Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Front Pharmacol ; 15: 1398320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903991

RESUMEN

MFSD12 protein has recently risen as a key factor in malignancy and plays a potential role in a variety of complex oncogenic signaling cascades. Current studies suggest that MFSD12 has a positive complex role in the growth and progression of tumors such as melanoma, breast cancer, and lung cancer. At the same time, as a transporter of cysteine, MFSD12 is also involved in the development of lysosomal storage diseases. Therefore, MFSD12 may be an effective target to inhibit tumor development, block metastasis, and expand the therapeutic effect. This article reviews the molecular mechanisms of MFSD12 in a variety of cancers and lysosomal storage diseases.

2.
Autophagy ; : 1-2, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38899611

RESUMEN

Dysregulation of melanin homeostasis is implicated in causing skin pigmentation disorders, such as melasma due to hyperpigmentation and vitiligo due to hypopigmentation. Although the synthesis of melanin has been well studied, the removal of the formed skin pigment requires more research. We determined that ß-mangostin, a plant-derived metabolite, induces the degradation of already-formed melanin in the mouse B16F10 cell line. The whitening effect of ß-mangostin is mediated by macroautophagy/autophagy, as it was abolished by the knockdown of ATG5 or RB1CC1/FIP200, and by treatment with 3-methyladenine, a phosphatidylinositol 3-kinase complex inhibitor. However, the exact autophagy mechanism of melanosome degradation remains unknown. Selective autophagy for a specific cellular organelle requires specific E3-ligases and autophagic receptors for the target organelle. In this study, an E3-ligase, RCHY1, and an autophagy receptor, OPTN (optineurin), were identified as being essential for melanophagy in the ß-mangostin-treated B16F10 cell line. As per our knowledge, this is the first report of a specific mechanism for the degradation of melanosomes, the target organelle of melanophagy. These findings are expected to broaden the scope of melanin homeostasis research and can be exploited for the development of therapeutics for skin pigmentation disorders.

3.
Elife ; 132024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900147

RESUMEN

Transport and localization of melanosome at the periphery region of melanocyte are depended on myosin-5a (Myo5a), which associates with melanosome by interacting with its adaptor protein melanophilin (Mlph). Mlph contains four functional regions, including Rab27a-binding domain, Myo5a GTD-binding motif (GTBM), Myo5a exon F-binding domain (EFBD), and actin-binding domain (ABD). The association of Myo5a with Mlph is known to be mediated by two specific interactions: the interaction between the exon-F-encoded region of Myo5a and Mlph-EFBD and that between Myo5a-GTD and Mlph-GTBM. Here, we identify a third interaction between Myo5a and Mlph, that is, the interaction between the exon-G-encoded region of Myo5a and Mlph-ABD. The exon-G/ABD interaction is independent from the exon-F/EFBD interaction and is required for the association of Myo5a with melanosome. Moreover, we demonstrate that Mlph-ABD interacts with either the exon-G or actin filament, but cannot interact with both of them simultaneously. Based on above findings, we propose a new model for the Mlph-mediated Myo5a transportation of melanosomes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Melanosomas , Miosina Tipo V , Unión Proteica , Melanosomas/metabolismo , Miosina Tipo V/metabolismo , Miosina Tipo V/genética , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Humanos , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética , Melanocitos/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-38849973

RESUMEN

Human pigmentary disorders encompass a broad spectrum of phenotypic changes arising from disruptions in various stages of melanocyte formation, the melanogenesis process, or the transfer of pigment from melanocytes to keratinocytes. A large number of pigmentation genes associated with pigmentary disorders have been identified, many of them awaiting in vivo confirmation. A more comprehensive understanding of the molecular basis of pigmentary disorders requires a vertebrate animal model where changes in pigmentation are easily observable in vivo and can be combined to genomic modifications and gain/loss-of-function tools. Here we present the amphibian Xenopus with its unique features that fulfill these requirements. Changes in pigmentation are particularly easy to score in Xenopus embryos, allowing whole-organism based phenotypic screening. The development and behavior of Xenopus melanocytes closely mimic those observed in mammals. Interestingly, both Xenopus and mammalian skins exhibit comparable reactions to ultraviolet radiation. This review highlights how Xenopus constitutes an alternative and complementary model to the more commonly used mouse and zebrafish, contributing to the advancement of knowledge in melanocyte cell biology and related diseases.

5.
Exp Dermatol ; 33(5): e15094, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38742793

RESUMEN

Melasma is a common condition of hyperpigmented facial skin. Picosecond lasers are reported to be effective for the treatment of melasma. We aimed to identify the most effective therapeutic mode and elucidate the potential molecular mechanisms of picosecond lasers for the treatment of melasma. Female Kunming mice with melasma-like conditions were treated using four different picosecond laser modes. Concurrently, in vitro experiments were conducted to assess changes in melanin and autophagy in mouse melanoma B16-F10 cells treated with these laser modes. Changes in melanin in mouse skin were detected via Fontana-Masson staining, and melanin particles were evaluated in B16-F10 cells. Real-time polymerase chain reaction and western blotting were used to analyse the expression levels of melanosome and autophagy-related messenger ribonucleic acid (mRNA) and proteins. A combination of large-spot low-fluence 1064-nm and fractional 1064-nm picosecond lasers resulted insignificant decreases in melanin as well as in mRNA and protein expression of melanin-synthesizing enzymes (TYR, TRP-1 and MITF). This combination also led to increased expression of the autophagy-related proteins, Beclin1 and ATG5, with a marked decrease in p62 expression. Intervention with the PI3K activator, 740 Y-P, increased TYR, TRP-1, MITF, p-PI3K, p-AKT, p-mTOR and p62 expression but decreased the expression of LC3, ATG5 and Beclin1. A combination of large-spot low-fluence 1064-nm and fractional 1064-nm picosecond lasers proved more effective and safer. It inhibits melanin production, downregulates the PI3K/AKT/mTOR pathway, enhances melanocyte autophagy and accelerates melanin metabolism, thereby reducing melanin content.


Asunto(s)
Autofagia , Melanosis , Melanosomas , Transducción de Señal , Animales , Femenino , Ratones , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Terapia por Luz de Baja Intensidad , Melaninas/metabolismo , Melanoma Experimental/metabolismo , Melanoma Experimental/radioterapia , Melanosis/metabolismo , Melanosomas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
6.
Arch Dermatol Res ; 316(6): 225, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787453

RESUMEN

Myosin Va (Myo Va) is one of three protein complexes involved in melanosome transport. In this study, we identified BMP-2 as an up-regulator of Myo Va expression using 2-methyl-naphtho[1,2,3-de]quinolin-8-one (MNQO). Our results showed that MNQO reduced the mRNA and protein expression of Myo Va and BMP-2 in melanocytes. Knockdown of BMP-2 by siRNA also affected Myo Va mRNA and protein expression, confirming that MNQO regulates Myo Va through BMP-2. Furthermore, phosphorylation of Smad1/5/8 by BMP2 treatment confirmed that the BMP-2/Smad signaling pathway regulates Myo Va expression in Melan-a melanocytes. Smad-binding elements were found in the Myo Va promoter and phosphorylated Smad1/5/8 bind directly to the Myo Va promoter to activate Myo Va transcription and BMP-2 enhances this binding. These findings provide insight into a new role for BMP-2 in Melan-a melanocytes and a mechanism of regulation of Myo Va expression that may be beneficial in the treatment of albinism or hyperpigmentation disorders.


Asunto(s)
Proteína Morfogenética Ósea 2 , Melanocitos , Cadenas Pesadas de Miosina , Miosina Tipo V , Transducción de Señal , Miosina Tipo V/metabolismo , Miosina Tipo V/genética , Melanocitos/metabolismo , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 2/genética , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética , Humanos , Proteínas Smad/metabolismo , Regiones Promotoras Genéticas/genética , Fosforilación , Ratones , Animales , Regulación de la Expresión Génica
7.
Proc Natl Acad Sci U S A ; 121(14): e2318039121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38536750

RESUMEN

Melanosomes are specific organelles dedicated to melanin synthesis and accumulation in melanocytes. Autophagy is suggestively involved in melanosome degradation, although the potential underlying molecular mechanisms remain elusive. In selective autophagy, autophagy receptors and E3-ligases are the key factors conferring cargo selectivity. In B16F10 cells, ß-mangostin efficiently induced melanosome degradation without affecting other organelles such as mitochondria, peroxisomes, and the endoplasmic reticulum. Among various autophagy receptors, optineurin (OPTN) contributes TANK-binding kinase 1 (TBK1)-dependently to melanosome degradation and its knockdown inhibited ß-mangostin-mediated melanosome degradation. OPTN translocation to melanosomes was dependent on its ubiquitin-binding domain. Moreover, OPTN-mediated TBK1 activation and subsequent TBK1-mediated S187 OPTN phosphorylation were essential for melanosome degradation. ß-mangostin increased K63-linked melanosome ubiquitination. Finally, the E3-ligase RCHY1 knockdown inhibited the melanosome ubiquitination required for OPTN- and TBK1-phosphorylation as well as melanosome degradation. This study suggests that melanophagy, melanosome-selective autophagy, contributes to melanosome degradation, and OPTN and RCHY1 are an essential autophagy receptor and a E3-ligase, respectively, conferring cargo selectivity in melanophagy.


Asunto(s)
Autofagia , Melanosomas , Melanosomas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Xantonas , Melanoma Experimental , Animales , Ratones
8.
Proc Natl Acad Sci U S A ; 121(11): e2317430121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437540

RESUMEN

Brown-and-white giant pandas (hereafter brown pandas) are distinct coat color mutants found exclusively in the Qinling Mountains, Shaanxi, China. However, its genetic mechanism has remained unclear since their discovery in 1985. Here, we identified the genetic basis for this coat color variation using a combination of field ecological data, population genomic data, and a CRISPR-Cas9 knockout mouse model. We de novo assembled a long-read-based giant panda genome and resequenced the genomes of 35 giant pandas, including two brown pandas and two family trios associated with a brown panda. We identified a homozygous 25-bp deletion in the first exon of Bace2, a gene encoding amyloid precursor protein cleaving enzyme, as the most likely genetic basis for brown-and-white coat color. This deletion was further validated using PCR and Sanger sequencing of another 192 black giant pandas and CRISPR-Cas9 edited knockout mice. Our investigation revealed that this mutation reduced the number and size of melanosomes of the hairs in knockout mice and possibly in the brown panda, further leading to the hypopigmentation. These findings provide unique insights into the genetic basis of coat color variation in wild animals.


Asunto(s)
Ursidae , Animales , Ratones , Ursidae/genética , Péptido Hidrolasas , Precursor de Proteína beta-Amiloide , Animales Salvajes , Ratones Noqueados
9.
Lasers Surg Med ; 56(4): 404-418, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436524

RESUMEN

BACKGROUND AND OBJECTIVES: A threshold fluence for melanosome disruption has the potential to provide a robust numerical indicator for establishing clinical endpoints for pigmented lesion treatment using a picosecond laser. Although the thresholds for a 755-nm picosecond laser were previously reported, the wavelength dependence has not been investigated. In this study, wavelength-dependent threshold fluences for melanosome disruption were determined. Using a mathematical model based on the thresholds, irradiation parameters for 532-, 730-, 755-, 785-, and 1064-nm picosecond laser treatments were evaluated quantitatively. STUDY DESIGN/MATERIALS AND METHODS: A suspension of melanosomes extracted from porcine eyes was irradiated using picosecond lasers with varying fluence. The mean particle size of the irradiated melanosomes was measured by dynamic light scattering, and their disruption was observed by scanning electron microscopy to determine the disruption thresholds. A mathematical model was developed, combined with the threshold obtained and Monte Carlo light transport to calculate irradiation parameters required to disrupt melanosomes within the skin tissue. RESULTS: The threshold fluences were determined to be 0.95, 2.25, 2.75, and 6.50 J/cm² for 532-, 730-, 785-, and 1064-nm picosecond lasers, respectively. The numerical results quantitatively revealed the relationship between irradiation wavelength, incident fluence, and spot size required to disrupt melanosomes distributed at different depths in the skin tissue. The calculated irradiation parameters were consistent with clinical parameters that showed high efficacy with a low incidence of complications. CONCLUSION: The wavelength-dependent thresholds for melanosome disruption were determined. The results of the evaluation of irradiation parameters from the threshold-based analysis provided numerical indicators for setting the clinical endpoints for 532-, 730-, 755-, 785-, and 1064-nm picosecond lasers.


Asunto(s)
Láseres de Estado Sólido , Melanosomas , Animales , Porcinos , Melanosomas/efectos de la radiación , Rayos Láser , Piel/efectos de la radiación , Láseres de Estado Sólido/uso terapéutico , Resultado del Tratamiento
10.
Int J Cosmet Sci ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38327040

RESUMEN

OBJECTIVE: Tyrosinase inhibitors suppress melanogenesis in melanocytes. During a screening for tyrosinase inhibitors, however, we noticed some discrepancies in inhibitory efficacies between melanocytes and in vitro assays. The compound (S)-N-{3-[4-(dimethylamino)phenyl]propyl}-N-methyl-indan-1-amine (GIF-2115) exerts antioxidative stress activity upon accumulation in late endosomes and lysosomes. GIF-2115 was also identified as a potent antimelanogenic reagent in B16F10 mouse melanoma cells. GIF-2115 inhibited the activity of mushroom tyrosinase and the lysates of B16F10 cells. However, structure-activity relationship studies indicated that GIF-2238, which lacks the benzene ring in the aminoindan structure of GIF-2115, inhibited tyrosinase activity in vitro but did not inhibit melanogenesis in B16F10 cells. The aim of the present study is to show the importance of the intracellular distribution of tyrosinase inhibitors in exerting their antimelanogenic activity in melanocytes. METHODS: The intracellular distribution of compounds was monitored by linking with the fluorescent group of 7-nitro-2,1,3-benzoxadiazole (NBD). To mislocalize GIF-2115 to mitochondria, the mitochondria-preferring fluoroprobe ATTO565 was used. RESULTS: We reconfirmed the localization of GIF-2250 (GIF-2115-NBD) not only to matured but also to early-stage melanosomes. Although GIF-2286 (GIF-2238-NBD) maintained tyrosinase inhibitory activity, it did not show specific intracellular localization. Moreover, when GIF-2115 was linked with ATTO565, the resultant compound GIF-2265 did not inhibit melanogenesis in B16F10 cells, despite its strong tyrosinase inhibitory activity. CONCLUSION: These results suggest that melanosomal localization is essential for the antimelanogenic activity of GIF-2115, and GIF-2115 derivatives may be new guides for drugs to endosomes and lysosomes as well as melanosomes.


OBJECTIF: Les inhibiteurs de la tyrosinase suppriment la mélanogenèse dans les mélanocytes. Lors d'un criblage d'inhibiteurs de la tyrosinase, cependant, nous avons remarqué des différences dans les efficacités inhibitrices entre les mélanocytes et les essais in vitro. Le composé (S)-N-{3-[4-(diméthylamino)phényl]propyl}-N-méthyl-indan-1-amine (GIF-2115) exerce une activité antioxydante en cas de stress lors de l'accumulation dans les endosomes tardifs et les lysosomes. GIF-2115 a également été identifié comme un puissant réactif antimélanogène dans les cellules de mélanome murin B16F10. GIF-2115 a inhibé l'activité de la tyrosinase de champignon et les lysats des cellules B16F10. Cependant, des études de relation structure-activité ont indiqué que GIF-2238, à qui il manque l'anneau benzénique dans la structure aminoindan de GIF-2115, inhibait l'activité de la tyrosinase in vitro mais n'inhibait pas la mélanogenèse dans les cellules B16F10. L'objectif de la présente étude est de montrer l'importance de la distribution intracellulaire des inhibiteurs de la tyrosinase dans l'exercice de leur activité antimélanogène dans les mélanocytes. MÉTHODES: La distribution intracellulaire des composés a été surveillée en les liant au groupe fluorescent de la 7-nitro-2,1,3-benzoxadiazole (NBD). Pour délocaliser GIF-2115 vers les mitochondries, le fluorophore ATTO565 préférant les mitochondries a été utilisé. RÉSULTATS: Nous avons confirmé la localisation de GIF-2250 (GIF-2115-NBD) non seulement dans les mélanosomes matures mais aussi dans les mélanosomes à un stade précoce. Bien que GIF-2286 (GIF-2238-NBD) ait maintenu une activité inhibitrice de la tyrosinase, il n'a pas montré de localisation intracellulaire spécifique. De plus, lorsque GIF-2115 a été lié à ATTO565, le composé résultant GIF-2265 n'a pas inhibé la mélanogenèse dans les cellules B16F10, malgré son activité inhibitrice de la tyrosinase forte. CONCLUSION: Ces résultats suggèrent que la localisation dans les mélanosomes est essentielle pour l'activité antimélanogène de GIF-2115, et que les dérivés de GIF-2115 peuvent être de nouveaux guides pour les médicaments vers les endosomes et les lysosomes ainsi que les mélanosomes.

11.
J Pharm Anal ; 14(1): 69-85, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38352950

RESUMEN

Epimedin B (EB) is one of the main flavonoid ingredients present in Epimedium brevicornum Maxim., a traditional herb widely used in China. Our previous study showed that EB was a stronger inducer of melanogenesis and an activator of tyrosinase (TYR). However, the role of EB in melanogenesis and the mechanism underlying the regulation remain unclear. Herein, as an extension to our previous investigation, we provide comprehensive evidence of EB-induced pigmentation in vivo and in vitro and elucidate the melanogenesis mechanism by assessing its effects on the TYR family of proteins (TYRs) in terms of expression, activity, and stability. The results showed that EB increased TYRs expression through microphthalmia-associated transcription factor-mediated p-Akt (referred to as protein kinase B (PKB))/glycogen synthase kinase 3ß (GSK3ß)/ß-catenin, p-p70 S6 kinase cascades, and protein 38 (p38)/mitogen-activated protein (MAP) kinase (MAPK) and extracellular regulated protein kinases (ERK)/MAPK pathways, after which EB increased the number of melanosomes and promoted their maturation for melanogenesis in melanoma cells and human primary melanocytes/skin tissues. Furthermore, EB exerted repigmentation by stimulating TYR activity in hydroquinone- and N-phenylthiourea-induced TYR inhibitive models, including melanoma cells, zebrafish, and mice. Finally, EB ameliorated monobenzone-induced depigmentation in vitro and in vivo through the enhancement of TYRs stability by inhibiting TYR misfolding, TYR-related protein 1 formation, and retention in the endoplasmic reticulum and then by downregulating the ubiquitination and proteolysis processes. These data conclude that EB can target TYRs and alter their expression, activity, and stability, thus stimulating their pigmentation function, which might provide a novel rational strategy for hypopigmentation treatment in the pharmaceutical and cosmetic industries.

12.
Membranes (Basel) ; 14(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38392670

RESUMEN

Lysosomal degradation of tyrosinase, a pivotal enzyme in melanin synthesis, negatively impacts melanogenesis in melanocytes. Nevertheless, the precise molecular mechanisms by which lysosomes target tyrosinase have remained elusive. Here, we identify RING (Really Interesting New Gene) finger protein 152 (RNF152) as a membrane-associated ubiquitin ligase specifically targeting tyrosinase for the first time, utilizing AlphaScreen technology. We observed that modulating RNF152 levels in B16 cells, either via overexpression or siRNA knockdown, resulted in decreased or increased levels of both tyrosinase and melanin, respectively. Notably, RNF152 and tyrosinase co-localized at the trans-Golgi network (TGN). However, upon treatment with lysosomal inhibitors, both proteins appeared in the lysosomes, indicating that tyrosinase undergoes RNF152-mediated lysosomal degradation. Through ubiquitination assays, we found the indispensable roles of both the RING and transmembrane (TM) domains of RNF152 in facilitating tyrosinase ubiquitination. In summary, our findings underscore RNF152 as a tyrosinase-specific ubiquitin ligase essential for regulating melanogenesis in melanocytes.

13.
Exp Cell Res ; 434(2): 113874, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38070860

RESUMEN

The voltage-dependent anion channel 1 (VDAC1) forms an oligomeric structure on the mitochondrial outer membrane, which plays critical roles in many physiological processes. Research studies have demonstrated that the knockout of VDAC1 increases pigment content and up-regulates the expression of melanogenic genes. Due to its involvement in various physiological processes, the depletion of VDAC1 has significant detrimental effects on cellular functions and the inhibition of VDAC1 oligomerization has recently emerged as a promising strategy for the treatment of several diseases. In this study, we found that VDAC1 oligomerization inhibitors, VBIT-12 and NSC-15364, promote melanogenesis, dendrite formation and melanosome transport in human epidermal melanocytes (HEMCs). Mechanistically, treatment of HEMCs with an oligomerization inhibitor increased the level of cytoplasmic calcium ions, which activated calcium-calmodulin dependent protein kinase (CaMK) and led to the phosphorylation of CREB and the nuclear translocation of CREB-regulated transcription coactivators (CRTCs). Subsequently, CRTCs, p-CREB and CREB-binding protein (CBP) in the nucleus cooperatively recruit the transcription machinery to initiate the transcription of MITF thus promoting pigmentation. Importantly, our study also demonstrates that VDAC1 oligomerization inhibitors increase pigmentation in zebrafish and in human skin explants, highlighting their potential as a therapeutic strategy for skin pigmentation disorders.


Asunto(s)
Trastornos de la Pigmentación , Animales , Humanos , Trastornos de la Pigmentación/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Calcio/metabolismo , Pez Cebra/metabolismo , Melanocitos , Melaninas/metabolismo , Pigmentación , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Factor de Transcripción Asociado a Microftalmía/farmacología
14.
Pigment Cell Melanoma Res ; 37(2): 232-246, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37758515

RESUMEN

Exosomes are involved in intercellular communication by transferring cargo between cells and altering the specific functions of the target cells. Recent studies have demonstrated the therapeutic effects of exosomes in several skin diseases. However, understanding of the effects of exosomes on anti-pigmentation is limited. Therefore, we investigated whether BJ-5ta exosomes (BJ-5ta-Ex) derived from human foreskin fibroblasts regulate melanogenesis and delineated the underlying mechanism. Interestingly, treatment with BJ-5ta-Ex induced decreased melanin content, tyrosinase (TYR) activity, and expression of melanogenesis-related genes, including microphthalmia-related transcription factor (MITF), TYR, tyrosinase-related protein-1 (TRP1), and tyrosinase-related protein-2 (TRP2). In addition, BJ-5ta-Ex downregulated the cAMP/PKA and GSK-3ß/ß-catenin signaling pathways and upregulated the MAPK/ERK signaling pathway. Notably, treatment with BJ-5ta-Ex inhibited α-melanocyte-stimulating hormone-induced melanosome transport and decreased the expression of key proteins involved in melanosome transport, namely, rab27a and melanophilin (MLPH). To further confirm the depigmenting effects of BJ-5ta-Ex, we conducted experiments using a three-dimensional reconstituted human full skin model and ultraviolet B (UVB)-irradiated mouse model. Treatment with BJ-5ta-Ex improved tissue brightness and reduced the distribution of melanosomes. In UVB-irradiated mouse ears, BJ-5ta-Ex reduced the number of active melanocytes and melanin granules. These results demonstrate that BJ-5ta-Ex can be useful for the clinical treatment of hyperpigmentation disorders.


Asunto(s)
Exosomas , Melanoma Experimental , Animales , Ratones , Humanos , Melaninas/metabolismo , Exosomas/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Monofenol Monooxigenasa/metabolismo , Melanoma Experimental/metabolismo , Ratones Endogámicos C57BL , Melanocitos/metabolismo , Fibroblastos/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Línea Celular Tumoral
15.
J Ethnopharmacol ; 323: 117673, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38158096

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tribuloside, a natural flavonoid extracted from Chinese medicine Tribulus terrestris L., has shown potent efficacy in treating various diseases. In China, the fruits of Tribulus terrestris L. have long been utilized for relieving headache, dizziness, itchiness, and vitiligo. Water-based extract derived from Tribulus terrestris L. can enhance melanogenesis in mouse hair follicle melanocytes by elevating the expression of α-melanocyte stimulating hormone (α-MSH) and melanocortin-1 recepter (MC-1R). Nevertheless, there is a lack of information regarding the impact of tribuloside on pigmentation in both laboratory settings and living organisms. AIM OF THE STUDY: The present research aimed to examine the impact of tribuloside on pigmentation, and delve into the underlying mechanism. MATERIALS AND METHODS: Following the administration of tribuloside in human epidermal melanocytes (HEMCs), we utilized microplate reader, Masson-Fontana ammoniacal silver stain, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to measure melanin contents, dendrite lengths, melanosome counts; L-DOPA oxidation assay to indicate tyrosinase activity, Western blotting to evaluate the expression of melanogenic and associated phosphodiesterase (PDE)/cyclic adenosine monophosphate (cAMP)/cyclic-AMP dependent protein kinase A (PKA) pathway proteins. A PDE-Glo assay to verify the inhibitory effect of tribuloside on PDE was also conducted. Additionally, we examined the impact of tribuloside on the pigmentation in both zebrafish model and human skin samples. RESULTS: Tribuloside had a notable impact on the production of melanin in melanocytes, zebrafish, and human skin samples. These functions might be attributed to the inhibitory effect of tribuloside on PDE, which could increase the intracellular level of cAMP to stimulate the phosphorylation of cAMP-response element binding (CREB). Once activated, it induced microphthalmia-associated transcription factor (MITF) expression and increased the expression of tyrosinase, Rab27a and cell division cycle protein 42 (Cdc42), ultimately facilitating melanogenesis, melanocyte dendricity, and melanin transport. CONCLUSION: Tribuloside acts on the PDE/cAMP/PKA pathway to enhance melanogenesis, melanocyte dendricity, and melanosome transport; meanwhile, tribuloside does not have any toxic effects on cells and may be introduced into clinical prescriptions to promote pigmentation.


Asunto(s)
Melaninas , Melanosomas , Animales , Ratones , Humanos , Melaninas/metabolismo , Melanosomas/metabolismo , Pez Cebra , Monofenol Monooxigenasa/metabolismo , Melanogénesis , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Melanocitos , AMP Cíclico/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Línea Celular Tumoral
16.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37833870

RESUMEN

Pigmentary glaucoma has recently been associated with missense mutations in PMEL that are dominantly inherited and enriched in the protein's fascinating repeat domain. PMEL pathobiology is intriguing because PMEL forms functional amyloid in healthy eyes, and this PMEL amyloid acts to scaffold melanin deposition. This is an informative contradistinction to prominent neurodegenerative diseases where amyloid formation is neurotoxic and mutations cause a toxic gain of function called "amyloidosis". Preclinical animal models have failed to model this PMEL "dysamyloidosis" pathomechanism and instead cause recessively inherited ocular pigment defects via PMEL loss of function; they have not addressed the consequences of disrupting PMEL's repetitive region. Here, we use CRISPR to engineer a small in-frame mutation in the zebrafish homolog of PMEL that is predicted to subtly disrupt the protein's repetitive region. Homozygous mutant larvae displayed pigmentation phenotypes and altered eye morphogenesis similar to presumptive null larvae. Heterozygous mutants had disrupted eye morphogenesis and disrupted pigment deposition in their retinal melanosomes. The deficits in the pigment deposition of these young adult fish were not accompanied by any detectable glaucomatous changes in intraocular pressure or retinal morphology. Overall, the data provide important in vivo validation that subtle PMEL mutations can cause a dominantly inherited pigment pathology that aligns with the inheritance of pigmentary glaucoma patient pedigrees. These in vivo observations help to resolve controversy regarding the necessity of PMEL's repeat domain in pigmentation. The data foster an ongoing interest in an antithetical dysamyloidosis mechanism that, akin to the amyloidosis of devastating dementias, manifests as a slow progressive neurodegenerative disease.


Asunto(s)
Glaucoma de Ángulo Abierto , Enfermedades Neurodegenerativas , Animales , Humanos , Adulto Joven , Amiloide/metabolismo , Ojo/metabolismo , Glaucoma de Ángulo Abierto/metabolismo , Antígeno gp100 del Melanoma/genética , Melanosomas/genética , Melanosomas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Pez Cebra
17.
FEBS J ; 290(22): 5373-5394, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37552474

RESUMEN

Premelanosome protein (PMEL), a melanocyte-specific glycoprotein, has an essential role in melanosome maturation, assembling amyloid fibrils for melanin deposition. PMEL undergoes several post-translational modifications, including N- and O-glycosylations, which are associated with proper melanosome development. C-mannosylation is a rare type of protein glycosylation at a tryptophan residue that might regulate the secretion and localization of proteins. PMEL has one putative C-mannosylation site in its core amyloid fragment (CAF); however, there is no report focusing on C-mannosylation of PMEL. To investigate this, we expressed recombinant PMEL in SK-MEL-28 human melanoma cells and purified the protein. Mass spectrometry analyses demonstrated that human PMEL is C-mannosylated at multiple tryptophan residues in its CAF and N-terminal fragment (NTF). In addition to the W153 or W156 residue (CAF), which lies in the consensus sequence for C-mannosylation, the W104 residue (NTF) was C-mannosylated without the consensus sequence. To determine the effects of the modifications, we deleted the PMEL gene by using CRISPR/Cas9 technology and re-expressed wild-type or C-mannosylation-defective mutants of PMEL, in which the C-mannosylated tryptophan was replaced with a phenylalanine residue (WF mutation), in SK-MEL-28 cells. Importantly, fibril-containing melanosomes were significantly decreased in W104F mutant PMEL-re-expressing cells compared with wild-type PMEL, observed using transmission electron microscopy. Furthermore, western blot and immunofluorescence analysis suggested that the W104F mutation may cause mild endoplasmic reticulumretention, possibly associated with early misfolding, and lysosomal misaggregation, thus reducing functional fibril formation. Our results demonstrate that C-mannosylation of PMEL is required for proper melanosome development by regulating PMEL-derived fibril formation.


Asunto(s)
Amiloide , Triptófano , Humanos , Glicosilación , Triptófano/genética , Triptófano/metabolismo , Amiloide/química , Melanosomas/genética , Melanosomas/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas Amiloidogénicas/metabolismo , Antígeno gp100 del Melanoma/genética , Antígeno gp100 del Melanoma/química , Antígeno gp100 del Melanoma/metabolismo
18.
Theranostics ; 13(12): 3914-3924, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554281

RESUMEN

Rationale: Senescent melanocytes accumulate in photoaged skin and are closely related to skin aging. A better understanding of the molecular characteristics of senescent melanocytes may be the key to controlling skin aging. Methods: We have developed an in vitro model of senescence in melanocytes using UV irradiation and investigated the functional characteristics and molecular mechanisms underlying senescence in UV-irradiated melanocytes. Results: We have highlighted that in vitro senescent melanocytes are characterized by melanosome transport dysfunction resulting in melanin accumulation. The defective melanosome transport was confirmed with the ultrastructural characterization of both in vitro UV-induced senescent melanocytes and in vivo melanocytes of hypopigmented aging skin. A single-cell transcriptomic analysis revealed that the glycolytic metabolism pathway appeared to be significantly upregulated in most senescent phenotypes. Furthermore, the inhibition of glycolysis by pharmacological compounds mitigates the pro-aging effects of melanocytes senescence, suggesting that alterations in cellular glucose metabolism act as a driving force for senescence in melanocytes. Conclusion: These results demonstrate that senescent melanocytes are characterized by glycolytic metabolism changes and a defective melanosome transport process, which may be related to impaired mitochondrial function, highlighting the importance of metabolic reprogramming in regulating melanocyte senescence.


Asunto(s)
Melanocitos , Melanosomas , Melanosomas/metabolismo , Piel/metabolismo , Melaninas/metabolismo , Glucólisis , Senescencia Celular
19.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37511054

RESUMEN

Skin pigmentation ensures efficient photoprotection and relies on the pigment melanin, which is produced by epidermal melanocytes and transferred to surrounding keratinocytes. While the molecular mechanisms of melanin synthesis and transport in melanocytes are now well characterized, much less is known about melanin transfer and processing within keratinocytes. Over the past few decades, distinct models have been proposed to explain how melanin transfer occurs at the cellular and molecular levels. However, this remains a debated topic, as up to four different models have been proposed, with evidence presented supporting each. Here, we review the current knowledge on the regulation of melanin exocytosis, internalization, processing, and polarization. Regarding the different transfer models, we discuss how these might co-exist to regulate skin pigmentation under different conditions, i.e., constitutive and facultative skin pigmentation or physiological and pathological conditions. Moreover, we discuss recent evidence that sheds light on the regulation of melanin exocytosis by melanocytes and internalization by keratinocytes, as well as how melanin is stored within these cells in a compartment that we propose be named the melanokerasome. Finally, we review the state of the art on the molecular mechanisms that lead to melanokerasome positioning above the nuclei of keratinocytes, forming supranuclear caps that shield the nuclear DNA from UV radiation. Thus, we provide a comprehensive overview of the current knowledge on the molecular mechanisms regulating skin pigmentation, from melanin exocytosis by melanocytes and internalization by keratinocytes to processing and polarization within keratinocytes. A better knowledge of these molecular mechanisms will clarify long-lasting questions in the field that are crucial for the understanding of skin pigmentation and can shed light on fundamental aspects of organelle biology. Ultimately, this knowledge can lead to novel therapeutic strategies to treat hypo- or hyper-pigmentation disorders, which have a high socio-economic burden on patients and healthcare systems worldwide, as well as cosmetic applications.


Asunto(s)
Melaninas , Melanocitos , Humanos , Melanocitos/fisiología , Queratinocitos/fisiología , Epidermis , Pigmentación de la Piel , Melanosomas
20.
Front Med (Lausanne) ; 10: 1176781, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275386

RESUMEN

Vitiligo is a common acquired pigmentary disorder that presents as progressive loss of melanocytes from the skin. Epidermal melanocytes and keratinocytes are in close proximity to each other, forming a functional and structural unit where keratinocytes play a pivotal role in supporting melanocyte homeostasis and melanogenesis. This intimate relationship suggests that keratinocytes might contribute to ongoing melanocyte loss and subsequent depigmentation. In fact, keratinocyte dysfunction is a documented phenomenon in vitiligo. Keratinocyte apoptosis can deprive melanocytes from growth factors including stem cell factor (SCF) and other melanogenic stimulating factors which are essential for melanocyte function. Additionally, keratinocytes control the mobility/stability phases of melanocytes via matrix metalloproteinases and basement membrane remodeling. Hence keratinocyte dysfunction may be implicated in detachment of melanocytes from the basement membrane and subsequent loss from the epidermis, also potentially interfering with repigmentation in patients with stable disease. Furthermore, keratinocytes contribute to the autoimmune insult in vitiligo. Keratinocytes express MHC II in perilesional skin and may present melanosomal antigens in the context of MHC class II after the pigmented organelles have been transferred from melanocytes. Moreover, keratinocytes secrete cytokines and chemokines including CXCL-9, CXCL-10, and IL-15 that amplify the inflammatory circuit within vitiligo skin and recruit melanocyte-specific, skin-resident memory T cells. In summary, keratinocytes can influence vitiligo development by a combination of failing to produce survival factors, limiting melanocyte adhesion in lesional skin, presenting melanocyte antigens and enhancing the recruitment of pathogenic T cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...