a dynamic process that involves complex protein changes. Ovomucin (OVM) is closely associated with the gel properties of egg white. In this study, the effect of OVM in alkali-induced egg white gel (AEWG) formation was investigated. The results suggested that OVM reduced the gel formation time by 15 %. The mechanical properties of the fully formed gel were also improved by OVM. Specifically, OVM increased the storage modulus (G') of the gel by 1.5-fold, while the hardness significantly increased from 78.90 ± 4.24 g to 99.80 ± 9.23 g. Low-field nuclear magnetic resonance (LF-NMR) demonstrated that OVM significantly shortened T23 relaxation time and reduced the water mobility, thus increasing the water holding capacity (WHC). Meanwhile, the presence of OVM resulted in a more homogeneous and denser microscopic morphology of the gel. Selective solubility experiments revealed that disulfide bonds are the primary force in gel formation. OVM promoted the formation of more disulfide bonds, which increased the strength and stability of the gel network. Overall, this research proved OVM plays a critical role in the performance improvement of AEWG, which provides a new insight into the quality control of preserved egg and protein gel foods.

10.
Environ Pollut ; 360: 124678, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111528

RESUMEN

Nanomaterial-cellular membrane interaction is crucial for the cytotoxicity of such materials in theoretical investigations. However, previous research often used cellular membrane models with one or few lipid types, which deviates significantly from realistic membrane compositions. Here, employing molecular dynamics (MD) simulations, we investigate the impact of a typical nanomaterial, boron nitride (BN), on a cellular membrane model based on the realistic small intestinal epithelial cell (SIEC) membrane. This membrane contains a complex composition, including abundant glycolipids. Our MD simulations reveal that BN nanosheet can partially insert into the SIEC membrane, maintaining a stable binding conformation without causing obvious structural changes. Dynamic analyses suggest that van der Waals (vdW) interactions drive the binding process between BN and the SIEC membrane. Further simulation of the interaction between BN nanosheet and deglycosylated SIEC membrane confirms that BN nanosheet cause significant structural damage to deglycosylated SIEC membranes, completely inserting into the membrane, extracting lipids, and burying some lipid hydrophilic heads within the membrane interior. Quantitative analyses of mean squared displacements (MSD) of membranes, membrane thicknesses, area per lipid, and order parameters indicate that BN nanosheet causes more substantial damage to deglycosylated SIEC membrane than to intact SIEC membrane. This comparison suggests the molecular mechanism involved in mitigating BN invasion by SIEC membrane that the polysaccharide heads of glycolipids in the SIEC membrane form a significant steric hindrance on membrane surface, not only hindering the insertion of BN, but also resisting the lipid extraction by BN. Free energy calculations further support this conclusion. Overall, our MD simulations not only shed new light into the reduced impact of BN nanosheet on the realistic SIEC membrane but also highlight the importance of glycolipids in protecting cell membranes from nanomaterial invasion, contributing to a deeper understanding of nanomaterial-realistic cell membrane interactions.

11.
Fluids Barriers CNS ; 21(1): 63, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113115

RESUMEN

Cognitive decline covers a broad spectrum of disorders, not only resulting from brain diseases but also from systemic diseases, which seriously influence the quality of life and life expectancy of patients. As a highly selective anatomical and functional interface between the brain and systemic circulation, the blood-brain barrier (BBB) plays a pivotal role in maintaining brain homeostasis and normal function. The pathogenesis underlying cognitive decline may vary, nevertheless, accumulating evidences support the role of BBB disruption as the most prevalent contributing factor. This may mainly be attributed to inflammation, metabolic dysfunction, cell senescence, oxidative/nitrosative stress and excitotoxicity. However, direct evidence showing that BBB disruption causes cognitive decline is scarce, and interestingly, manipulation of the BBB opening alone may exert beneficial or detrimental neurological effects. A broad overview of the present literature shows a close relationship between BBB disruption and cognitive decline, the risk factors of BBB disruption, as well as the cellular and molecular mechanisms underlying BBB disruption. Additionally, we discussed the possible causes leading to cognitive decline by BBB disruption and potential therapeutic strategies to prevent BBB disruption or enhance BBB repair. This review aims to foster more investigations on early diagnosis, effective therapeutics, and rapid restoration against BBB disruption, which would yield better cognitive outcomes in patients with dysregulated BBB function, although their causative relationship has not yet been completely established.


Asunto(s)
Barrera Hematoencefálica , Disfunción Cognitiva , Humanos , Disfunción Cognitiva/etiología , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/metabolismo , Animales
12.
JMA J ; 7(3): 313-318, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39114608

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases with a progressive and fatal course. They are often comorbid and share the same molecular spectrum. Their key pathological features are the formation of the aggregation of TDP-43, an RNA-binding protein, in the cytoplasm and its depletion from the nucleus in the central nervous system. In the nucleus, TDP-43 regulates several aspects of RNA metabolism, ranging from RNA transcription and alternative splicing to RNA transport. Suppressing the aberrant splicing events during RNA processing is one of the significant functions of TDP-43. This function is impaired when TDP-43 becomes depleted from the nucleus. Several critical cryptic splicing targets of TDP-43 have recently emerged, such as STMN2, UNC13A, and others. UNC13A is an important ALS/FTD risk gene, and the genetic variations, single nucleotide polymorphisms, cause disease via the increased susceptibility for cryptic exon inclusion under the TDP-43 dysfunction. Moreover, TDP-43 has an autoregulatory mechanism that regulates the splicing of its mRNA (TARDBP mRNA) in the healthy state. This study provides recent findings on the splicing regulatory function of TDP-43 and discusses the prospects of using these aberrant splicing events as efficient biomarkers.

13.
Am J Transl Res ; 16(7): 3005-3013, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114713

RESUMEN

OBJECTIVE: To investigate the effects of dexmedetomidine on the cognitive dysfunction of aged rats after open tibia fracture surgery and the expression of inflammatory cytokines in the hippocampus. METHODS: A total of 45 aged healthy male Sprague Dawley rats were divided into control group, sham group, and dexmedetomidine group. The open tibia fracture surgery rat model was established, and dexmedetomidine was intraperitoneally injected before operation. The cognitive function of aged rats was examined by Morris Water-Maze Test, open field experiment, and passive avoidance memory test. The expression levels of IL-6, IL-1ß, and TNF-α in the hippocampus were examined by enzyme-linked immunosorbent assay (ELISA). RESULTS: The escape latency over 5 continuous days in the dexmedetomidine group was significantly shorter than that in the control group (all P<0.05). The number of swimming times and the percentage of swimming time in the dexmedetomidine group were significantly higher and longer than those in the control group (all P<0.05). Moreover, rats in the dexmedetomidine group exhibited shorter time of stay at the central square and higher number of standing times in comparison with the control group (all P<0.05). Compared with the control group, dexmedetomidine intraperitoneally injected before surgery significantly inhibited the expression levels of IL-6, IL-1ß, and TNF-α in the hippocampus (all P<0.05). CONCLUSION: Dexmedetomidine could significantly relieve the postoperative cognitive dysfunction in aged rats. The mechanism may be associated with the decreased inflammatory cytokines in the hippocampus.

14.
Adv Sci (Weinh) ; : e2405273, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39116352

RESUMEN

Conductive gel interface materials are widely employed as reliable agents for electroencephalogram (EEG) recording. However, prolonged EEG recording poses challenges in maintaining stable and efficient capture due to inevitable evaporation in hydrogels, which restricts sustained high conductivity. This study introduces a novel ion-electron dual-mode conductive hydrogel synthesized through a cost-effective and streamlined process. By embedding graphite nanoparticles into ionic hyaluronic acid (HAGN), the hydrogel maintains higher conductivity for over 72 h, outperforming commercial gels. Additionally, it exhibits superior low skin contact impedance, considerable electrochemical capability, and excellent tensile and adhesion performance in both dry and wet conditions. The biocompatibility of the HAGN hydrogel, verified through in vitro cell viability assays and in vivo skin irritation tests, underscores its suitability for prolonged skin contact without eliciting adverse reactions. Furthermore, in vivo EEG tests confirm the HAGN hydrogel's capability to provide high-fidelity signal acquisition across multiple EEG protocols. The HAGN hydrogel proves to be an effective interface for prolonged high-quality EEG recording, facilitating high-performance capture and classification of evoked potentials, thereby providing a reliable conductive medium for EEG-based systems.

15.
Lung Cancer ; 195: 107917, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39116552

RESUMEN

BACKGROUND: Several patients treated with osimertinib experience progressive disease. The aim was to clarify the mechanisms underlying resistance to osimertinib. METHODS: ELUCIDATOR: A multi-centre, prospective, observational study involved chemotherapy-naive patients with advanced non-small cell lung cancer receiving osimertinib. Mutations in cancer-associated genes, detected via ultrasensitive next-generation sequencing of circulating tumour deoxyribonucleic acid samples, were collected at baseline and after progressive disease detection. These paired plasma samples were compared. RESULTS: Of 188 patients enrolled (May 2019-January 2021), 178 (119 females [67 %]) median age 74 years, were included. Patients, n = 95 (53 %) had epidermal growth factor receptor exon 19 deletion mutations. Among 115 patients with progressive disease, circulating tumour deoxyribonucleic acid levels of 85 patients were analysed. MET amplification (n = 4), TP53 mutations (n = 4), PIK3CA mutations (n = 3), BRINP3 mutation (n = 2), BRAF mutation (n = 2), APC mutation (n = 1), RET mutation (n = 1) and epidermal growth factor receptor (EGFR) resistance mutation, and C797S (n = 1) were detected. Patients with baseline TP53 mutations, with MET or EGFR amplification had shorter progression-free (PFS) and overall survival. Patients with PIK3CA mutations tended to shorter PFS. CONCLUSION: MET amplification and PIK3CA mutation mechanisms underly resistance to osimertinib in patients. Patients with coexisting mutations or amplifications at baseline had shorter PFS and overall survival.

16.
J Colloid Interface Sci ; 677(Pt A): 697-703, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39116567

RESUMEN

The correlation between structural transformation and optical characteristics of cesium lead bromide (CsPbBr3) nanocrystals (NCs) suggests insights into their growth mechanism and optical performance. Systematic control of reaction parameters led to the successful fabrication of on-demand shape-morphing CsPbBr3 NCs. Transmission electron microscopy observations showed that the shape transformation from nanocubes to microcrystals could be accelerated by increasing the precursor:ligand molar ratio and reaction time. Further evidence for orthorhombic CsPbBr3 NCs was obtained from their selected-area electron diffraction pattern, which exhibits a twin domain induced by the presence of large NCs. Likewise, we observed a substantial decrease in photoluminescence (PL) intensity of CsPbBr3 due to surface decomposition or surface ligand loss resulting from increased size. In addition, fusion of smaller particles having other dimensionality induced the increase in the PL full-width at half maximum. In particular, existence of larger bulk material caused a reduction in the peak intensity in the absorption spectra and a trend of decreasing tendency in intensity of the absorption bands related to bromoplumbate species provided direct evidence of fully converted Cs-oleate.

17.
Pathol Res Pract ; 261: 155510, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39116573

RESUMEN

Gliomas are among the most common cancers in the central nervous system, arising through various signaling pathways. One significant pathway is Wnt signaling, a tightly regulated process that plays a crucial role in gliomagenesis and development. The current study aims to explore the relationship between circular RNAs (circRNAs) and the Wnt/ß-catenin signaling pathway in gliomas, considering the growing recognition of circRNAs in disease pathogenesis. A comprehensive review of recent research was conducted to investigate the roles of circRNAs in gliomas, focusing on their expression patterns and interactions with the Wnt signaling pathway. The analysis included studies examining circRNAs' function as microRNA sponges and their impact on glioma biology. The findings reveal that circRNAs are differentially expressed in gliomas and significantly influence the occurrence, growth, and metastasis of these tumors. Specifically, circRNAs interact with the Wnt signaling pathway, affecting glioma development and progression. This interaction highlights the importance of circRNAs in glioma pathophysiology. Understanding the regulatory network involving circRNAs and Wnt signaling offers valuable insights into glioma pathophysiology. CircRNAs hold promise as diagnostic and prognostic biomarkers and may serve as targets for novel therapeutic strategies in glioma treatment.

18.
Water Res ; 264: 122214, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39116610

RESUMEN

Nutrient proportion, light intensity, and temperature affect the succession of dominant phytoplankton species. Despite these insights, this transformation mechanism in highly turbid lakes remains a research gap, especially in response to climate change. To fill this gap, we investigated the mechanism by which multi-environmental factors influence the succession of dominant phytoplankton species in Lake Chagan. This investigation deployed the structural equation model (SEM) and the hydrodynamic-water quality-water ecology mechanism model. Results demonstrated that the dominant phytoplankton species in Lake Chagan transformed from diatom to cyanobacteria during 2012 and 2022. Notably, Microcystis was detected in 2022. SEM revealed the primary environment variables for this succession, including water temperature (Tw), nutrients (total nitrogen (TN), total phosphorus (TP), and ammonia nitrogen (NH4N)), and total suspended solids (TSS). Moreover, this event was not the consequence of zooplankton grazing. An integrated hydrodynamic-water quality-bloom mechanism model was built to explore the mechanism driving phytoplankton succession and its response to climate change. Nutrients determined the phytoplankton biomass and dominant species succession based on various proportions. High NH4N:NO3N ratios favored cyanobacteria and inhibited diatom under high TSS. Additionally, the biomass proportions of diatom (30.77 % vs. 22.28 %) and green (30.56 % vs. 23.30 %) decreased dramatically. In contrast, cyanobacteria abundance remarkably increased (35.78 % to 51.71 %) with the increasing NH4-N:NO3-N ratios. In addition, the proportion of non-nitrogen-fixing cyanobacteria was higher than that of the nitrogen-fixing cyanobacteria counterparts when TN:TP≥20 and NH4N:NO3N ≥ 10. Light-limitation phenotypes also experienced an increase with the rising NH4N:NO3N ratios. Notably, the cyanobacterial biomass reached 3-6 times that in the baseline scenario when the air temperature escalated by 3.0 °C until 2061 under the SSP585 scenario. We highlighted the effect of nitrogen forms on the succession of dominant phytoplankton species. Climate warming will increase nitrogen proportion, providing an insightful reference for controlling cyanobacterial blooms.

19.
Food Chem ; 460(Pt 3): 140729, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39116776

RESUMEN

Vacuum Impregnation (VI) act as promising method for rapidly introducing specific concentration solutions into food matrices using a hydrodynamic mechanism and deformation phenomenon to attain a product with specific tailored functional quality characteristics. VI facilitates rapid introduction of specific solutions into the food matrices. This technique allows efficient incorporation of bioactive compounds and nutritional components, meeting the rising consumer demand for functional foods. Furthermore, VI when combined with non-thermal techniques, opens up new avenues for preserving higher quality attributes and enhancing antimicrobial effects. The unique ability of VI to rapidly infuse specific solutions into food matrices, combined with the advantages of non-thermal processes, addresses the growing consumer demand for products enriched with bioactive ingredients. Hence, the present review aims to explore the potential impact of VI, coupled with novel techniques, on food quality, its practical applications, and the enhancement of process efficiency for large-scale industrial production.

20.
Biochim Biophys Acta Gen Subj ; : 130690, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39117048

RESUMEN

Increased plasma levels of serum amyloid A (SAA), an acute-phase protein that is secreted in response to inflammation, may lead to the accumulation of amyloid in various organs thereby obstructing their functions. Severe cases can lead to a systemic disorder called AA amyloidosis. Previous studies suggest that the N-terminal helix is the most amyloidogenic region of SAA. Moreover, computational studies implicated a significant role for Arg-1 and the residue-specific interactions formed during the fibrillization process. With a focus on the N-terminal region of helix-1, SAA1-13, mutational analysis was employed to interrogate the roles of the amino acid residues, Arg-1, Ser-5, Glu-9, and Asp-12. The truncated SAA1-13 fragment was systematically modified by substituting the key residues with alanine or uncharged but structurally similar amino acids. We monitored the changes in the amyloidogenic propensities, associated conformational markers, and morphology of the amyloids resulting from the mutation of SAA1-13. Mutating out Arg-1 resulted in much reduced aggregation propensity and a lack of detectable ß-structures alluding to the importance of salt-bridge interactions involving Arg-1. Our data revealed that by systematically mutating the key amino acid residues, we can modulate the amyloidogenic propensity and alter the time-dependent conformational variation of the peptide. When the behaviors of each mutant peptide were analyzed, they provided evidence consistent with the aggregation pathway predicted by MD simulation studies. Here, we detail the important temporal molecular interactions formed by Arg-1 with Ser-5, Glu-9, and Asp-12 and discuss its mechanistic implications on the self-assembly of the helix-1 region of SAA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA