Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros











Intervalo de año de publicación
1.
Curr Protoc ; 4(5): e1048, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38752255

RESUMEN

Both Ca2+ and protein kinase A (PKA) are multifaceted and ubiquitous signaling molecules, essential for regulating the intricate network of signaling pathways. However, their dynamics within specialized membrane regions are still not well characterized. By using genetically encoded fluorescent indicators specifically targeted to distinct plasma membrane microdomains, we have established a protocol that permits observing Ca2+/PKA dynamics in discrete neuronal microdomains with high spatial and temporal resolution. The approach employs a fluorescence microscope with a sensitive camera and a dedicated CFP/YFP/mCherry filter set, enabling the simultaneous detection of donor-acceptor emission and red fluorescence signal. In this detailed step-by-step guide, we outline the experimental procedure, including isolation of rat primary neurons and their transfection with biosensors targeted to lipid rafts or non-raft regions of plasma membrane. We provide information on the necessary equipment and imaging setup required for recording, along with highlighting critical parameters and troubleshooting guidelines for real-time measurements. Finally, we provide examples of the observed Ca2+ and PKA changes in specific cellular compartments. The application of this technique may have significant implications for studying cross-talk between second messengers and their alterations in various pathological conditions. © 2024 Wiley Periodicals LLC.


Asunto(s)
Calcio , Proteínas Quinasas Dependientes de AMP Cíclico , Transferencia Resonante de Energía de Fluorescencia , Hipocampo , Microdominios de Membrana , Neuronas , Animales , Neuronas/metabolismo , Hipocampo/metabolismo , Hipocampo/citología , Ratas , Calcio/metabolismo , Microdominios de Membrana/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células Cultivadas , Microscopía Fluorescente/métodos , Técnicas Biosensibles/métodos
2.
Plant J ; 119(1): 237-251, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38597817

RESUMEN

Plasma membrane (PM)-associated abscisic acid (ABA) signal transduction is an important component of ABA signaling. The C2-domain ABA-related (CAR) proteins have been reported to play a crucial role in recruiting ABA receptor PYR1/PYL/RCAR (PYLs) to the PM. However, the molecular details of the involvement of CAR proteins in membrane-delimited ABA signal transduction remain unclear. For instance, where this response process takes place and whether any additional members besides PYL are taking part in this signaling process. Here, the GUS-tagged materials for all Arabidopsis CAR members were used to comprehensively visualize the extensive expression patterns of the CAR family genes. Based on the representativeness of CAR1 in response to ABA, we determined to use it as a target to study the function of CAR proteins in PM-associated ABA signaling. Single-particle tracking showed that ABA affected the spatiotemporal dynamics of CAR1. The presence of ABA prolonged the dwell time of CAR1 on the membrane and showed faster lateral mobility. Surprisingly, we verified that CAR1 could directly recruit hypersensitive to ABA1 (HAB1) and SNF1-related protein kinase 2.2 (SnRK2.2) to the PM at both the bulk and single-molecule levels. Furthermore, PM localization of CAR1 was demonstrated to be related to membrane microdomains. Collectively, our study revealed that CARs recruited the three main components of ABA signaling to the PM to respond positively to ABA. This study deepens our understanding of ABA signal transduction.


Asunto(s)
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Membrana Celular , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética
3.
mBio ; 14(4): e0319022, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37530528

RESUMEN

The obligate intracellular bacterium Chlamydia trachomatis inserts a family of inclusion membrane (Inc) proteins into the membrane of its vacuole (the inclusion). The Inc CpoS is a critical suppressor of host cellular immune surveillance, but the underlying mechanism remained elusive. By complementing a cpoS mutant with various natural orthologs and variants of CpoS, we linked distinct molecular interactions of CpoS to distinct functions. Unexpectedly, we found CpoS to be essential for the formation of inclusion membrane microdomains that control the spatial organization of multiple Incs involved in signaling and modulation of the host cellular cytoskeleton. While the function of CpoS in microdomains was uncoupled from its role in the suppression of host cellular defenses, we found the ability of CpoS to interact with Rab GTPases to be required not only for the manipulation of membrane trafficking, such as to mediate transport of ceramide-derived lipids (sphingolipids) to the inclusion, but also for the inhibition of Stimulator of interferon genes (STING)-dependent type I interferon responses. Indeed, depletion of Rab35 phenocopied the exacerbated interferon responses observed during infection with CpoS-deficient mutants. Overall, our findings highlight the role of Inc-Inc interactions in shaping the inclusion microenvironment and the modulation of membrane trafficking as a pathogenic immune evasion strategy. IMPORTANCE Chlamydia trachomatis is a prevalent bacterial pathogen that causes blinding ocular scarring and urogenital infections that can lead to infertility and pregnancy complications. Because Chlamydia can only grow within its host cell, boosting the intrinsic defenses of human cells may represent a novel strategy to fight pathogen replication and survival. Hence, CpoS, a Chlamydia protein known to block host cellular defenses, or processes regulated by CpoS, could provide new opportunities for therapeutic intervention. By revealing CpoS as a multifunctional virulence factor and by linking its ability to block host cellular immune signaling to the modulation of membrane trafficking, the present work may provide a foundation for such rationale targeting and advances our understanding of how intracellular bacteria can shape and protect their growth niche.


Asunto(s)
Infecciones por Chlamydia , Interferón Tipo I , Humanos , Proteínas Bacterianas/metabolismo , Chlamydia trachomatis/genética , Infecciones por Chlamydia/microbiología , Evasión Inmune , Interferón Tipo I/metabolismo , Células HeLa , Interacciones Huésped-Patógeno
4.
Sheng Wu Gong Cheng Xue Bao ; 39(6): 2215-2230, 2023 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-37401591

RESUMEN

Functional membrane microdomains (FMMs) that are mainly composed of scaffold proteins and polyisoprenoids play important roles in diverse cellular physiological processes in bacteria. The aim of this study was to identify the correlation between MK-7 and FMMs and then regulate the MK-7 biosynthesis through FMMs. Firstly, the relationship between FMMs and MK-7 on the cell membrane was determined by fluorescent labeling. Secondly, we demonstrated that MK-7 is a key polyisoprenoid component of FMMs by analyzing the changes in the content of MK-7 on cell membrane and the changes in the membrane order before and after destroying the integrity of FMMs. Subsequently, the subcellular localization of some key enzymes in MK-7 synthesis was explored by visual analysis, and the intracellular free pathway enzymes Fni, IspA, HepT and YuxO were localized to FMMs through FloA to achieve the compartmentalization of MK-7 synthesis pathway. Finally, a high MK-7 production strain BS3AT was successfully obtained. The production of MK-7 reached 300.3 mg/L in shake flask and 464.2 mg/L in 3 L fermenter.


Asunto(s)
Bacillus subtilis , Reactores Biológicos , Bacillus subtilis/metabolismo , Vitamina K 2/metabolismo , Reactores Biológicos/microbiología , Microdominios de Membrana/metabolismo
5.
Microbiol Spectr ; 11(4): e0176723, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37347165

RESUMEN

Many eukaryotic membrane-dependent functions are often spatially and temporally regulated by membrane microdomains (FMMs), also known as lipid rafts. These domains are enriched in polyisoprenoid lipids and scaffolding proteins belonging to the stomatin, prohibitin, flotillin, and HflK/C (SPFH) protein superfamily that was also identified in Gram-positive bacteria. In contrast, little is still known about FMMs in Gram-negative bacteria. In Escherichia coli K-12, 4 SPFH proteins, YqiK, QmcA, HflK, and HflC, were shown to localize in discrete polar or lateral inner membrane locations, raising the possibility that E. coli SPFH proteins could contribute to the assembly of inner membrane FMMs and the regulation of cellular processes. Here, we studied the determinant of the localization of QmcA and HflC and showed that FMM-associated cardiolipin lipid biosynthesis is required for their native localization pattern. Using Biolog phenotypic arrays, we showed that a mutant lacking all SPFH genes displayed increased sensitivity to aminoglycosides and oxidative stress that is due to the absence of HflKC. Our study therefore provides further insights into the contribution of SPFH proteins to stress tolerance in E. coli. IMPORTANCE Eukaryotic cells often segregate physiological processes in cholesterol-rich functional membrane microdomains. These domains are also called lipid rafts and contain proteins of the stomatin, prohibitin, flotillin, and HflK/C (SPFH) superfamily, which are also present in prokaryotes but have been mostly studied in Gram-positive bacteria. Here, we showed that the cell localization of the SPFH proteins QmcA and HflKC in the Gram-negative bacterium E. coli is altered in the absence of cardiolipin lipid synthesis. This suggests that cardiolipins contribute to E. coli membrane microdomain assembly. Using a broad phenotypic analysis, we also showed that HflKC contribute to E. coli tolerance to aminoglycosides and oxidative stress. Our study, therefore, provides new insights into the cellular processes associated with SPFH proteins in E. coli.


Asunto(s)
Escherichia coli K12 , Proteínas de Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Prohibitinas , Aminoglicósidos/farmacología , Aminoglicósidos/metabolismo , Cardiolipinas/metabolismo , Escherichia coli K12/metabolismo , Microdominios de Membrana/metabolismo , Estrés Oxidativo , Antibacterianos/farmacología , Antibacterianos/metabolismo
6.
Aging Cell ; 22(8): e13867, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37254617

RESUMEN

"Lipid raft aging" in nerve cells represents an early event in the development of aging-related neurodegenerative diseases, such as Alzheimer's disease. Lipid rafts are key elements in synaptic plasticity, and their modification with aging alters interactions and distribution of signaling molecules, such as glutamate receptors and ion channels involved in memory formation, eventually leading to cognitive decline. In the present study, we have analyzed, in vivo, the effects of dietary supplementation of n-3 LCPUFA on the lipid structure, membrane microviscosity, domain organization, and partitioning of ionotropic and metabotropic glutamate receptors in hippocampal lipid raffs in female mice. The results revealed several lipid signatures of "lipid rafts aging" in old mice fed control diets, consisting in depletion of n-3 LCPUFA, membrane unsaturation, along with increased levels of saturates, plasmalogens, and sterol esters, as well as altered lipid relevant indexes. These changes were paralleled by increased microviscosity and changes in the raft/non-raft (R/NR) distribution of AMPA-R and mGluR5. Administration of the n-3 LCPUFA diet caused the partial reversion of fatty acid alterations found in aged mice and returned membrane microviscosity to values found in young animals. Paralleling these findings, lipid rafts accumulated mGluR5, NMDA-R, and ASIC2, and increased their R/NR proportions, which collectively indicate changes in synaptic plasticity. Unexpectedly, this diet also modified the lipidome and dimension of lipid rafts, as well as the domain redistribution of glutamate receptors and acid-sensing ion channels involved in hippocampal synaptic plasticity, likely modulating functionality of lipid rafts in memory formation and reluctance to age-associated cognitive decline.


Asunto(s)
Ácidos Grasos Insaturados , Ácidos Grasos , Femenino , Ratones , Animales , Hipocampo , Microdominios de Membrana/química , Microdominios de Membrana/fisiología , Dieta
7.
Elife ; 122023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37042640

RESUMEN

Sufficient access to transition metals such as iron is essential for bacterial proliferation and their active limitation within host tissues effectively restricts infection. To overcome iron limitation, the invasive pathogen Staphylococcus aureus uses the iron-regulated surface determinant (Isd) system to acquire hemoglobin-derived heme. While heme transport over the cell wall is well understood, its transport over the membrane is hardly investigated. In this study, we show the heme-specific permease IsdF to be energized by the general ATPase FhuC. Additionally, we show that IsdF needs appropriate location within the membrane for functionality. The membrane of S. aureus possesses special compartments (functional membrane microdomains [FMMs]) to organize membrane complexes. We show IsdF to be associated with FMMs, to directly interact with the FMM scaffolding protein flotillin A (FloA) and to co-localize with the latter on intact bacterial cells. Additionally, Isd-dependent bacterial growth required FMMs and FloA. Our study shows that Isd-dependent heme acquisition requires a highly structured cell envelope to allow coordinated transport over the cell wall and membrane and it gives the first example of a bacterial nutrient acquisition system that depends on FMMs.


Asunto(s)
Hemo , Staphylococcus aureus , Hemo/metabolismo , Staphylococcus aureus/metabolismo , Sideróforos/metabolismo , Hierro/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas Bacterianas/metabolismo
8.
Cells ; 12(7)2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-37048046

RESUMEN

BACKGROUND: Non-cholesterol sterols, as well as plant sterols, cross the blood-brain barrier and, thus, can be incorporated into cell membranes, affecting the cell's inflammatory response. The aim of our work was to develop an analytical protocol for a quantitative assessment of the sterol composition within the membrane microdomains of microglia. METHODS: A protocol for cell membrane isolation using OptiPrepTM gradient ultracentrifugation, in combination with a targeted mass spectrometry (LC-MS/MS)-based assay, was developed and validated for the quantitative analysis of free sterols in microglia cell membranes. RESULTS: Utilizing an established LC-MS/MS assay, cholesterol and seven non-cholesterol sterols were analyzed with a limit of detection from 0.001 to 0.05 mg/L. Applying the detergent-free isolation of SIM-A9 microglia cell membranes, cholesterol (CH), desmosterol (DE), lanosterol (LA) stigmasterol (ST), beta-sitosterol (SI) and campesterol (CA) were quantified with coefficients of variations between 6 and 29% (fractions 4-6, n = 5). The highest concentrations of non-CH sterols within the microglia plasma membranes were found in the microdomain region (DE>LA>SI>ST>CA), with ratios to CH ranging from 2.3 to 435 lower abundancies. CONCLUSION: By applying our newly developed and validated analytical protocol, we show that the non-CH sterol concentration is about 38% of the total sterol content in microglia membrane microdomains. Further investigations must clarify how changes in the non-sterol composition influence membrane fluidity and cell signaling.


Asunto(s)
Fitosteroles , Esteroles , Esteroles/metabolismo , Cromatografía Liquida , Microglía/metabolismo , Espectrometría de Masas en Tándem , Estigmasterol , Lanosterol , Membrana Celular/metabolismo
9.
Methods Mol Biol ; 2625: 129-139, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36653639

RESUMEN

The original concept that lipid and protein components are randomly distributed in cellular membranes has been challenged by evidence of compartmentalization of such components into discrete membrane microdomains (known as lipid rafts). The lipid microdomain hypothesis has generated significant controversy and rigorous inquiry to test the idea that such domains concentrate machinery to mediate cellular processes such as signaling, synaptic plasticity, and endocytosis. As such, a large number of studies have used biochemical, cell biological, and biophysical methodologies to define the composition of membrane microdomains in experimental contexts. Although biochemical preparation strategies are not without limitations (as discussed herein), the isolation of detergent-resistant and detergent-free membrane domains can provide important information about the segregation of lipids and proteins in membranes. In this chapter, we describe methodologies to isolate membranes from cell or tissue sources with biophysical/biochemical properties of membrane microdomains and also provide methods for subsequent classical or mass spectrometry-based lipid analytical approaches.


Asunto(s)
Ácidos Grasos , Microdominios de Membrana , Ácidos Grasos/metabolismo , Microdominios de Membrana/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Detergentes/química
10.
Methods Mol Biol ; 2601: 203-229, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36445586

RESUMEN

Membrane fluidity is a critical parameter of cellular membranes, which cells continuously strive to maintain within a viable range. Interference with the correct membrane fluidity state can strongly inhibit cell function. Triggered changes in membrane fluidity and associated impacts on lipid domains have been postulated to contribute to the mechanism of action of membrane targeting antimicrobials, but the corresponding analyses have been hampered by the absence of readily available analytical tools. Here, we expand upon the protocols outlined in the first edition of this book, providing further and alternative protocols that can be used to measure changes in membrane fluidity. We provide detailed protocols, which allow straightforward in vivo and in vitro measurement of antibiotic compound-triggered changes in membrane fluidity and fluid membrane microdomains. Furthermore, we summarize useful strains constructed by us and others to characterize and confirm lipid specificity of membrane antimicrobials directly in vivo.


Asunto(s)
Fluidez de la Membrana , Microscopía , Espectrometría de Fluorescencia , Membrana Celular , Lípidos
11.
Chinese Journal of Biotechnology ; (12): 2215-2230, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-981199

RESUMEN

Functional membrane microdomains (FMMs) that are mainly composed of scaffold proteins and polyisoprenoids play important roles in diverse cellular physiological processes in bacteria. The aim of this study was to identify the correlation between MK-7 and FMMs and then regulate the MK-7 biosynthesis through FMMs. Firstly, the relationship between FMMs and MK-7 on the cell membrane was determined by fluorescent labeling. Secondly, we demonstrated that MK-7 is a key polyisoprenoid component of FMMs by analyzing the changes in the content of MK-7 on cell membrane and the changes in the membrane order before and after destroying the integrity of FMMs. Subsequently, the subcellular localization of some key enzymes in MK-7 synthesis was explored by visual analysis, and the intracellular free pathway enzymes Fni, IspA, HepT and YuxO were localized to FMMs through FloA to achieve the compartmentalization of MK-7 synthesis pathway. Finally, a high MK-7 production strain BS3AT was successfully obtained. The production of MK-7 reached 300.3 mg/L in shake flask and 464.2 mg/L in 3 L fermenter.


Asunto(s)
Bacillus subtilis/metabolismo , Vitamina K 2/metabolismo , Reactores Biológicos/microbiología , Microdominios de Membrana/metabolismo
12.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36232429

RESUMEN

In this work, we will investigate if red blood cell (RBC) membrane fluidity, influenced by several hyperglycemia-induced pathways, could provide a complementary index of HbA1c to monitor the development of type 2 diabetes mellitus (T2DM)-related macroangiopathic complications such as Peripheral Artery Disease (PAD). The contextual liquid crystalline (LC) domain spatial organization in the membrane was analysed to investigate the phase dynamics of the transition. Twenty-seven patients with long-duration T2DM were recruited and classified in DM, including 12 non-PAD patients, and DM + PAD, including 15 patients in any stage of PAD. Mean values of RBC generalized polarization (GP), representative of membrane fluidity, together with spatial organization of LC domains were compared between the two groups; p-values < 0.05 were considered statistically significant. Although comparable for anthropometric characteristics, duration of diabetes, and HbA1c, RBC membranes of PAD patients were found to be significantly more fluid (GP: 0.501 ± 0.026) than non-PAD patients (GP: 0.519 ± 0.007). These alterations were shown to be triggered by changes in both LC microdomain composition and distribution. We found a decrease in Feret diameter from 0.245 ± 0.281 µm in DM to 0.183 ± 0.124 µm in DM + PAD, and an increase in circularity. Altered RBC membrane fluidity is correlated to a spatial reconfiguration of LC domains, which, by possibly altering metabolic function, are associated with the development of T2DM-related macroangiopathic complications.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad Arterial Periférica , Diabetes Mellitus Tipo 2/complicaciones , Eritrocitos/metabolismo , Hemoglobina Glucada/metabolismo , Humanos , Fluidez de la Membrana , Enfermedad Arterial Periférica/complicaciones
13.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36012724

RESUMEN

Gangliosides are glycosphingolipids of the plasma membrane and are highly enriched in the nervous system where they play a vital role in normal cell functions. Furthermore, several studies suggest their potential involvement in the pathogenesis of neurological conditions. Since cyclodextrins (CDs) can form inclusion complexes with various lipids, methylated beta-CDs are widely used in biomedical research to extract cholesterol from the membrane and study its cellular role. Despite CDs being known to interact with other membrane lipid components, their effect on gangliosides is poorly characterized. The aim of this research was to investigate the effect of dimethyl-beta-cyclodextrin (DIMEB), hydroxypropyl-beta-cyclodextrin (HPBCD), randomly methylated-alpha-cyclodextrin (RAMEA), and hydroxypropyl-alpha-cyclodextrin (HPACD) on ganglioside and cholesterol levels in rat brain synaptosomes. Their effect on membrane integrity and viability was also assessed. We examined the role of lipid depletion by CDs on the release of the major excitatory neurotransmitter, glutamate. Selective concentration range for cholesterol depletion was only found with HPBCD, but not with DIMEB. Selective depletion of gangliosides was achieved by both RAMEA and HPACD. The inhibition of stimulated glutamate release upon ganglioside depletion was found, suggesting their potential role in neurotransmission. Our study highlights the importance of the characterization of the lipid depleting capability of different CDs.


Asunto(s)
Ciclodextrinas , Trastornos del Metabolismo de los Lípidos , 2-Hidroxipropil-beta-Ciclodextrina/farmacología , Animales , Colesterol/metabolismo , Ciclodextrinas/metabolismo , Ciclodextrinas/farmacología , Gangliósidos/metabolismo , Ácido Glutámico/metabolismo , Trastornos del Metabolismo de los Lípidos/metabolismo , Microdominios de Membrana/metabolismo , Ratas , Sinaptosomas/metabolismo
14.
J Histochem Cytochem ; 70(8): 557-569, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35876388

RESUMEN

Endothelial cells (ECs) form a precisely regulated polarized monolayer in capillary walls. Vascular endothelial growth factor-A (VEGF-A) induces endothelial hyperpermeability, and VEGF-A applied to the basolateral side, but not the apical side, has been shown to be a strong barrier disruptor in blood-retinal barrier ECs. We show here that VEGF-A presented to the basolateral side of human umbilical vein ECs (HUVECs) induces higher permeability than apical stimulation, which is similar to results obtained with bovine retinal ECs. We investigated with immunocytochemistry and confocal imaging the distribution of VEGF receptor-2 (VEGFR2) and neuropilin-2 (NRP2) in perinuclear apical and basolateral membrane domains. Orthogonal z-sections of cultured HUVECs were obtained, and the fluorescence intensity at the apical and basolateral membrane compartments was measured. We found that VEGFR2 and NRP2 are evenly distributed throughout perinuclear apical and basolateral membrane compartments in unstimulated HUVECs grown on Transwell inserts, whereas basolateral VEGF-A stimulation induces a shift toward basolateral VEGFR2 and NRP2 localization. When HUVECs were grown on coverslips, the distribution of VEGFR2 and NRP2 across the perinuclear apical and basolateral membrane domains was different. Our findings demonstrate that HUVECs dynamically regulate VEGFR2 and NRP2 localization on membrane microdomains, depending on growth conditions and the polarity of VEGF-A stimulation.


Asunto(s)
Neuropilina-2 , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Bovinos , Membrana Celular/metabolismo , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Neuropilina-2/metabolismo , Retina/metabolismo
15.
Biomedicines ; 10(7)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35884824

RESUMEN

Gangliosides, amphiphilic glycosphingolipids, tend to associate laterally with other membrane constituents and undergo extensive interactions with membrane proteins in cis or trans configurations. Studies of human diseases resulting from mutations in the ganglioside biosynthesis pathway and research on transgenic mice with the same mutations implicate gangliosides in the pathogenesis of epilepsy. Gangliosides are reported to affect the activity of the Na+/K+-ATPase, the ubiquitously expressed plasma membrane pump responsible for the stabilization of the resting membrane potential by hyperpolarization, firing up the action potential and ion homeostasis. Impaired Na+/K+-ATPase activity has also been hypothesized to cause seizures by several mechanisms. In this review we present different epileptic phenotypes that are caused by impaired activity of Na+/K+-ATPase or changed membrane ganglioside composition. We further discuss how gangliosides may influence Na+/K+-ATPase activity by acting as lipid sorting machinery providing the optimal stage for Na+/K+-ATPase function. By establishing a distinct lipid environment, together with other membrane lipids, gangliosides possibly modulate Na+/K+-ATPase activity and aid in "starting up" and "turning off" this vital pump. Therefore, structural changes of neuronal membranes caused by altered ganglioside composition can be a contributing factor leading to aberrant Na+/K+-ATPase activity and ion imbalance priming neurons for pathological firing.

16.
Mini Rev Med Chem ; 22(18): 2318-2331, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35264091

RESUMEN

Membrane lipids are generally viewed as inert physical barriers, but many vital cellular processes greatly rely on the interaction with these structures, as expressed by the membrane hypothesis that explain the genesis of schizophrenia, Alzheimer's and autoimmune diseases, chronic fatigue or cancer. The concept that the cell membrane displays transient membrane microdomains with distinct lipid composition providing the basis for the development of selective lipid-targeted therapies, the membrane-lipid therapies (MLTs). In this concern, medicinal chemists may design therapeutically valuable compounds 1) with a higher affinity for the lipids in these microdomains to restore the normal physiological conditions, 2) that can directly or 3) indirectly (via enzyme inhibition/activation) replace damaged lipids or restore the regular lipid levels in the whole membrane or microdomain, 4) that alter the expression of genes related to lipid genesis/metabolism or 5) that modulate the pathways related to the membrane binding affinity of lipid-anchored proteins. In this context, this mini-review aims to explore the structural diversity and clinical applications of some of the main membrane and microdomain-targeted lipid drugs.


Asunto(s)
Lípidos de la Membrana , Microdominios de Membrana , Metabolismo de los Lípidos , Lípidos de la Membrana/análisis , Lípidos de la Membrana/metabolismo , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo
17.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34569608

RESUMEN

Phosphatidylinositol 4-kinase IIIα (PI4KIIIα) is the major enzyme responsible for generating phosphatidylinositol (4)-phosphate [PI(4)P] at the plasma membrane. This lipid kinase forms two multicomponent complexes, both including a palmitoylated anchor, EFR3. Whereas both PI4KIIIα complexes support production of PI(4)P, the distinct functions of each complex and mechanisms underlying the interplay between them remain unknown. Here, we present roles for differential palmitoylation patterns within a tri-cysteine motif in EFR3B (Cys5, Cys7 and Cys8) in controlling the distribution of PI4KIIIα between these two complexes at the plasma membrane and corresponding functions in phosphoinositide homeostasis. Spacing of palmitoyl groups within three doubly palmitoylated EFR3B 'lipoforms' affects both interactions between EFR3B and TMEM150A, a transmembrane protein governing formation of a PI4KIIIα complex functioning in rapid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] resynthesis following phospholipase C signaling, and EFR3B partitioning within liquid-ordered and -disordered regions of the plasma membrane. This work identifies a palmitoylation code involved in controlling protein-protein and protein-lipid interactions that affect a plasma membrane-resident lipid biosynthetic pathway.


Asunto(s)
Lipoilación , Fosfatidilinositoles , Membrana Celular/metabolismo , Homeostasis , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositoles/metabolismo
18.
J Exp Bot ; 73(1): 68-77, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34610124

RESUMEN

Membrane proteins have key functions in signal transduction, transport, and metabolism. Therefore, deciphering the interactions between membrane proteins provides crucial information on signal transduction and the spatiotemporal organization of protein complexes. However, detecting the interactions and behaviors of membrane proteins in their native environments remains difficult. Förster resonance energy transfer (FRET) is a powerful tool for quantifying the dynamic interactions and assembly of membrane proteins without disrupting their local environment, supplying nanometer-scale spatial information and nanosecond-scale temporal information. In this review, we briefly introduce the basic principles of FRET and assess the current state of progress in the development of new FRET techniques (such as FRET-FLIM, homo-FRET, and smFRET) for the analysis of plant membrane proteins. We also describe the various FRET-based biosensors used to quantify the homeostasis of signaling molecules and the active state of kinases. Furthermore, we summarize recent applications of these advanced FRET sensors in probing membrane protein interactions, stoichiometry, and protein clustering, which have shed light on the complex biological functions of membrane proteins in living plant cells.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Proteínas de la Membrana , Fenómenos Biofísicos , Homeostasis , Proteínas de la Membrana/genética , Transducción de Señal
19.
Dis Model Mech ; 15(2)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34927194

RESUMEN

Developments in single-molecule microscopy (SMM) have enabled imaging individual proteins in biological systems, focusing on the analysis of protein mobility patterns inside cultured cells. In the present study, SMM was applied in vivo, using the zebrafish embryo model. We studied dynamics of the membrane protein H-Ras, its membrane-anchoring domain, C10H-Ras, and mutants, using total internal reflection fluorescence microscopy. Our results consistently confirm the presence of fast- and slow-diffusing subpopulations of molecules, which confine to microdomains within the plasma membrane. The active mutant H-RasV12 exhibits higher diffusion rates and is confined to larger domains than the wild-type H-Ras and its inactive mutant H-RasN17. Subsequently, we demonstrate that the structure and composition of the plasma membrane have an imperative role in modulating H-Ras mobility patterns. Ultimately, we establish that differences between cells within the same embryo largely contribute to the overall data variability. Our findings agree with a model in which the cell architecture and the protein activation state determine protein mobility, underlining the importance of SMM imaging for studying factors influencing protein dynamics in an intact living organism. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Células Epidérmicas , Proteínas de la Membrana , Pez Cebra , Animales , Línea Celular , Membrana Celular/metabolismo , Difusión , Células Epidérmicas/citología , Células Epidérmicas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Imagen Individual de Molécula
20.
Front Microbiol ; 12: 754486, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899640

RESUMEN

Cell membranes are not homogenous but compartmentalized into lateral microdomains, which are considered as biochemical reaction centers for various physiological processes in eukaryotes and prokaryotes. Due to their special lipid and protein composition, some of these microdomains are resistant to treatment with non-ionic detergents and can be purified as detergent-resistant membranes (DRMs). Here we report the proteome of DRMs from the Gram-negative phytopathogen Agrobacterium tumefaciens. Using label-free liquid chromatography-tandem mass spectrometry, we identified proteins enriched in DRMs isolated under normal and virulence-mimicking growth conditions. Prominent microdomain marker proteins such as the SPFH (stomatin/prohibitin/flotillin/HflKC) proteins HflK, HflC and Atu3772, along with the protease FtsH were highly enriched in DRMs isolated under any given condition. Moreover, proteins involved in cell envelope biogenesis, transport and secretion, as well as motility- and chemotaxis-associated proteins were overrepresented in DRMs. Most strikingly, we found virulence-associated proteins such as the VirA/VirG two-component system, and the membrane-spanning type IV and type VI secretion systems enriched in DRMs. Fluorescence microscopy of the cellular localization of both secretion systems and of marker proteins was in agreement with the results from the proteomics approach. These findings suggest that virulence traits are micro-compartmentalized into functional microdomains in A. tumefaciens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA