Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; 20(32): e2309893, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38516960

RESUMEN

Metal-free organic photocatalysts for photo-mediated reversible deactivation radical polymerization (photo-RDRP) are witnessed to make increasing advancement in the precise synthesis of polymers. However, challenges still exist in the development of high-efficiency and environmentally sustainable carbon dots (CDs)-based organocatalysts. Herein, N-doped CDs derived from phenanthroline derivative (Aphen) are prepared as metal-free photocatalysts for photoinduced electron transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The introduction of phenanthroline structure enhances the excited state lifetime of CDs and expands the conjugated length of their internal structure to enable the light-absorption to reach green light region, thereby enhancing photocatalytic activity. The as-designed CDs exhibit unprecedented photocatalytic capacity in photopolymerization even in large-volume reaction (100 mL) with high monomer conversion and narrow polymer dispersity (Mw/Mn < 1.20) under green light. The photocatalytic system is compatible with PET-RAFT polymerization of numerous monomers and the production of high molecular weight polyacrylate (Mn >250 000) with exquisite spatiotemporal control. Above results confirm the potential of CDs as photocatalyst, which has not been achieved with other CDs catalysts used in photo-RDRP. In addition, the construction of fluorescent polymer nanoparticles using CDs as both photocatalyst and phosphor through photoinitiated polymerization-induced self-assembly (Photo-PISA) technology is successfully demonstrated for the first time.

2.
Front Microbiol ; 13: 957066, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903479

RESUMEN

Biotic-abiotic hybrid systems (BAHs) constructed by integrating biological methanogens with photocatalysts offer novel approaches for the effective solar-driven conversion of CO2 to CH4, providing significant inspiration for achieving carbon neutrality and alleviating the energy crisis. As metal photocatalysts would cause photocorrosion that damages microbial cells and lead to system imbalance. Therefore, exploring suitable metal-free photocatalysts is of particular importance in the search for more efficient and sustainable BAHs to improve the actual operability and applicability. Herein, black phosphorus/carbon nitride (BPCN x ) as an alternative metal-free heterostructure was combined with Methanosarcina barkeri (M. barkeri) to construct M. barkeri-BPCN x hybrid systems, and their cyclic methanogenesis performance was investigated. Our results demonstrated that BPCN x promotes the separation of photogenerated charges and enhances the quantum yield, providing a sustained energy source for the cyclically driven M. barkeri reduction of CO2 to CH4 under visible light. Our system achieved a total CH4 yield of 1087.45 ± 29.14 µmol gcat -1 after three cycles, 1.96 times higher than that of M. barkeri-Ni@CdS. M. barkeri-BPCN x overcame the defects of the metal photocatalyst and kept cell permeability, achieving cyclic stability and effectively maintaining the activity of M. barkeri. These results highlight the viable role of BPCN x as a metal-free photocatalysts in the construction of BAHs for the sustained and efficient methanation of CO2, which is conducive to the development of an environmentally-friendly, low-cost, and efficient strategy for the conversion of CO2 to CH4.

3.
J Hazard Mater ; 436: 129251, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739770

RESUMEN

Solar-driven photocatalytic generation of H2O2 over metal-free catalysts is a sustainable approach for value-added chemical production. Here, we synthesized chlorine-doped graphitic carbon nitride (Cl-doped g-C3N4) through a solvothermal method to effectively produce H2O2 with a rate of 1.19 ± 0.06 µM min-1 under visible light irradiation, which was improved by 104 times compared to pristine g-C3N4. Continuous net production of H2O2 was realized at a rate of 2.78 ± 0.10 µM min-1 up to 54 h with isopropanol as the hole scavenger, whereas H2O2 production was only sustained for ~ 6 h without scavengers. Both molecular simulations and advanced spectroscopic characterizations elucidated that the Cl dopant increased the charge transfer rate, decreased the bandgap, and reduced the activation energy of the rate-limiting step of O2 reduction, all of which favored H2O2 production. This work implemented a novel metal-free photocatalyst for sustainable H2O2 production and elucidated the mechanism for promoting H2O2 production that can guide future photoreactive nanomaterial design.

4.
Small ; 18(25): e2201340, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35612000

RESUMEN

2D covalent organic frameworks (COFs) are considered as one kind of the most promising crystalline porous materials for solar-driven hydrogen production. However, adding noble metal co-catalysts into the COFs-based photocatalytic system is always indispensable. Herein, through a simple solvothermal synthesis method, TpPa-1-COF, a typical 2D COF, which displays a wide light absorption region, is rationally combined with transition metal phosphides (TMPs) to fabricate three TMPs/TpPa-1-COF hybrid materials, named Ni12 P5 (Ni2 P or CoP)/TpPa-1-COF. The incorporated TMPs can be served as electron collectors for accelerating the transfer of charges on TpPa-1-COF, thus the composites are demonstrated to be efficient photocatalysts for promoting water splitting. Benefitting from the richer surface reactive sites and lower H* formation energy barrier, the Ni12 P5 can most effectively improve the photocatalytic performance of the TpPa-1-COF, and the H2 evolution rate can reach up to 31.6 µmol h-1 , approximately 19 times greater than pristine TpPa-1-COF (1.65 µmol h-1 ), and is comparable to the Pt/TpPa-1-COF (38.8 µmol h-1 ). This work is the first example of combining COFs with TMPs to construct efficient photocatalysts, which may offer new insight for constructing noble-metal-free COF-based photocatalysts.

5.
Chemistry ; 27(68): 16879-16888, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34357594

RESUMEN

A novel hybrid photocatalyst composed of hollow carbon nanospheres (NCS) and graphitic carbon nitride (CN) curly nanosheets has been prepared by the calcination of a NCS precursor and freeze-dried urea. The optimized photocatalyst exhibits an efficient photocatalytic performance under visible light irradiation with a highest H2 generation rate of 3612.3 µmol g-1 h-1 , leading to an apparent quantum yield of 10.04 % at 420 nm, five times higher than the widely reported benchmark photocatalyst CN (2.01 % AQY). The materials characterization shows that NCS-modified CN curly nanosheets can promote photoelectron transfer and suppress charge recombination through their special coupling interface and NCS as an electron acceptor, which significantly improves the photocatalytic efficiency. Thus, this study provides an efficient strategy for the design of highly efficient photocatalyst, particularly suitable for a totally metal-free photocatalytic system.

6.
Nanotechnology ; 32(22)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33601348

RESUMEN

Metal-free semiconductors with desirable characteristics have recently gained great attention in the field of hydrogen generation. The non-metal material B2S3has two phases, hexagonal B2S3(h-B2S3) and orthorhombic B2S3(o-B2S3), which compose a novel class of 2D materials. Bothh-B2S3ando-B2S3monolayers are direct semiconductors with bandgaps of 2.89 and 3.77 eV by the Heyd-Scuserria-Ernzerhof (HSE) function, respectively. Under appropriate uniaxial strain (1%), the bandgap ofh-B2S3can be decreased to 2.8 eV. The carrier mobility can reach 1160 cm2V-1s-1, supporting the fast migration of photo-induced carriers. Most importantly, the band edges of bothh-B2S3ando-B2S3cover the reduction and oxidation levels for water splitting. We explore the process of photocatalytic water splitting onh-B2S3monolayers by analyzing the feasibility of the decomposition of H2O and the generation of H2. The results indicate that the special mesoporous structure of B2S3is helpful for photocatalytic hydrogen production. The new nanomaterial, B2S3, offers great promise as a metal-free photocatalyst due to its tunable bandgaps, its useful band edges, and its other excellent electronic properties.

7.
Nano Lett ; 19(9): 6391-6399, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31434489

RESUMEN

Conversion of naturally abundant dinitrogen (N2) to ammonia (NH3) is one of the most attractive and challenging topics in chemistry. Current studies mainly focus on electrocatalytic nitrogen reduction reaction (NRR) using metal-based electrocatalysts, while metal-free and solar-driven photocatalysts have been rarely explored. Here, on the basis of the "σ donation-π* back-donation" concept, single B atom supported on holey g-CN (B@g-CN) can serve as metal-free photocatalyst for highly efficient N2 fixation and reduction under visible and even infrared spectra. Our results reveal that N2 can be efficiently activated and reduced to NH3 with extremely low overpotential of 0.15 V and activation barrier of 0.61 eV, lower than most of metal-based NRR catalysts, thereby guaranteeing low energy cost and fast kinetics of NRR. The inherent properties of B@g-CN, such as centralized spin-polarization on the B atom, efficient prohibition of competitive hydrogen evolution reaction (HER), and reduced exciton binding energy, are responsible for the high selectivity and Faradaic efficiency for NRR under ambient conditions. Moreover, for the first time, we theoretically disclose that the external potential provided by photogenerated electrons for NRR/HER endowing B@g-CN spontaneous NRR and inaccessible HER. This work may provide a promising lead for designing efficient and robust metal-free single atom catalysts toward photocatalytic NRR under visible/infrared spectrum.

8.
9.
Small ; 15(8): e1804565, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30680952

RESUMEN

Semiconductor photocatalysis, a sustainable and renewable technology, is deemed to be a new path to resolve environmental pollution and energy shortage. The development of effective photocatalysts, especially the metal-free photocatalysts, is a critical determinant of this technique. The recently emerged 2D material of black phosphorus with distinctive properties of tunable direct bandgap, ultrahigh charge mobility, fortified optical absorption, large specific surface area, and anisotropic structure has captured enormous attention since the first exfoliation of bulk black phosphorus into mono- or few layered phosphorene in 2014. In this article, the state-of-the-art preparation methods are first summarized for bulk black phosphorus, phosphorene, and black phosphorus quantum dot and then the fundamental structure and electronic and optical properties are analyzed to evaluate its feasibility as a metal-free photocatalyst. Various modifications on black phosphorus are also summarized to enhance its photocatalytic performance. Furthermore, the multifarious applications such as solar to energy conversion, organic removal, disinfection, nitrogen fixation, and photodynamic therapy are discussed and some of the future challenges and opportunities for black phosphorus research are proposed. This review reveals that the rising star of black phosphorus will be a multifunctional material in the postgraphene era.

10.
Front Chem ; 6: 551, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619810

RESUMEN

Graphitic carbon nitride (g-C3N4) is always a research hotspot as a metal-free visible-light-responsive photocatalyst, in the field of solar energy conversion (hydrogen-production by water splitting). This critical review summarizes the recent progress in the design and syntheses of two-dimensional (2D) g-C3N4 and g-C3N4-based nanocomposites, covering (1) the modifications of organic carbon nitrogen precursors, such as by heat treatment, metal or metal-free atoms doping, and modifications with organic functional groups, (2) the influencing factors for the formation of 2D g-C3N4 process, including the calcination temperature and protective atmosphere, etc. (3) newly 2D g-C3N4 nanosheets prepared from pristine raw materials and bulk g-C3N4, and the combination of 2D g-C3N4 with other 2D semiconductors or metal atoms as a cocatalyst, and (4) the structures and characteristics of each type of 2D g-C3N4 systems, together with their optical absorption band structures and interfacial charge transfers. In addition, the first-principles density functional theory (DFT) calculation of the g-C3N4 system has been summarized, and this review provides an insightful outlook on the development of 2D g-C3N4 photocatalysts. The comprehensive review is concluded with a summary and future perspective. Moreover, some exciting viewpoints on the challenges, and future directions of 2D g-C3N4 photocatalysts are discussed and highlighted in this review. This review can open a new research avenue for the preparation of 2D g-C3N4 photocatalysts with good performances.

11.
Small ; 13(7)2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27930862

RESUMEN

Based on the phase transformation of phosphorus and Gibbs free energy theory, a new mild method to fabricate black phosphorus nanosheets from their red phosphorus microsphere counterparts is proposed. Interestingly, the as-prepared black phosphorus nanosheets, as a kind of novel metal-free photocatalyst, exhibit excellent photocatalytic H2 production performance owing to their intrinsic layered polycrystalline structure. Besides, the nanosheet is also a kind of potential anode material in lithium-ion batteries and shows good electrochemical performance.

12.
Adv Mater ; 27(40): 6265-70, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26356239

RESUMEN

A simple structural design principle and band position alignment of conjugated microporous polymers for enhanced photocatalytic efficiency is presented. The valence and conduction band positions of the polymer networks can be fine-tuned by altering the substitution positions on the centered phenyl unit to match the required redox potential of the catalytic reactions under visible light.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA