Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Chem Asian J ; : e202401050, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39323072

RESUMEN

An eco-friendly electrochemical halogenation of 2-amino-1,4-naphthoquinones has been developed. The new mild and energy efficient methodology comprises sustainable features like oxidant free and double role of the halogen source as electrolyte, originating twenty-six amino-halogenated naphthoquinoidal derivatives in good yields under mild conditions. This novel methodology permitted access to new potent trypanocidal prototypes, where six compounds were more active than benznidazole, the current market drug used in the treatment of Chagas Disease.

2.
Future Med Chem ; 16(17): 1791-1799, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39072451

RESUMEN

Aim: To identify potential antischistosomal agents through 3D pharmacophore-based virtual screening of US FDA approved drugs.Materials & methods: A comprehensive virtual screening was conducted on a dataset of 10,000 FDA approved drugs, employing praziquantel as a template. Promising candidates were selected and assessed for their impact on Schistosoma mansoni viability in vitro and in vivo using S. mansoni infected mice.Results & conclusion: Among the selected drugs, betamethasone and doxazosin demonstrated in vitro efficacy, with effective concentration 50% (EC50) values ranging from 35 to 60 µM. In vivo studies revealed significant (>50%) reductions in worm burden for both drugs. These findings suggest that betamethasone and doxazosin hold promise for repurposing in treating schistosomiasis. Additionally, the study showcases a useful approach for identifying new antischistosomal drugs.


Discovering new treatments for #schistosomiasis is crucial [Formula: see text]. Our study used virtual screening to identify potential antischistosomal drugs from US FDA approved compounds [Formula: see text]. Promising results in vitro and in vivo. [Formula: see text] #drugdiscovery #tropicaldiseases.


Asunto(s)
Schistosoma mansoni , United States Food and Drug Administration , Animales , Ratones , Schistosoma mansoni/efectos de los fármacos , Estados Unidos , Aprobación de Drogas , Esquistosomicidas/farmacología , Esquistosomicidas/química , Esquistosomicidas/uso terapéutico , Esquistosomiasis mansoni/tratamiento farmacológico , Modelos Moleculares , Humanos , Farmacóforo
3.
Curr Drug Targets ; 25(9): 577-601, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38967077

RESUMEN

Neglected diseases are a group of infectious diseases, many of them parasitic, that mainly affect the poorest populations with limited access to health services, especially those living in remote rural areas and slums. According to the World Health Organization (WHO), neglected diseases put the lives of more than 200 million people at risk, and treatment is made difficult by the occurrence of resistance to existing medications, as well as the high level of toxicity. In this way, the potential of multitarget compounds is highlighted, defined as compounds designed to modulate multiple targets of relevance to disease, with the overall goal of enhancing efficacy and/or improving safety. Thus, the objective of our study is to evaluate existing multitarget compound approaches for neglected diseases, with an emphasis on Leishmaniasis, Chagas Disease, and Arboviruses. A literature review was performed by searching the database "Web of Sciences". In relation to the diseases covered in this work, Leishmaniasis, individually, was the one that presented the largest number of articles (11) that dealt with the topic, which can be justified by the high prevalence of this disease in the world, the second most common disease was Dengue, followed by Chagas disease, Chikungunya virus, and Zika virus. Furthermore, the multitarget potential of phenolic compounds was observed in all diseases under study, with the mechanisms related to the nucleus and transcription being the most reported mechanisms. From this perspective, it is worth highlighting the effectiveness of approaches related to multitarget drugs in discovering new therapeutic agents for neglected diseases.


Asunto(s)
Enfermedad de Chagas , Leishmaniasis , Enfermedades Desatendidas , Humanos , Enfermedades Desatendidas/tratamiento farmacológico , Enfermedad de Chagas/tratamiento farmacológico , Leishmaniasis/tratamiento farmacológico , Infecciones por Arbovirus/tratamiento farmacológico , Terapia Molecular Dirigida , Animales
4.
ChemMedChem ; 19(17): e202400063, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38778500

RESUMEN

The chemical and biological interest in this element and the molecules bearing selenium has been exponentially growing over the years. Selenium, formerly designated as a toxin, becomes a vital trace element for life that appears as selenocysteine and its dimeric form, selenocystine, in the active sites of selenoproteins, which catalyze a wide variety of reactions, including the detoxification of reactive oxygen species and modulation of redox activities. From the point of view of drug developments, organoselenium drugs are isosteres of sulfur-containing and oxygen-containing drugs with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. This statement is the paramount relevance considering the big number of clinically employed compounds bearing sulfur or oxygen atoms in their structures including nucleosides and carbohydrates. Thus, in this article we have focused on the relevant features of the application of selenium in medicinal chemistry. With the increasing interest in selenium chemistry, we have attempted to highlight the most significant published data on this subject, mainly concentrating the analysis on the last years. In consequence, the recent advances of relevant pharmacological organoselenium compounds are discussed.


Asunto(s)
Compuestos de Organoselenio , Compuestos de Organoselenio/química , Compuestos de Organoselenio/farmacología , Humanos , Química Farmacéutica , Estructura Molecular , Animales , Antioxidantes/química , Antioxidantes/farmacología
5.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 5): 459-462, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38721432

RESUMEN

Carb-oxy-hydrazides are widely used in medicinal chemistry because of their medicinal properties and many drugs have been developed containing this functional group. A suitable inter-mediate to obtain potential hydrazide drug candidates is the title compound 5-hy-droxy-penta-nehydrazide, C5H12N2O2 (1). The aliphatic compound can react both via the hydroxyl and hydrazide moieties forming derivatives, which can inhibit Mycobacterium tuberculosis catalase-peroxidase (KatG) and consequently causes death of the pathogen. In this work, the hydrazide was obtained via a reaction of a lactone with hydrazine hydrate. The colourless prismatic single crystals belong to the ortho-rhom-bic space group Pca21. Regarding supra-molecular inter-actions, the compound shows classic medium to strong inter-molecular hydrogen bonds involving the hydroxyl and hydrazide groups. Besides, the three-dimensional packing also shows weak H⋯H and C⋯H contacts, as investigated by Hirshfeld surface analysis (HS) and fingerprint plots (FP).

6.
Chem Biodivers ; 21(4): e202301935, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38363210

RESUMEN

Cannabidiol (CBD) is a substance that exerts several therapeutic actions, including analgesia. CBD is generally administered orally, but its poor water solubility and metabolism impair its bioavailability. Thus, the development of molecules with better pharmacokinetic profile from cannabidiol becomes an interesting strategy for the design of novel analgesic drugs for the relief of painful conditions that are difficult to manage clinically, such as neuropathic pain. In the present study, an unprecedented analogue of CBD (1) was synthesized and some of its physicochemical properties were evaluated in silico as well as its stability in an acid medium. Additionally, its effect was investigated in a model of neuropathic pain induced by the chemotherapy drug paclitaxel in mice, in comparison with cannabidiol itself. Cannabidiol (20 mg/kg), pregabalin (30 mg/kg), or analogue 1 (5, 10, and 20 mg/kg), administered on the 14th day after the first administration of paclitaxel, attenuated the mechanical allodynia of the sensitized animals. The antinociceptive activity of analogue 1 was attenuated by previous administration of a cannabinoid CB1 receptor antagonist, AM 251, which indicates that its mechanism of action is related to the activation of CB1 receptors. In conclusion, the CBD analogue 1 developed in this study shows great potential to be used in the treatment of neuropathic pain.


Asunto(s)
Cannabidiol , Neuralgia , Ratones , Animales , Cannabidiol/efectos adversos , Modelos Animales de Enfermedad , Neuralgia/tratamiento farmacológico , Neuralgia/inducido químicamente , Paclitaxel/farmacología , Analgésicos/farmacología , Analgésicos/uso terapéutico
7.
Mini Rev Med Chem ; 24(12): 1148-1161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38350844

RESUMEN

The castor plant (Ricinus communis) is primarily known for its seeds, which contain a unique fatty acid called ricinoleic acid with several industrial and commercial applications. Castor seeds also contain ricin, a toxin considered a chemical and biological warfare agent. Despite years of investigation, there is still no effective antidote or vaccine available. However, some progress has been made, and the development of an effective treatment may be on the horizon. To provide an updated overview of this issue, we have conducted a comprehensive review of the literature on the current state of research in the fight against ricin. This review is based on the reported research and aims to address the challenges faced by researchers, as well as highlight the most successful cases achieved thus far. Our goal is to encourage the scientific community to continue their efforts in this critical search.


Asunto(s)
Antídotos , Ricina , Ricina/antagonistas & inhibidores , Ricina/química , Humanos , Antídotos/química , Antídotos/farmacología , Sustancias para la Guerra Química/química , Animales
8.
Mini Rev Med Chem ; 24(11): 1063-1069, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38258786

RESUMEN

Since its early days in the 19th century, medicinal chemistry has concentrated its efforts on the treatment of diseases, using tools from areas such as chemistry, pharmacology, and molecular biology. The understanding of biological mechanisms and signaling pathways is crucial information for the development of potential agents for the treatment of diseases mainly because they are such complex processes. Given the limitations that the experimental approach presents, computational chemistry is a valuable alternative for the study of these systems and their behavior. Thus, classical molecular dynamics, based on Newton's laws, is considered a technique of great accuracy, when appropriated force fields are used, and provides satisfactory contributions to the scientific community. However, as many configurations are generated in a large MD simulation, methods such as Statistical Inefficiency and Optimal Wavelet Signal Compression Algorithm are great tools that can reduce the number of subsequent QM calculations. Accordingly, this review aims to briefly discuss the importance and relevance of medicinal chemistry allied to computational chemistry as well as to present a case study where, through a molecular dynamics simulation of AMPK protein (50 ns) and explicit solvent (TIP3P model), a minimum number of snapshots necessary to describe the oscillation profile of the protein behavior was proposed. For this purpose, the RMSD calculation, together with the sophisticated OWSCA method was used to propose the minimum number of snapshots.


Asunto(s)
Simulación de Dinámica Molecular , Humanos , Química Farmacéutica , Teoría Cuántica , Algoritmos , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/química
9.
J Trace Elem Med Biol ; 83: 127374, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38266419

RESUMEN

BACKGROUND: In the search for alternatives that attenuate the toxicity associated to oncologic treatment with cisplatin (CDDP) and considering the potential health-beneficial properties of exopolysaccharides (EPS) produced by lactic acid bacteria, it was aimed on this study to evaluate the cytotoxic, toxicologic and antitumoral efficacy of a bioconjugate based on CDDP and EPS, on the experimental tumor of sarcoma 180. METHODS: After the synthesis of the cis-[Pt(NH3)2(Cl)2] complex and of the conjugate containing Lactobacillus fermentum exopolysaccharide was tested both in vitro and in vivo for evaluating the acute toxicity. RESULTS: The antitumoral study was performed using mice transplanted with sarcoma 180. The bioconjugate showed low to medium cytotoxicity for the cell lines tested, as well moderated acute toxicity. After determining the LD50, the following experimental groups were established for the antitumor assay: Control (NaCl 0,9%), CDDP (1 mg/kg), EPS and bioconjugate composition (200 mg/kg). The bioconjugate promoted a 38% regression in tumor mass when compared to the control, and a regression of 41% when compared to CDDP. Liver histopathological analysis revealed discrete alterations in animals treated with (CDDP + EPS) when compared to control. The bioconjugate also minimized changes in the renal parenchyma resulting from the tumor. CONCLUSION: Our results indicate that when CDDP is associated with EPS, this composition was more biocompatible, showing itself as a potent chemotherapeutic agent and lower tissue toxicity.


Asunto(s)
Antineoplásicos , Neoplasias , Sarcoma 180 , Ratones , Animales , Cisplatino/farmacología , Cisplatino/uso terapéutico , Sarcoma 180/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico
10.
Viruses ; 15(11)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38005911

RESUMEN

Antiretroviral Therapy (ART) is an effective treatment for human immunodeficiency virus (HIV) which has transformed the highly lethal disease, acquired immunodeficiency syndrome (AIDS), into a chronic and manageable condition. However, better methods need to be developed for enhancing patient access and adherence to therapy and for improving treatment in the long term to reduce adverse effects. From the perspective of drug discovery, one promising strategy is the development of anti-HIV prodrugs. This approach aims to enhance the efficacy and safety of treatment, promoting the development of more appropriate and convenient systems for patients. In this review, we discussed the use of the prodrug approach for HIV antiviral agents and emphasized nucleoside reverse transcriptase inhibitors. We comprehensively described various strategies that are used to enhance factors such as water solubility, bioavailability, pharmacokinetic parameters, permeability across biological membranes, chemical stability, drug delivery to specific sites/organs, and tolerability. These strategies might help researchers conduct better studies in this field. We also reported successful examples from the primary therapeutic classes while discussing the advantages and limitations. In this review, we highlighted the key trends in the application of the prodrug approach for treating HIV/AIDS.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Fármacos Anti-VIH , Infecciones por VIH , Profármacos , Humanos , Inhibidores de la Transcriptasa Inversa/farmacología , Inhibidores de la Transcriptasa Inversa/uso terapéutico , Fármacos Anti-VIH/uso terapéutico , Profármacos/farmacología , Nucleósidos/uso terapéutico , Síndrome de Inmunodeficiencia Adquirida/tratamiento farmacológico , Infecciones por VIH/tratamiento farmacológico , VIH , Transcriptasa Inversa del VIH
11.
Adv Respir Med ; 91(6): 464-485, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37987297

RESUMEN

The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2019) etiological agent, which has a high contagiousness and is to blame for the outbreak of acute viral pneumonia, is the cause of the respiratory disease COVID-19. The use of natural products grew as an alternative treatment for various diseases due to the abundance of organic molecules with pharmacological properties. Many pharmaceutical studies have focused on investigating compounds with therapeutic potential. Therefore, this study aimed to identify potential antiviral compounds from a popular medicinal plant called Moringa oleifera Lam. against the spike, Mpro, ACE2, and RBD targets of SARS-CoV-2. For this, we use molecular docking to identify the molecules with the greatest affinity for the targets through the orientation of the ligand with the receptor in complex. For the best results, ADME-TOX predictions were performed to evaluate the pharmacokinetic properties of the compounds using the online tool pkCSM. The results demonstrate that among the 61 molecules of M. oleifera, 22 molecules showed promising inhibition results, where the compound ellagic acid showed significant molecular affinity (-9.3 kcal.mol-1) in interaction with the spike protein. These results highlight the relevance of investigating natural compounds from M. oleifera as potential antivirals against SARS-CoV-2; however, additional studies are needed to confirm the antiviral activity of the compounds.


Asunto(s)
COVID-19 , Moringa oleifera , Humanos , SARS-CoV-2 , Simulación del Acoplamiento Molecular , Antivirales/farmacología , Antivirales/uso terapéutico
12.
Metabolites ; 13(9)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37755307

RESUMEN

Leishmaniasis is caused by protozoans of the genus Leishmania, and its treatment is highly toxic, leading to treatment discontinuation and the emergence of resistant strains. In this study, we assessed the leishmanicidal activity and chemical composition of red propolis collected from the Amazon-dominated region of northern Tocantins State, Brazil. The MTT assay was employed to determine the samples' activity against Leishmania amazonensis promastigotes and their cytotoxicity against RAW macrophages. Spectrophotometric assays were utilised to measure the concentrations of total phenolics and flavonoids, while high-performance liquid chromatography coupled to a mass spectrometer (LC-MS/MS) was used to determine the chemical composition. An in silico study was conducted to evaluate which compounds from Brazilian Amazon red propolis may correlate with this biological activity. Brazilian Amazon red propolis exhibited a high concentration of phenolic compounds and an inhibitory activity against L. amazonensis, with an IC50 ranging from 23.37 to 36.10 µg/mL. Moreover, fractionation of the propolis yielded a fraction with enhanced bioactivity (16.11 µg/mL). Interestingly, neither the propolis nor its most active fraction showed cytotoxicity towards macrophages at concentrations up to 200 µg/mL. The red colour and the presence of isoflavonoid components (isoflavones, isoflavans, and pterocarpans) confirm that the substance is Brazilian red propolis. However, the absence of polyprenylated benzophenones suggests that this is a new variety of Brazilian red propolis. The in silico study performed with two of the main leishmanicidal drug targets using all compounds identified in Amazon red propolis reported that liquiritigenin was the compound that exhibited the best electronic interaction parameters, which was confirmed in an assay with promastigotes using a standard. The findings indicate that Amazon red propolis possesses leishmanicidal activity, low toxicity, and significant biotechnological potential.

13.
Biomedicines ; 11(9)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37760978

RESUMEN

Hyperuricemia, the metabolic alteration that leads to gout or gouty arthritis, is increasing worldwide. Glycoconjugated triazole-phthalimides show potent anti-inflammatory activity. The aim of this study was to evaluate the anti-hyperuricemia effect of glycoconjugated triazole-phthalimides. To develop hyperuricemia, groups of mice received orally potassium oxonate (250 mg/kg) for 7 days, and F2, F3 and F4 glycoconjugated triazole-phthalimides (20 mg/kg), allopurinol (300 mg/kg), and 1% carboxymethylcellulose; indomethacin (2 and 4 mg/kg) was the positive control for anti-arthritic effect. Genotoxic and mutagenic effects were evaluated by the comet and micronucleus assays, respectively. The hemolytic action of the compounds was evaluated. Phthalimides F2, F3 and F4 significantly reduced the levels of serum uric acid, creatinine and urea in hyperuricemic animals. In addition, the compounds were efficient in reducing protein denaturation in a dose-dependent manner. In an interesting way, the histopathological analysis of kidneys from groups treated with F2, F3 and F4 showed a glomerular architecture, with the Bowman's capsule and renal tubules having a normal appearance and without inflammatory changes. Also, F2 and F4 showed a small increase in micronuclei, indicating a low mutagenic effect, whilst by comet assay only, we could infer that F4 affected the frequency and damage index, thus indicating a very small genotoxic action. Similarly, the phthalimides showed a low degree of erythrocyte hemolysis (<3%). Our data demonstrate that the new glycoconjugate triazole-phthalimides have potential to treat hyperuricemia and its secondary complications, such as gouty arthritis, with a low to non-significant rate of erythrocytes hemolysis, genotoxicity and mutagenicity making these molecules strong candidates as pharmaceutical agents for treatment requiring uric-acid-lowering therapy.

14.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37765074

RESUMEN

The importance of the benzo[b]furan motif becomes evident in the remarkable results of numerous biological investigations, establishing its potential as a robust therapeutic option. This review presents an overview of the synthesis of and exhaustive biological studies conducted on benzo[b]furan derivatives from 2011 to 2022, accentuating their exceptional promise as anticancer, antibacterial, and antifungal agents. Initially, the discussion focuses on chemical synthesis, molecular docking simulations, and both in vitro and in vivo studies. Additionally, we provide an analysis of the intricate interplay between structure and activity, thereby facilitating comparisons and profoundly emphasizing the applications of the benzo[b]furan motif within the realms of drug discovery and medicinal chemistry.

16.
Anticancer Agents Med Chem ; 23(16): 1796-1810, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37455450

RESUMEN

After a decade of approval of the drug vemurafenib in 2011, the hopeless scenario imposed by some severe cancer types has been mitigated by the magic bullets developed through fragment-based drug discovery. Moreover, this recent approach to medicinal chemistry has been successfully practiced by academic laboratories and pharmaceutical industry workflows focused on drug design with an enhanced profile for chemotherapy of aggressive tumors. This mini-review highlights the successes achieved by these research campaigns in the fruitful field of the molecular fragment paradigm that resulted in the approval of six new anticancer drugs in the last decade (2011-2021), as well as several promising clinical candidates. It is a particularly encouraging opportunity for other researchers who want to become aware of the applicability and potency of this new paradigm applied to the design and development of powerful molecular weapons in the constant war against these merciless scourges of humanity.


Asunto(s)
Descubrimiento de Drogas , Neoplasias , Humanos , Descubrimiento de Drogas/métodos , Diseño de Fármacos , Química Farmacéutica , Vemurafenib , Neoplasias/tratamiento farmacológico
17.
Microbiol Spectr ; 11(4): e0139323, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37409934

RESUMEN

Schistosomiasis is a parasitic disease that afflicts approximately 250 million people worldwide. There is an urgent demand for new antiparasitic agents because praziquantel, the only drug available for the treatment of schistosomiasis, is not universally effective and may derail current progress toward the WHO goal of eliminating this disease as a public health problem by 2030. Nifuroxazide (NFZ), an oral nitrofuran antibiotic, has recently been explored to be repurposed for parasitic diseases. Here, in vitro, in vivo, and in silico studies were conducted to evaluate the activity of NFZ on Schistosoma mansoni. The in vitro study showed significant antiparasitic activity, with 50% effective concentration (EC50) and 90% effective concentration (EC90) values of 8.2 to 10.8 and 13.7 to 19.3 µM, respectively. NFZ also affected worm pairing and egg production and induced severe damage to the tegument of schistosomes. In vivo, a single oral dose of NFZ (400 mg/kg of body weight) to mice harboring either prepatent or patent S. mansoni infection significantly reduced the total worm burden (~40%). In patent infection, NFZ achieved a high reduction in the number of eggs (~80%), but the drug caused a low reduction in the egg burden of animals with prepatent infection. Finally, results from in silico target fishing methods predicted that serine/threonine kinases could be one of the potential targets for NFZ in S. mansoni. Overall, the present study revealed that NFZ possesses antischistosomal properties, mainly in terms of egg burden reduction in animals with patent S. mansoni infection. IMPORTANCE The increasing recognition of the burden imposed by helminthiasis, associated with the limited therapeutic arsenal, has led to initiatives and strategies to research and develop new drugs for the treatment of schistosomiasis. One of these strategies is drug repurposing, which considers low-risk compounds with potentially reduced costs and shorter time for development. In this study, nifuroxazide (NFZ) was evaluated for its anti-Schistosoma mansoni potential through in vitro, in vivo, and in silico studies. In vitro, NFZ affected worm pairing and egg production and induced severe damage to the tegument of schistosomes. In vivo, a single oral dose of NFZ (400 mg/kg) to mice harboring either prepatent or patent S. mansoni infection significantly reduced the total worm burden and egg production. In silico investigations have identified serine/threonine kinases as a molecular target for NFZ. Collectively, these results implied that NFZ might be a potential therapeutic candidate for the treatment of schistosomiasis.


Asunto(s)
Nitrofuranos , Esquistosomiasis mansoni , Esquistosomiasis , Esquistosomicidas , Animales , Ratones , Esquistosomicidas/farmacología , Esquistosomicidas/uso terapéutico , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/parasitología , Schistosoma mansoni , Nitrofuranos/farmacología , Nitrofuranos/uso terapéutico , Treonina/farmacología , Treonina/uso terapéutico , Serina
18.
Chemistry ; 29(52): e202300030, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37378970

RESUMEN

Selenium, originally described as a toxin, turns out to be a crucial trace element for life that appears as selenocysteine and its dimer, selenocystine. From the point of view of drug developments, selenium-containing drugs are isosteres of sulfur and oxygen with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. In this article, we have focused on the relevant features of the selenium atom, above all, the corresponding synthetic approaches to access a variety of organoselenium molecules along with the proposed reaction mechanisms. The preparation and biological properties of selenosugars, including selenoglycosides, selenonucleosides, selenopeptides, and other selenium-containing compounds will be treated. We have attempted to condense the most important aspects and interesting examples of the chemistry of selenium into a single article.

19.
Chempluschem ; 88(12): e202300115, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37191319

RESUMEN

This work describes the synthesis of four gold(I) [AuClL] compounds containing chloro and biologically active protonated thiosemicarbazones based on 5-nitrofuryl (L=HSTC). The stability of the compounds in dichloromethane, DMSO, and DMSO/culture media solutions was investigated by spectroscopy, cyclic voltammetry, and conductimetry, indicating the formation overtime of cationic monometallic [Au(HTSC)(DMSO)]± or [Au(HTSC)2 ]± , and/or dimeric species. Neutral [{Au(TSC)}2 ] species were obtained from one of the compounds in dichlomethane/n-hexane solution and characterized by X-ray crystallography revealing a Au-Au bond, and deprotonated thiosemicarbazone (TSC). The cytotoxicity of the gold compounds and thiosemicarbazone ligands was evaluated against selected cancer cell lines and compared to that of Auranofin. Studies of the most stable, cytotoxic, and selective compound on a renal cancer cell line (Caki-1) demonstrated its relevant antimigratory and anti-angiogenic properties, and preferential accumulation in the cell nuclei. Its mode of action seems to involve interaction with DNA, and subsequent cell death via apoptosis.


Asunto(s)
Antineoplásicos , Tiosemicarbazonas , Oro , Línea Celular Tumoral , Dimetilsulfóxido , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/química
20.
Curr Top Med Chem ; 23(11): 990-1003, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37016527

RESUMEN

Multicomponent reactions (MCRs) are processes in which three or more starting materials are combined in the same reaction vessel, forming an adduct that contains all or most of the atoms of the starting materials. MCRs are one-pot processes that provide attractive advantages for the total synthesis of target molecules. These reactions allow rapid access to structurally complex adducts from particularly simple starting materials. Moreover, MCRs are generally intrinsically associated with principles of green syntheses, such as atom economy, minimization of isolation, and purification of synthetic intermediates, leading to large solvent economies and avoiding the production of large amounts of reaction waste. Thus, synthetic routes employing multicomponent reactions are generally more convergent, economical and often allow higher overall yields. In total synthesis, the use of MCRs has been mainly applied in the preparation of key advanced intermediates. Progress in the use of MCRs in total synthesis has been described over the last decades, including not only classical MCRs reactions (e.g. isocyanide-based transformations), but also non-traditional multicomponent reactions. Furthermore, reports concerning stereoselective multicomponent transformations are still scarce and present further development opportunities. This review aims to provide a general overview of the application of MCRs as key steps in the rapid preparation of structurally complex derivatives and fine chemicals. In special, some selected examples have been successfully applied for medicinal purposes. Finally, in some representative cases, either key intermediates formed during the reaction vessel or corresponding transition states have been disclosed in order to provide insights into the reaction mechanisms.


Asunto(s)
Técnicas de Química Sintética , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA