Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
Más filtros











Intervalo de año de publicación
1.
Adv Mater ; : e2407652, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267373

RESUMEN

While significant efforts have been devoted to optimize the thin-film stoichiometry and processing of perovskites for applications in photovoltaic and light-emitting diodes, there is a noticeable lack of emphasis on tailoring them for lasing applications. In this study, it is revealed that thin films engineered for efficient light-emitting diodes, with passivation of deep and shallow trap states and a tailored energetic landscape directing carriers toward low-energy emitting states, may not be optimal for light amplification systems. Instead, amplified spontaneous emission (ASE) is found to be sustained by shallow defects, driven by the positive correlation between the ASE threshold and the ratio of carrier injection rate in the emissive state to the recombination rate of excited carriers. This insight has informed the development of an optimized perovskite thin film and laser device exhibiting a low threshold (≈ 60 µJ cm-2) and stable ASE emission exceeding 21 hours in ambient conditions.

2.
Adv Mater ; : e2407764, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324282

RESUMEN

In this review, the recent development of blue perovskite light-emitting diodes (PeLED) are summarized. On deep-blue (≤465 nm) perovskite nanomaterials of different structural forms are mainly focused, including nanocrystals (NCs), quantum dots (QDs), nanoplatelets (NPLs), quasi-2D thin film, 3D bulk thin film, as well as lead-free perovskite nanomaterials. The current challenges are also examined in producing efficient deep-blue PeLED, such as material and spectral instability, imbalance charge transport, Joule heat impact, and poor optoelectronic performance. Several strategies are further discussed to overcome these challenges and achieve efficient deep-blue PeLED for next-generation display technology.

3.
Chem Asian J ; : e202400787, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261288

RESUMEN

Metal halide perovskites, both lead-based and lead-free variants, have emerged as highly versatile materials with widespread applications across various fields, including photovoltaics, optoelectronics, and photocatalysis. This review provides a succinct overview of the recent advancements in the utilization of lead and lead-free halide perovskites specifically in photocatalysis. We explore the diverse range of photocatalytic reactions enabled by metal halide perovskites, including organic transformations, carbon dioxide reduction, and pollutant degradation. We highlight key developments, mechanistic insights, and challenges in the field, offering our perspectives on the future research directions and potential applications. By summarizing recent findings from the literature, this review aims to provide a timely resource for researchers interested in harnessing the full potential of metal halide perovskites for sustainable and efficient photocatalytic processes.

4.
ACS Nano ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39282726

RESUMEN

Perovskite-based flexible electroluminescent (EL) devices are emerging as promising candidates in the display field due to their exceptional optoelectronic properties and potential for cost-effective production. However, simultaneously achieving high EL performance, excellent flexibility and stretchability, robust mechanical strength, and diverse applications remains a significant challenge. In this review, we provide a comprehensive overview of the latest developments in perovskite-based flexible EL devices, covering both direct-current (DC) and alternating-current (AC) electroluminescent formats. Our discussion encompasses the materials, working principles, device architectures, failure mechanisms, optimization strategies, and practical applications. Through this review, we aim to deepen our understanding of the current challenges and future directions of perovskite-based flexible light-emitting technologies, hoping to facilitate their potential commercial applications.

5.
J Mol Model ; 30(9): 299, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107564

RESUMEN

CONTEXT: Novel optoelectronic and thermoelectric properties with broad compositional range, non-toxic nature and structural stability make halide-based double perovskites fascinating for flexible optoelectronic devices. In this work, the structural electronic, optical and transport properties of Rb2TlSbX6 (X = Cl, Br, I) were studied using density functional theory for optoelectronic devices. The elastic analysis demonstrates ductile nature, mechanical stability, anisotropic behaviour and feasibility for flexible optoelectronic devices. The band structure study using Tran-Blaha-modified Becke-Johnson (TB-mBJ) potential shows that all studied materials have direct bandgap. In addition, the bandgap of Rb2TlSbCl6 is more appropriate for optoelectronic devices. The small loss and maximum absorption in visible regions make these materials prime candidates for optoelectronic devices. The transport features indicate that all the studied double perovskites reflect p-type semiconducting behaviour as highlighted by positive Seebeck coefficient values. Furthermore, the high power factor values of Rb2TlSbX6 (X = Cl, Br, I) double perovskites make them suitable for thermoelectric device applications at high temperatures. Based on electronic optical and thermoelectric properties Rb2TlSbCl6 is the best candidate for flexible optoelectronic devices. METHODS: In this paper, structural optimization of Rb2TlSbX6 (X = Cl, Br, I) double perovskites was conducted utilizing the Wien2k software based on first principle calculations with Perdew-Burke-Ernzerhof's generalized-gradient approximation (PBE-sol approximation). The TB-mBJ potential was employed to compute the accurate band gap of studied materials. The thermoelectric properties are evaluated with BoltzTraP code, showing a predominance of P-type charge carriers in all studied perovskites. This methodological strategy verifies the material's remarkable stability and optical properties and offers a solid framework for examining its potential in optoelectronic devices.

6.
ACS Appl Mater Interfaces ; 16(36): 47535-47550, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39207119

RESUMEN

In this investigation, moisture-stable CsSnBr2Cl nanoparticles were synthesized by incorporating Cl into CsSnBr3 halide perovskite using the hot injection method. Various analyses including XRD, XPS, UV-vis absorbance, photoluminescence, and Mott-Schottky have confirmed that the structural properties, chemical states, optical properties, and electronic band structure of CsSnBr2Cl nanoparticles remain intact even after 75 days of water immersion, thereby conclusively demonstrating their moisture stability. In a three-electrode system, the comparative electrochemical performance of pristine CsSnBr3 nanoparticles and moisture-stable Cl-incorporated CsSnBr2Cl nanoparticles was evaluated in various aqueous electrolytes, including HCl, Na2SO4, and KOH. The results indicate that the CsSnBr2Cl electrode material exhibits superior electrochemical properties, such as a larger integrated cyclic voltammetry (CV) area, a wider potential window, longer charge-discharge times, and lower impedance parameters compared to the pristine CsSnBr3 nanoparticles. The electrochemical performance of CsSnBr2Cl nanoparticles was evaluated for potential applications in batteries, supercapacitors, fuel cells, and water splitting, with a focus on reaction kinetics, charge storage mechanisms, and impedance parameters. The electrochemical properties of the nanoparticles were assessed using a three-electrode configuration across various 0.5 M aqueous electrolytes (HCl, Na2SO4, and KOH). In HCl, the nanoparticles demonstrated impressive charge storage capability, achieving a capacitance of 474 F g-1 at 1 A g-1, affirming their suitability for energy storage devices. In Na2SO4(aq.), the nanoparticles exhibited excellent stability for supercapacitors, operating up to 1.6 V without significant oxygen evolution. Notably, in KOH, they demonstrated potential as effective water-splitting electrodes. The practical applicability of the nanoparticles was evaluated using a symmetric two-electrode configuration with HCl and Na2SO4 electrolytes. The capacitance values were 117 F g-1 in HCl and 70 F g-1 in Na2SO4 at 1 A g-1. Notably, after 5000 GCD cycles in HCl(aq.), the nanoparticles retained 93% of their capacitance and maintained 91% Coulombic efficiency. They also demonstrated stable operation across a temperature range of 3 to 60 °C, achieving an energy density of 5.83 W h kg-1 at a power density of 600 W kg-1. This study emphasizes the considerable potential of CsSnBr2Cl nanoparticles in advancing electrochemical energy storage technologies and sets a solid foundation for future research and development in metal halide perovskites.

7.
Angew Chem Int Ed Engl ; : e202407305, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090857

RESUMEN

Metal halide perovskite ferroelectrics combining spontaneous polarization and excellent semiconducting properties is an ideal platform for enabling self-driven X-ray detection. However, achievements to date have been only based on uniaxiality, which increases the complexity of device fabrication. Multi-axial ferroelectric materials have multiple equivalent polarization directions, making them potentially amenable to multi-axial self-driven X-ray detection, but the report on these types of materials is still a huge blank. Herein, a high-quality (BA)2(EA)2Pb3I10 (1) biaxial ferroelectric single crystal was successfully grown, which exhibited significant spontaneous polarization along the c-axis and b-axis. Under X-ray irradiation, bulk photovoltaic effect (BPVE) was exhibited along both the c-axis and b-axis, with open circuit voltages (Voc) of 0.23 V and 0.22 V, respectively. Then, the BPVE revealed along the inversion of polarized direction with the polarized electric fields. Intriguingly, due to the BPVE of 1, 1 achieved multi-axial self-driven X-ray detection for the first time (c-axis and b-axis) with relatively high sensitivities and ultralow detection limits (17.2 nGyair s-1 and 19.4 nGyair s-1, respectively). This work provides a reference for the subsequent use of multi-axial ferroelectricity for multi-axial self-driven optoelectronic detection.

8.
Angew Chem Int Ed Engl ; : e202411136, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147700

RESUMEN

Low dimensional organic-inorganic hybrid metal halide materials have attracted extensive attention due to their superior optoelectronic properties. However, low photoluminescence quantum yields (PLQYs) caused by parity-forbidden transition hinder their further application in optoelectronic devices. Herein, a novel yellow-emitting PMA4Na(In,Sb)Cl8 (C7H10N+, PMA+) low-dimensional OIMHs single crystal with a PLQY as high as 88% was successfully designed and synthesized, originating from the fact that the doping of Sb3+ effectively relaxes the parity-forbidden transition by strong spin-orbit (SO) coupling and Jahn-Teller (JT) interaction. The as-prepared crystal shows an efficient dual emission peaking 495 and 560 nm at low temperature, which are ascribed to different levels of 3P1 → 1S0 transitions of Sb3+ in [SbCl6]3- octahedral caused by JT deformation. Moreover, wide-range luminescence tailoring from cyan to orange can be achieved through adjusting excitation energy and temperature because of flexible [SbCl6]3- octahedral in the PNIC lattice. Based on a relative stiff lattice environment, the 560 nm yellow emission under 350 nm light excitation exhibits abnormal anti-thermal quenching from 8 to 400 K owing to the suppression of non-radiative transition. The multimode luminescence regulation enriches PMA4Na(In,Sb)Cl8 great potential in the field of optoelectronics such as temperature sensing,  low temperature anti-counterfeiting and WLED applications.

9.
Nano Lett ; 24(33): 10355-10361, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39119944

RESUMEN

Combining rare earth elements with the halide perovskite structure offers valuable insights into designing nonlead (Pb) luminescent materials. However, most of these compositions tend to form zero-dimensional (0D) networks of metal-halide polyhedra, with higher-dimensional (1D, 2D, and 3D) structures receiving relatively less exploration. Herein, we present synthesis and optical properties of Cs3CeCl6·3H2O, characterized by its unique 1D crystal structure. The conduction band minimum of Cs3CeCl6·3H2O becomes less localized as a result of the increased structural dimension, making it possible for the materials to achieve an efficient electrical injection. For both Cs3CeCl6·3H2O single crystals and nanocrystals, we also observed remarkable luminescence with near-unity photoluminescence quantum yield and exceptional phase stability. Cs3CeCl6·3H2O single crystals demonstrate an X-ray scintillation light yield of 31900 photons/MeV, higher than that of commercial LuAG:Ce (22000 photons/MeV); electrically driven light-emitting diodes fabricated with Cs3CeCl6·3H2O nanocrystals yield the characteristic emission of Ce3+, indicating their potential use in next-generation violet-light-emitting devices.

10.
Adv Mater ; : e2314193, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177182

RESUMEN

Metal halide perovskite semiconductors hold a strong promise for enabling thin-film laser diodes. Perovskites distinguish themselves from other non-epitaxial media primarily through their ability to maintain performance at high current densities, which is a critical requirement for achieving injection lasing. Coming in a wide range of varieties, numerous perovskites delivered low-threshold optical amplified spontaneous emission and optically pumped lasing when combined with a suitable optical cavity. A progression toward electrically pumped lasing requires the development of efficient light-emitting structures with reduced optical losses and high radiative efficiency at lasing-level current densities. This involves a set of important trade-offs in terms of material choice, stack and waveguide design, as well as resonator integration. In this Perspective, the key milestones are highlighted that have been achieved in the study of passive optical waveguides and light-emitting diodes, and these learnings are translated toward more complex laser diode architectures. Finally, a novel resonator integration route is proposed that is capable of relaxing optical and electrical design constraints.

11.
J Colloid Interface Sci ; 678(Pt A): 141-151, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39182388

RESUMEN

Luminescent materials with engineered optical properties play an important role in anti-counterfeiting and information security technology. However, conventional luminescent coding is limited by fluorescence color or intensity, and high-level multi-dimensional luminescent encryption technology remains a critically challenging goal in different scenarios. To improve the encoding capacity, we present an optical multiplexing concept by synchronously manipulating the emission color and decay lifetimes of room-temperature phosphorescence materials at molecular level. Herein, we devise a family of zero-dimensional (0D) hybrid metal halides by combining organic phosphonium cations and metal halide tetrahedral anions as independent luminescent centers, which display blue phosphorescence and green persistent afterglow with the highest quantum yields of 39.9 % and 57.3 %, respectively. Significantly, the luminescence lifetime can be fine-tuned in the range of 0.0968-0.5046 µs and 33.46-125.61 ms as temporary time coding through precisely controlling the heavy atomic effect and inter-molecular interactions. As a consequence, synchronous blue phosphorescence and green afterglow are integrated into one 0D halide platform with adjustable emission lifetime acting as color- and time-resolved dual RTP materials, which realize the multiple applications in high-level anti-counterfeiting and information storage. The color-lifetime-dual-resolved encoding ability greatly broadens the scope of luminescent halide materials for optical multiplexing applications.

12.
ACS Sens ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39185676

RESUMEN

Metal halide perovskites (MHPs) are emerging gas-sensing materials and have attracted considerable attention in gas sensors due to their unique bandgap structure and tunable optoelectronic properties. The past decade has witnessed significant developments in the gas-sensing field; however, their intrinsic structural instability and ambiguous gas-sensing mechanisms hamper their practical applications. Herein, we summarize the recent advances in MHP-based gas sensors. The physicochemical properties of MHPs are discussed at first. The structure design, including dimension design and engineering design, is overviewed as well as their fabrication methods, and we put forward our insights into the gas-sensing mechanism of MHPs. It is believed that enhanced understanding of gas-sensing mechanisms of MHPs are helpful for their application as gas-sensing materials, and structure design can enhance their stability, sensing sensitivity, and selectivity to target gases as gas sensors. Subsequently, the latest developments in MHP-based gas sensors are summarized according to their different application scenarios. Finally, we conclude with the current status and challenges in this field and propose future perspectives.

13.
Nano Lett ; 24(35): 10936-10942, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39162302

RESUMEN

Metal halide perovskites (MHP) are highly promising semiconductors. In this study, we focus on FAPbBr3 nanocrystals, which are of great interest for green light-emitting diodes. Structural parameters significantly impact the properties of MHPs and are linked to phase instability, which hampers long-term applications. Clearly, there is a need for local and precise characterization techniques at the atomic scale, such as transmission electron microscopy. Because of the high electron beam sensitivity of MHPs, these investigations are extremely challenging. Here, we applied a low-dose method based on four-dimensional scanning transmission electron microscopy. We quantified the observed elongation of the projections of the Br atomic columns, suggesting an alternation in the position of the Br atoms perpendicular to the Pb-Br-Pb bonds. Together with molecular dynamics simulations, these results remarkably reveal local distortions in an on-average cubic structure. Additionally, this study provides an approach to prospectively investigating the fundamental degradation mechanisms of MHPs.

14.
Angew Chem Int Ed Engl ; : e202412350, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152766

RESUMEN

Zero-dimensional (0D) hybrid metal halides have been emerged as room-temperature phosphorescence (RTP) materials, but synchronous optimization of multiple phosphorescence performance in one structural platform remains less resolved, and stable RTP activity in aqueous medium is also unrealized due to serious instability toward water and oxygen. Herein, we demonstrated a photophysical tuning strategy in a new 0D hybrid zinc halide family of (BTPP)2ZnX4 (BTPP = benzyltriphenylphosphonium, X = Cl and Br). Infrequently, the delicate combination of organic and inorganic species enables this family to display multiple ultralong green afterglow and efficient self-trapped exciton (STE) associated cyan phosphorescence. Compared with inert luminescence of [BTPP]+ cation, incorporation of anionic [ZnX4]2- effectively enhance the spin-orbit coupling effect, which significantly boosts the photoluminescence quantum yield (PLQY) up to 30.66% and 54.62% for afterglow and phosphorescence, respectively. Synchronously, the corresponding luminescence lifetime extend to 143.94 ms and 0.308 µs surpassing the indiscernible phosphorescence of [BTPP]X salt. More importantly, this halide family presents robust RTP emission with nearly unattenuated PLQY in water and harsh condition (acid and basic aqueous solution) over half a year. The highly efficient integrated afterglow and STE phosphorescence as well as ultrahigh aqueous state RTP realize multiple anti-counterfeiting applications in wide chemical environments.

15.
Adv Mater ; : e2408008, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152924

RESUMEN

A hallmark of typical structural transformations is an increase in symmetry upon heating due to entropic favourability. However, local symmetry breaking upon warming is recently evidenced in rare crystalline phases. Termed as emphanisis, the phenomenon implores exploration of fascinating thermodynamic nuances that drive unusual structural evolutions. Here, synchrotron X-ray total scattering measurements are presented on a Ruddlesden-Popper mixed halide perovskite, Cs2PbI2Cl2, which reveal signatures of emphanisis. The genesis of symmetry lowering upon heating is traced to a lone pair-driven cooperative local structural distortion composed of thermally actuated Pb off-centring and static Cl displacement. Mapping the thermal evolution of low-lying phonon modes with inelastic neutron scattering uncovers instances of mode hardening with picosecond lifetime and an intriguing soft mode at the X-point of the Brillouin zone-features conducive to ultralow thermal transport. Together, these observations highlight the fundamental and functional implications of chemical design in engendering unconventional phenomena in crystalline materials and associated properties.

16.
Angew Chem Int Ed Engl ; : e202409945, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031539

RESUMEN

Metal halide perovskites (MHPs) have emerged as attractive candidates for producing green hydrogen via photocatalytic pathway. However, the presence of abundant defects and absence of efficient hydrogen evolution reaction (HER) active sites on MHPs seriously limit the solar-to-chemical (STC) conversion efficiency. Herein, to address this issue, we present a bi-functionalization strategy through decorating MHPs with a molecular molybdenum-sulfur-containing co-catalyst precursor. By virtue of the strong chemical interaction between lead and sulfur and the good dispersion of the molecular co-catalyst precursor in the deposition solution, a uniform and intimate decoration of the MHPs surface with lead sulfide (PbS) and amorphous molybdenum sulfide (MoSx) co-catalysts is obtained simultaneously. We show that the PbS co-catalyst can effectively passivate the Pb-related defects on the MHPs surface, thus retarding the charge recombination and promoting the charge transfer efficiency significantly. The amorphous MoSx co-catalyst further promotes the extraction of photogenerated electrons from MHPs and facilitates the HER catalysis. Consequently, drastically enhanced photocatalytic HER activities are obtained on representative MHPs through the synergistic functionalization of PbS and MoSx co-catalysts. A solar-to-chemical (STC) conversion efficiency of ca. 4.63% is achieved on the bi-functionalized FAPbBr3-xIx, which is among the highest values reported for MHPs.

17.
Angew Chem Int Ed Engl ; : e202411047, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008226

RESUMEN

Ternary cuprous (Cu+)-based metal halides, represented by cesium copper iodide (e.g., CsCu2I3 and Cs3Cu2I5), are garnering increasing interest for light-emitting applications owing to their intrinsically high photoluminescence quantum yield and direct bandgap. Toward electrically driven light-emitting diodes (LEDs), it is highly desirable for the light emitters to have a high structural dimensionality as it may favor efficient electrical injection. However, unlike lead-based halide perovskites whose light-emitting units can be facilely arranged in three-dimensional (3D) ways, to date, nearly all ternary Cu+-based metal halides crystallize into 0D or 1D networks of Cu-X (X = Cl, Br, I) polyhedra, whereas 3D and even 2D structures remain mostly uncharted. Here, by employing a fluorinated organic cation, we report a new kind of ternary Cu+-based metal halides, (DFPD)CuX2 (DFPD+ = 4,4-difluoropiperidinium), which exhibits unique 2D layered crystal structure. Theoretical calculations reveal a highly dispersive conduction band of (DFPD)CuBr2, which is beneficial for charge carrier injection. It is also of particular significance to find that the 2D (DFPD)CuBr2 crystals show appealing properties, including improved ambient stability and an efficient warm white-light emission, making it a promising candidate for single-component lighting and display applications.

18.
Chemistry ; : e202401739, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954398

RESUMEN

Metal halide materials have recently drawn increasing research interest for their excellent opto-electronic properties and structural diversity, but their resulting rigid structures render them brittle and poor formability during manufacturing. Here we demonstrate a thermoplastic luminant hybrid lead halide solid by integrating lead bromide complex into tri-n-octylphosphine oxide (TOPO) matrix. The construction of the hybrid materials can be achieved by a simple dissolution process, in which TOPO molecules act as the solvents and ligands to yield the monodispersed clusters. The combination of these functional units enables the near-room-temperature melt-processing of the materials into targeted geometry by simple molding or printing techniques, which offer possibilities for fluorescent writing inks with outstanding self-healing capacity to physical damage. The intermarriage between metal halide clusters with functional molecules expands the range of practical applications for hybrid metal halide materials.

19.
Angew Chem Int Ed Engl ; : e202412759, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078800

RESUMEN

Low dimensional (LD) organic metal halide hybrids (OMHHs) have recently emerged as new generation functional materials with exceptional structural and property tunability. Despite the remarkable advances in the development of LD OMHHs, optical properties have been the major functionality extensively investigated for most of LD OMHHs developed to date, while other properties, such as magnetic and electronic properties, remain significantly under-explored. Here we report for the first time the characterization of the magnetic and electronic properties of a 1D OMHH, organic-copper (II) chloride hybrid (C8H22N2)Cu2Cl6. Owing to the antiferromagnetic coupling between Cu atoms through chloride bridges in 1D [Cu2Cl62-]∞ chains, (C8H22N2)Cu2Cl6 is found to exhibit antiferromagnetic ordering with a Néel temperature of 24K. The two-terminal (2T) electrical measurement on a (C8H22N2)Cu2Cl6 single crystal reveals its insulating nature. This work shows the potential of LD OMHHs as a highly tunable quantum material platform for spintronics.

20.
Angew Chem Int Ed Engl ; 63(40): e202410557, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38932706

RESUMEN

The performance and stability of organic metal halide perovskite (OMHP) optoelectronic devices have been associated with ion migration. Understanding of nanoscale resolved organic cation migration mechanism would facilitate structure engineering and commercialization of OMHP. Here, we report a three-dimensional approach for in situ nanoscale infrared imaging of organic ion migration behavior in OMHPs, enabling to distinguish migrations along grain boundary and in crystal lattice. Our results reveal that organic cation migration along OMHP film surface and grain boundaries (GBs) occurs at lower biases than in crystal lattice. We visualize the transition of organic cation migration channels from GBs to volume upon increasing electric field. The temporal resolved results demonstrate the fast MA+ migration kinetics at GBs, which is comparable to diffusivity of halide ions. Our findings help understand the role of organic cations in the performance of OMHP devices, and the proposed approach holds broad applicability for revealing migration mechanisms of organic ions in OMHPs based optoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA