Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.122
Filtrar
1.
J Proteome Res ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38993068

RESUMEN

Within the intricate landscape of the proteome, approximately 30% of all proteins bind metal ions. This repertoire is even larger when considering all the different forms of a protein, known as proteoforms. Here, we propose the term "metalloforms" to refer to different structural or functional variations of a protein resulting from the binding of various hetero- or homogeneous metal ions. Using human Cu(I)/Zn(II)-metallothionein-3 as a representative model, we developed a chemical proteomics strategy to simultaneously differentiate and map Zn(II) and Cu(I) metal binding sites. In the first labeling step, N-ethylmaleimide reacts with Cysteine (Cys), resulting in the dissociation of all Zn(II) ions while Cu(I) remains bound to the protein. In the second labeling step, iodoacetamide is utilized to label Cu(I)-bound Cys residues. Native mass spectrometry (MS) was used to determine the metal/labeling protein stoichiometries, while bottom-up/top-down MS was used to map the Cys-labeled residues. Next, we used a developed methodology to interrogate an isolated rabbit liver metallothionein fraction containing three metallothionein-2 isoforms and multiple Cd(II)/Zn(II) metalloforms. The approach detailed in this study thus holds the potential to decode the metalloproteoform diversity within other proteins.

2.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000475

RESUMEN

Metallothioneins (MTs) are non-enzymatic metal-binding proteins widely found in animals, plants, and microorganisms and are regulated by metal-responsive transcription factor 1 (MTF1). MT and MTF1 play crucial roles in detoxification, antioxidation, and anti-apoptosis. Therefore, they are key factors allowing organisms to endure the toxicity of heavy metal pollution. Phascolosoma esculenta is a marine invertebrate that inhabits intertidal zones and has a high tolerance to heavy metal stress. In this study, we cloned and identified MT and MTF1 genes from P. esculenta (designated as PeMT and PeMTF1). PeMT and PeMTF1 were widely expressed in all tissues and highly expressed in the intestine. When exposed to 16.8, 33.6, and 84 mg/L of zinc ions, the expression levels of PeMT and PeMTF1 in the intestine increased first and then decreased, peaking at 12 and 6 h, respectively, indicating that both PeMT and PeMTF1 rapidly responded to Zn stress. The recombinant pGEX-6p-1-MT protein enhanced the Zn tolerance of Escherichia coli and showed a dose-dependent ABTS free radical scavenging ability. After RNA interference (RNAi) with PeMT and 24 h of Zn stress, the oxidative stress indices (MDA content, SOD activity, and GSH content) and the apoptosis indices (Caspase 3, Caspase 8, and Caspase 9 activities) were significantly increased, implying that PeMT plays an important role in Zn detoxification, antioxidation, and anti-apoptosis. Moreover, the expression level of PeMT in the intestine was significantly decreased after RNAi with PeMTF1 and 24 h of Zn stress, which preliminarily proved that PeMTF1 has a regulatory effect on PeMT. Our data suggest that PeMT and PeMTF1 play important roles in the resistance of P. esculenta to Zn stress and are the key factors allowing P. esculenta to endure the toxicity of Zn.


Asunto(s)
Metalotioneína , Factores de Transcripción , Zinc , Metalotioneína/genética , Metalotioneína/metabolismo , Animales , Zinc/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Factor de Transcripción MTF-1 , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Apoptosis/efectos de los fármacos , Filogenia , Secuencia de Aminoácidos , Regulación de la Expresión Génica/efectos de los fármacos , Clonación Molecular
3.
Heliyon ; 10(12): e32814, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975119

RESUMEN

Heavy metals, particularly mercury, rank as some of the most hazardous systemic toxicants known to cause multiple organ damage, even at lower levels of exposure. Its detection in the environment and in the live cells is an actual task. Here, we engineered a novel genetically encoded fluorescent NMT indicator for mercury ions by inserting the metallothionein II domain from rat liver into the bright green-yellow fluorescent protein mNeonGreen, followed by directed molecular evolution of the resulting sensor prototype in bacteria. In solution, the NMT indicator was 1.7-fold brighter than the standard eGFP fluorescent protein and responded to the addition of even 10-18-10-19 M mercury ions by quenching fluorescence with a 5-fold fluorescence response and extremely high affinity to mercury ions characterized by the K d value of 0.50 ± 0.05 aM. We also characterized the selectivity of the NMT indicator to other metal cations. In cultured mammalian cells, the NMT indicator detected even an extracellular concentration of 0.1 fM mercury ions and achieved a 5.9-fold change in ΔF/F fluorescence intensity.

4.
Adv Protein Chem Struct Biol ; 141: 255-297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38960477

RESUMEN

Glial cells provide physical and chemical support and protection for neurons and for the extracellular compartments of neural tissue through secretion of soluble factors, insoluble scaffolds, and vesicles. Additionally, glial cells have regenerative capacity by remodeling their physical microenvironment and changing physiological properties of diverse cell types in their proximity. Various types of aberrant glial and macrophage cells are associated with human diseases, disorders, and malignancy. We previously demonstrated that transmembrane protein, TMEM230 has tissue revascularization and regenerating capacity by its ability to secrete pro-angiogenic factors and metalloproteinases, inducing endothelial cell sprouting and channel formation. In healthy normal neural tissue, TMEM230 is predominantly expressed in glial and marcophate cells, suggesting a prominent role in neural tissue homeostasis. TMEM230 regulation of the endomembrane system was supported by co-expression with RNASET2 (lysosome, mitochondria, and vesicles) and STEAP family members (Golgi complex). Intracellular trafficking and extracellular secretion of glial cellular components are associated with endocytosis, exocytosis and phagocytosis mediated by motor proteins. Trafficked components include metalloproteins, metalloproteinases, glycans, and glycoconjugate processing and digesting enzymes that function in phagosomes and vesicles to regulate normal neural tissue microenvironment, homeostasis, stress response, and repair following neural tissue injury or degeneration. Aberrantly high sustained levels TMEM230 promotes metalloprotein expression, trafficking and secretion which contribute to tumor associated infiltration and hypervascularization of high tumor grade gliomas. Following injury of the central nervous or peripheral systems, transcient regulated upregulation of TMEM230 promotes tissue wound healing, remodeling and revascularization by activating glial and macrophage generated microchannels/microtubules (referred to as vascular mimicry) and blood vessel sprouting and branching. Our results support that TMEM230 may act as a master regulator of motor protein mediated trafficking and compartmentalization of a large class of metalloproteins in gliomas and gliosis.


Asunto(s)
Glioma , Gliosis , Proteínas de la Membrana , Humanos , Proteínas de la Membrana/metabolismo , Glioma/metabolismo , Glioma/patología , Gliosis/metabolismo , Gliosis/patología , Animales , Receptores de Péptidos
5.
Artículo en Inglés | MEDLINE | ID: mdl-38977547

RESUMEN

Nowadays, nickel oxide nanoparticles are in great demands owing to their use in many sectors. These nanoparticles may release into aquatic environment from different industries and cause negative effect on aquatic flora and fauna. Therefore, an effective and efficient method is required to remove these nanoparticles from contaminated water. Hence, the aim of this study was to bioremediate nickel oxide nanoparticles using a macrofungus, Pleurotus fossulatus, and to analyze its impact on fungal physiology. For this purpose, fungal spawns were inoculated in malt dextrose agar media containing different concentrations of nickel oxide nanoparticles (24 mg/l, 48 mg/l, and 100 mg/l) as well as control group (having no nickel oxide nanoparticles) and allowed to grow for a period of 20 days. Fungal mycelia as well as media were collected at different time intervals (5th day, 10th day, 15th day, and 20th day) for evaluation of Ni concentration and different biochemical parameters. Ni removal efficiency of P. fossulatus from media was found to be highest in 48 mg/l (66.98%) followed by 24 mg/l (60.83%) and 100 mg/l (18.03%), respectively. Increased level of metallothionein, lipid peroxidation, activity of different antioxidant enzymes (superoxide dismutase, catalase, glutathione s transferase, glutathione reductase), activity of ligninolytic enzymes (laccase, lignin peroxidase, manganese peroxidase), and shift in FTIR spectra were also reported in mycelia cultured in malt dextrose agar media containing nickel oxide nanoparticles. This study suggests that P. fossulatus has great efficiency to remediate nanoparticles from contaminated water and it can be utilized as potential agent in wastewater treatment plants by different industries.

6.
Talanta ; 277: 126398, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38876029

RESUMEN

Metallothionein (MT) has shown to be an important biomarker for environmental monitoring and various diseases, due to its significant binding ability to heavy metal ions. On the basis of such a characteristic and the Hg2+-stabilized DNA duplex (Hg2+-dsDNA) probe, as well as a new autocatalytic hairpin assembly (aCHA)/DNAzyme cascaded signal enhancement strategy, the construction of a highly sensitive and label-free electrochemical MT biosensor is described. Target MT molecules bind Hg2+ in Hg2+-dsDNA to disrupt the duplex structure and to release ssDNA sequences, which trigger subsequent aCHA for efficient production of mimic aCHA triggering strands and many bivalent DNAzymes. The signal hairpins on the electrode are then cyclically cleaved by DNAzyme amplification cascade to liberate plenty G-quadruplex sequences, which bind hemin and yield largely enhanced currents for sensitive assay of MT with a detection limit of 0.217 nM in a label-free approach. Such sensor also shows selective discrimination capability to MT against other interfering proteins and assay of MT in normal serums with dilution has also been verified, indicating its potential for highly sensitive detection of different heavy metal ion binding molecules for various application scenarios.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Técnicas Electroquímicas , Mercurio , Metalotioneína , ADN Catalítico/química , ADN Catalítico/metabolismo , Metalotioneína/química , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Mercurio/análisis , Mercurio/química , Humanos , Límite de Detección , G-Cuádruplex , Electrodos , Hemina/química , Catálisis , ADN/química
7.
J Leukoc Biol ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943611

RESUMEN

Regulated cell death (RCD) plays a crucial role in the initiation and progression of tumors, particularly in acute myeloid leukemia (AML). This study investigates the prognostic importance of RCD-related genes in AML and their correlation with immune infiltration.We combined TCGA and GTEx data, analyzing 1488 RCD-related genes, to develop a predictive model using LASSO regression and survival analysis. The model's accuracy was validated against multiple databases, examining immune cell infiltration, therapy responses, and drug sensitivity among risk groups. RT-qPCR confirmed MT1E expression in AML patients and healthy bone marrow. CCK8 and Transwell assays measured cell proliferation, adhesion, migration, and invasion, while flow cytometry and Western blotting assessed apoptosis and protein expression.We developed a prognostic model using 10 RCD methods, which demonstrated strong predictive ability, showing an inverse correlation between age and risk scores with survival in AML patients. Functional enrichment analysis of the model is linked to immune modulation pathways. RT-qPCR revealed significantly lower MT1E expression in AML versus healthy bone marrow (p<0.05). Consequently, experiments were designed to assess the function of MT1E overexpression.Findings indicated that MT1E overexpression showed it significantly reduced THP-1 cell proliferation and adhesion(p<0.001), decreased migration(p<0.001) and invasiveness(p<0.05), and increased apoptosis(p<0.05), with a notable rise in Caspase3 expression.A novel AML RCD risk model was developed, showing promise as a prognostic marker for evaluating outcomes and immune therapy effectiveness. Insights into MT1E's impact on AML cell proliferation and apoptosis open possibilities for improving patient outcomes and devising personalized treatment strategies.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124682, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38936209

RESUMEN

The accurate and sensitive detection of metallothionein (MT) is of great significance in the fields of biomedical, toxicological and environmental sciences. In this work, based on the high affinity interaction between MT and the heavy metal ions of Hg2+ and the significant signal amplification capability of Cas12a/crRNA enzyme as well, we report a simple and highly sensitive method for visual detection of MT, a biomarker in fish for heavy metal ion-induced water bio-pollution. The target MT molecules bind Hg2+ in the Hg2+- complexed hairpin DNA probes to unfold the hairpin structure into ssDNAs, which hybridize with the partial dsDNA duplexes via strand displacement to yield specific sequence-containing dsDNAs. Cas12a/crRNA recognizes these specific sequences to activate its enzyme activity to cyclically cleave the ssDNA linkers in the blue colored gold nanoparticle aggregates to transit their color into red to realize visual detection of MT. Owing to the signal amplification by Cas12a/crRNA, as low as 25 nM of MT can be visually detected with naked eye. In addition, our colorimetric detection method has high selectivity for MT against other interference proteins and can detect MT in the livers and kidneys of crucian carps bought from a local supermarket. Moreover, the developed assay overcomes the limitations of conventional MT detection methods in terms of complexity, high cost and low sensitivity and can therefore offer new methods for monitoring water bio-pollutions.

9.
Biomolecules ; 14(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38927051

RESUMEN

Manganese (Mn) is an essential heavy metal in the human body, while excess Mn leads to neurotoxicity, as observed in this study, where 100 µM of Mn was administered to the human neuroblastoma (SH-SY5Y) cell model of dopaminergic neurons in neurodegenerative diseases. We quantitated pathway and gene changes in homeostatic cell-based adaptations to Mn exposure. Utilizing the Gene Expression Omnibus, we accessed the GSE70845 dataset as a microarray of SH-SY5Y cells published by Gandhi et al. (2018) and applied statistical significance cutoffs at p < 0.05. We report 74 pathway and 10 gene changes with statistical significance. ReactomeGSA analyses demonstrated upregulation of histones (5 out of 10 induced genes) and histone deacetylases as a neuroprotective response to remodel/mitigate Mn-induced DNA/chromatin damage. Neurodegenerative-associated pathway changes occurred. NF-κB signaled protective responses via Sirtuin-1 to reduce neuroinflammation. Critically, Mn activated three pathways implicating deficits in purine metabolism. Therefore, we validated that urate, a purine and antioxidant, mitigated Mn-losses of viability in SH-SY5Y cells. We discuss Mn as a hypoxia mimetic and trans-activator of HIF-1α, the central trans-activator of vascular hypoxic mitochondrial dysfunction. Mn induced a 3-fold increase in mRNA levels for antioxidant metallothionein-III, which was induced 100-fold by hypoxia mimetics deferoxamine and zinc.


Asunto(s)
Manganeso , Neuroblastoma , Humanos , Manganeso/toxicidad , Neuroblastoma/metabolismo , Neuroblastoma/patología , Neuroblastoma/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Biomarcadores/metabolismo
10.
Int J Biol Sci ; 20(8): 2904-2921, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904023

RESUMEN

Abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs) is one of the critical pathological mechanisms of pulmonary hypertension (PH), and therefore is gradually being adopted as an important direction for the treatment of PH. Metallothioneins (MTs) have been reported to be associated with PH, but the underlying mechanisms are not fully understood. Here, we demonstrated that the expression level of metallothionein 3 (MT3) was significantly increased in pulmonary arterioles from PH patients and chronic hypoxia-induced rat and mouse PH models, as well as in hypoxia-treated human PASMCs. Knockdown of MT3 significantly inhibited the proliferation of human PASMCs by arresting the cell cycle in the G1 phase, while overexpression of MT3 had the opposite effect. Mechanistically, we found that MT3 increased the intracellular zinc (Zn2+) concentration to enhance the transcriptional activity of metal-regulated transcription factor 1 (MTF1), which promoted the expression of autophagy-related gene 5 (ATG5), facilitating autophagosome formation. More importantly, MT3-induced autophagy and proliferation of human PASMCs were largely prevented by knockdown of MTF1 and ATG5. Therefore, in this study, we identified MT3-Zinc-MTF1-ATG5 as a novel pathway that affects PASMC proliferation by regulating autophagosome formation, suggesting that MT3 may be a novel target for the treatment of PH.


Asunto(s)
Proliferación Celular , Metalotioneína 3 , Miocitos del Músculo Liso , Arteria Pulmonar , Zinc , Arteria Pulmonar/citología , Arteria Pulmonar/metabolismo , Animales , Humanos , Zinc/metabolismo , Ratones , Ratas , Miocitos del Músculo Liso/metabolismo , Masculino , Autofagosomas/metabolismo , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Ratas Sprague-Dawley , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Autofagia , Hipertensión Pulmonar/metabolismo , Ratones Endogámicos C57BL , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Factor de Transcripción MTF-1 , Metalotioneína/metabolismo , Metalotioneína/genética
11.
BMC Genomics ; 25(1): 563, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840042

RESUMEN

BACKGROUND: Broussonetia papyrifera is an economically significant tree with high utilization value, yet its cultivation is often constrained by soil contamination with heavy metals (HMs). Effective scientific cultivation management, which enhances the yield and quality of B. papyrifera, necessitates an understanding of its regulatory mechanisms in response to HM stress. RESULTS: Twelve Metallothionein (MT) genes were identified in B. papyrifera. Their open reading frames ranged from 186 to 372 bp, encoding proteins of 61 to 123 amino acids with molecular weights between 15,473.77 and 29,546.96 Da, and theoretical isoelectric points from 5.24 to 5.32. Phylogenetic analysis classified these BpMTs into three subclasses: MT1, MT2, and MT3, with MT2 containing seven members and MT3 only one. The expression of most BpMT genes was inducible by Cd, Mn, Cu, Zn, and abscisic acid (ABA) treatments, particularly BpMT2e, BpMT2d, BpMT2c, and BpMT1c, which showed significant responses and warrant further study. Yeast cells expressing these BpMT genes exhibited enhanced tolerance to Cd, Mn, Cu, and Zn stresses compared to control cells. Yeasts harboring BpMT1c, BpMT2e, and BpMT2d demonstrated higher accumulation of Cd, Cu, Mn, and Zn, suggesting a chelation and binding capacity of BpMTs towards HMs. Site-directed mutagenesis of cysteine (Cys) residues indicated that mutations in the C domain of type 1 BpMT led to increased sensitivity to HMs and reduced HM accumulation in yeast cells; While in type 2 BpMTs, the contribution of N and C domain to HMs' chelation possibly corelated to the quantity of Cys residues. CONCLUSION: The BpMT genes are crucial in responding to diverse HM stresses and are involved in ABA signaling. The Cys-rich domains of BpMTs are pivotal for HM tolerance and chelation. This study offers new insights into the structure-function relationships and metal-binding capabilities of type-1 and - 2 plant MTs, enhancing our understanding of their roles in plant adaptation to HM stresses.


Asunto(s)
Broussonetia , Metalotioneína , Metales Pesados , Filogenia , Metalotioneína/genética , Metalotioneína/metabolismo , Metalotioneína/química , Metales Pesados/metabolismo , Broussonetia/genética , Broussonetia/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Estrés Fisiológico , Secuencia de Aminoácidos , Unión Proteica
12.
Protein Expr Purif ; 221: 106519, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38830441

RESUMEN

Sinopotamon Henanense expresses two metal‒induced metallothioneins (MTs), Cd‒induced MT and Cu‒induced MT (ShCuMT). The Cd‒induced MT has been characterized as a Cd‒thiolate MT. However, it is unknown whether ShCuMT is a Cu‒thiolate MT. In the present study, ShCuMT was expressed heterologously in Escherichia coli and purified by Ni‒NTA column and superdex‒75 column. And its metal‒binding feature was evaluated by DTNB reaction, circular dichroism spectroscopy (CD), isothermal microtitration (ITC), electrospray flight mass spectrometry (ESI‒TOF‒MS), and matrix‒assisted laser desorption ionization flight mass spectrometry (MALDI‒TOF‒MS). Bioinformatics analysis demonstrated that ShCuMT possessed the cysteine‒triplet motif of a Cu‒specific MT. Expression and purification of ShCuMT illustrated that SUMO tag used as the production system for ShCuMT resulted in a high production yield. The stability order of ShCuMT binding metal ions were Cu (Ⅰ) > Cd (Ⅱ) > Zn (Ⅱ). The CD spectrum indicated that ShCuMT binding with Cu (I) exhibited a compact thiol metal clusters structure. Besides, there emerged no a visible nickel‒thiol absorption after Ni‒NTA column affinity chromatography. The ITC results implied that Cu‒ShCuMT possessed the optimal thermodynamic conformation and the highest stoichiometric number of Cu (Ⅰ). Overall, the results suggested that SUMO fusion system is a robust and inexpensive approach for ShCuMT expression and Ni‒NTA column had no influence on metal binding of ShCuMT and Cu(Ⅰ) was considered its cognate metal ion, and ShCuMT possessed canonical Cu‒thiolate characteristics. The metal binding feature of ShCuMT reported here contributes to elucidating the structure‒function relationship of ShCuMT in S. Henanense.


Asunto(s)
Cobre , Metalotioneína , Metalotioneína/genética , Metalotioneína/química , Metalotioneína/metabolismo , Metalotioneína/aislamiento & purificación , Animales , Cobre/metabolismo , Cobre/química , Braquiuros/genética , Braquiuros/metabolismo , Braquiuros/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/química , Proteínas de Artrópodos/metabolismo , Cadmio/metabolismo , Cadmio/química , Escherichia coli/genética , Escherichia coli/metabolismo , Secuencia de Aminoácidos , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/biosíntesis
13.
Mar Environ Res ; 199: 106566, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38865871

RESUMEN

The concentrations of Cd, Cu and Zn have been determined in the tissues and the cytosolic fraction of the common cockle, Cerastoderma edule, collected from sediments in the Tamar, Plym and Avon estuaries (South West, England). Metal concentrations in the tissues of C. edule from the Avon were lower than those from the Tamar and Plym, except for Cu in the digestive gland. Significant statistical relationships were only obtained between the total sedimentary metal concentrations and Cd in the body of C. edule and Cu in the digestive gland. The cytosolic fraction was extracted from each of the tissues and separated for protein analysis thereby allowing determination of the metal contents in high molecular weight (HMW) compounds, metallothionein-like proteins (MTLP) and very low molecular weight (VLMW) compounds. The digestive glands of C. edule from the Avon had relatively low concentrations of MTLP, whereas MTLP concentrations in the digestive gland of cockles from the Tamar and Plym were higher. The cytosolic fraction of C. edule had relatively low total Cd and Cu concentrations associated with MTLP, whereas Zn was preferentially associated with the HMW and the VLMW components. The results are relevant to metal distributions in C. edule and the role of cytosols in the management of metals by C. edule and other invertebrates.


Asunto(s)
Cardiidae , Citosol , Monitoreo del Ambiente , Contaminantes Químicos del Agua , Animales , Cardiidae/metabolismo , Cardiidae/química , Citosol/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Metales/metabolismo , Metales/análisis , Metalotioneína/metabolismo , Inglaterra , Metales Pesados/análisis , Metales Pesados/metabolismo
14.
Free Radic Biol Med ; 222: 493-504, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38944212

RESUMEN

Due to an unexpected activation of different zinc (Zn) transporters in a recent prospective clinical study, we have revisited the role of Zn homeostasis and the activation of matrix metalloproteinases (MMPs) in skeletal muscle exposed to the intensive care unit (ICU) condition (immobilization and mechanical ventilation). ICU patients exposed to 12 days ICU condition were followed longitudinally with six repeated muscle biopsies while they showed a progressive preferential myosin loss, i.e., the hallmark of Critical Illness Myopathy (CIM), in parallel with the activation of Zn-transporters. In this study, we have revisited the expression of Zn-transporters and the activation of MMPs in clinical as well as in experimental studies using an established ICU model. MMPs are a group Zn-dependent endopeptidases which do not only target and cleave extracellular proteins but also intracellular proteins including multiple sarcomeric proteins. MMP-9 is of specific interest since the hallmark of CIM, the preferential myosin loss, has also been reported in dilated cardiomyopathy and coupled to MMP-9 activation. Transcriptional activation of Zn-transporters was observed in both clinical and experimental studies as well as the activation of MMPs, in particular MMP-9, in various limb and respiratory muscles in response to long-term exposure to the ICU condition. The activation of Zn-transporters was paralleled by increased Zn levels in skeletal muscle which in turn showed a negative linear correlation with the preferential myosin loss associated with CIM, offering a potential intervention strategy. Thus, activation of Zn-transporters, increased intramuscular Zn levels, and activation of the Zn-dependent MMPs are forwarded as a probable mechanism involved in CIM pathophysiology. These effects were confirmed in different rat strains subjected to a model of CIM and exacerbated by old age. This is of specific interest since old age and muscle wasting are the two factors most strongly associated with ICU mortality.

15.
World J Stem Cells ; 16(5): 551-559, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38817332

RESUMEN

BACKGROUND: Embryonic stem cells (ESCs) serve as a crucial ex vivo model, representing epiblast cells derived from the inner cell mass of blastocyst-stage embryos. ESCs exhibit a unique combination of self-renewal potency, unlimited proliferation, and pluripotency. The latter is evident by the ability of the isolated cells to differentiate spontaneously into multiple cell lineages, representing the three primary embryonic germ layers. Multiple regulatory networks guide ESCs, directing their self-renewal and lineage-specific differentiation. Apoptosis, or programmed cell death, emerges as a key event involved in sculpting and forming various organs and structures ensuring proper embryonic development. However, the molecular mechanisms underlying the dynamic interplay between differentiation and apoptosis remain poorly understood. AIM: To investigate the regulatory impact of apoptosis on the early differentiation of ESCs into cardiac cells, using mouse ESC (mESC) models - mESC-B-cell lymphoma 2 (BCL-2), mESC-PIM-2, and mESC-metallothionein-1 (MET-1) - which overexpress the anti-apoptotic genes Bcl-2, Pim-2, and Met-1, respectively. METHODS: mESC-T2 (wild-type), mESC-BCL-2, mESC-PIM-2, and mESC-MET-1 have been used to assess the effect of potentiated apoptotic signals on cardiac differentiation. The hanging drop method was adopted to generate embryoid bodies (EBs) and induce terminal differentiation of mESCs. The size of the generated EBs was measured in each condition compared to the wild type. At the functional level, the percentage of cardiac differentiation was measured by calculating the number of beating cardiomyocytes in the manipulated mESCs compared to the control. At the molecular level, quantitative reverse transcription-polymerase chain reaction was used to assess the mRNA expression of three cardiac markers: Troponin T, GATA4, and NKX2.5. Additionally, troponin T protein expression was evaluated through immunofluorescence and western blot assays. RESULTS: Our findings showed that the upregulation of Bcl-2, Pim-2, and Met-1 genes led to a reduction in the size of the EBs derived from the manipulated mESCs, in comparison with their wild-type counterpart. Additionally, a decrease in the count of beating cardiomyocytes among differentiated cells was observed. Furthermore, the mRNA expression of three cardiac markers - troponin T, GATA4, and NKX2.5 - was diminished in mESCs overexpressing the three anti-apoptotic genes compared to the control cell line. Moreover, the overexpression of the anti-apoptotic genes resulted in a reduction in troponin T protein expression. CONCLUSION: Our findings revealed that the upregulation of Bcl-2, Pim-2, and Met-1 genes altered cardiac differentiation, providing insight into the intricate interplay between apoptosis and ESC fate determination.

16.
Ecotoxicol Environ Saf ; 278: 116421, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38705041

RESUMEN

Subcellular metal distribution assessments are the most adequate biomonitoring approach to evaluate metal toxicity, instead of total metal assessments This study aimed to assess subcellular metal distributions and associations to the main metal exposure biomarker, metallothionein (MT), in two bromeliad species (Tillandsia usneoides and Tillandsia stricta) exposed established in industrial, urban, and port areas in the metropolitan region of Rio de Janeiro, southeastern Brazil, through an active biomonitoring approach conducted one year. Metals and metalloids in three subcellular fractions (insoluble, thermolabile and thermostable) obtained from the MT purification process were determined by inductively coupled plasma mass spectrometry (ICP-MS). Lower MT concentrations were observed both during the dry sampling periods, associated to the crassulacean acid metabolism (CAM) and during the COVID-19 pandemic, due to reduced urban mobility, decreasing pollutant emissions. The percentage of non-bioavailable metals detected in the insoluble fraction increased throughout the sampling period for both species. Several metals (Cr, Co, Cu, Cd, Mn, Ni, Se, and Zn), most associated with vehicle emissions, the main pollutant source in urban centers, were detected in the thermostable fraction and are, thus, associated with MT through the MT-metal detoxification route. Insoluble metal concentrations were higher in T. stricta, indicating that this species seems less susceptible to cellular metal exposure damage. A potential protective effect of Se and Fe was detected against Pb, suggested by a strong negative correlation, which may be attributed to antioxidant roles and similar uptake routes, respectively.


Asunto(s)
Contaminantes Atmosféricos , Ciudades , Monitoreo del Ambiente , Metalotioneína , Tillandsia , Brasil , Metalotioneína/metabolismo , Metalotioneína/análisis , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Tillandsia/efectos de los fármacos , Ecotoxicología/métodos , Metales/análisis , Metales/toxicidad , Biomarcadores/análisis , Metales Pesados/análisis , Metales Pesados/toxicidad
17.
Int Endod J ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38804676

RESUMEN

AIM: The present study examined the leaching and cytotoxicity of bismuth from ProRoot MTA and aimed to identify whether bismuth leaching was affected by the cement base and the immersion regime used. METHODOLOGY: The leaching profile of bismuth was examined from ProRoot MTA and compared with hydroxyapatite containing 20% bismuth oxide as well as hydroxyapatite and tricalcium silicate to investigate whether bismuth release changed depending on the cement base. Bismuth leaching was determined after 30 and 180 days of ageing immersed in Dulbecco's modified Eagle's medium (DMEM) using mass spectroscopy (ICP-MS). The media were either unchanged or regularly replenished. The pH, surface microstructure and phase changes of aged materials were assessed. Wistar rat femoral bone marrow stromal cells (BMSCs) and cutaneous fibroblasts were isolated, cultured and seeded for cell counting (trypan blue live/dead) after exposure to non-aged, 30- and 180-days-aged samples in regularly replenished DMEM. Aged DMEM in contact with materials was also used to culture BMSCs to investigate the effect of material leachates on the cells. Gene expression analysis was also carried out after direct exposure of cells to non-aged materials. Differences between groups were statistically tested at a significance level of 5%. RESULTS: All materials exhibited alterations after immersion in DMEM and this increased with longer exposure times. The bismuth leached from ProRoot MTA as detected by ICP-MS. Aged ProRoot MTA samples exhibited a black discolouration and surface calcium carbonate deposition. ProRoot MTA influenced cell counts after direct exposure and its 180-days leachates reduced BMSC viability. After direct BMSC contact with non-aged ProRoot MTA an upregulation of metallothionein (MT1 and MT2A) expression and down-regulation of collagen-1a (Col-1a) and bone sialoprotein (BSP) expression was identified. CONCLUSIONS: Bismuth leaching was observed throughout 180-days observation period from all materials containing bismuth oxide. This negatively influenced cell viability and gene expression associated with bismuth exposure. This is the first study to report that metallothionein gene expression was influenced by exposure to ProRoot MTA.

18.
mSphere ; 9(5): e0021024, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38712943

RESUMEN

Metallothioneins (MTs) are small cysteine-rich proteins that play important roles in homeostasis and protection against heavy metal toxicity and oxidative stress. The opportunistic pathogen, Pseudomonas aeruginosa, expresses a bacterial MT known as PmtA. Utilizing genetically modified P. aeruginosa PAO1 strains (a human clinical wound isolate), we show that inducing pmtA increases levels of pyocyanin and biofilm compared to other PAO1 isogenic strains, supporting previous results that pmtA is important for pyocyanin and biofilm production. We also show that overexpression of pmtA in vitro provides protection for cells exposed to oxidants, which is a characteristic of inflammation, indicating a role for PmtA as an antioxidant in inflammation. We found that a pmtA clean deletion mutant is phagocytized faster than other PAO1 isogenic strains in THP-1 human macrophage cells, indicating that PmtA provides protection from the phagocytic attack. Interestingly, we observed that monoclonal anti-PmtA antibody binds to PmtA, which is accessible on the surface of PAO1 strains using both flow cytometry and enzyme-linked immunosorbent assay techniques. Finally, we investigated intracellular persistence of these PAO1 strains within THP-1 macrophages cells and found that the phagocytic endurance of PAO1 strains is affected by pmtA expression. These data show for the first time that a bacterial MT (pmtA) can play a role in the phagocytic process and can be found on the outer surface of PAO1. Our results suggest that PmtA plays a role both in protection from oxidative stress and in the resistance to the host's innate immune response, identifying PmtA as a potential therapeutic target in P. aeruginosa infection. IMPORTANCE: The pathogen Pseudomonas aeruginosa is a highly problematic multidrug-resistant (MDR) pathogen with complex virulence networks. MDR P. aeruginosa infections have been associated with increased clinical visits, very poor healthcare outcomes, and these infections are ranked as critical on priority lists of both the Centers for Disease Control and Prevention and the World Health Organization. Known P. aeruginosa virulence factors have been extensively studied and are implicated in counteracting host defenses, causing direct damage to the host tissues, and increased microbial competitiveness. Targeting virulence factors has emerged as a new line of defense in the battle against MDR P. aeruginosa strains. Bacterial metallothionein is a newly recognized virulence factor that enables evasion of the host immune response. The studies described here identify mechanisms in which bacterial metallothionein (PmtA) plays a part in P. aeruginosa pathogenicity and identifies PmtA as a potential therapeutic target.


Asunto(s)
Proteínas Bacterianas , Biopelículas , Macrófagos , Metalotioneína , Estrés Oxidativo , Fagocitosis , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Pseudomonas aeruginosa/metabolismo , Humanos , Metalotioneína/genética , Metalotioneína/metabolismo , Macrófagos/microbiología , Macrófagos/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Células THP-1 , Piocianina/metabolismo
19.
Fish Shellfish Immunol ; 150: 109645, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38777254

RESUMEN

Metallothioneins (MTs) are cysteine-rich metal-binding proteins whose expression is induced by exposure to essential and non-essential metals, making them potential biological markers for assessing metal pollution in various biomonitoring programs. However, the functional properties of these proteins are yet to be comprehensively characterized in most marine invertebrates. In this study, we identified and characterized an MT homolog from the disk abalone (Haliotis discus discus), referred to as disk abalone MT (AbMT). AbMT exhibited the same primary structural features as MTs from other mollusks containing two ß-domains (ß2ß1-form). AbMT protein demonstrated metal-binding and detoxification abilities against Zn, Cu, and Cd, as evidenced by Escherichia coli growth kinetics, metal tolerance analysis, and UV absorption spectrum. Transcriptional analysis revealed that AbMT was ubiquitously expressed in all analyzed tissues and upregulated in gill tissue following challenge with Vibrio parahaemolyticus, Listeria monocytogenes, and viral hemorrhagic septicemia virus (VHSV). Additionally, overexpression of AbMT suppressed LPS-induced NO production in RAW264.7 macrophages, protected cells against H2O2-induced oxidative stress, and promoted macrophage polarization toward the M1 phase. Conclusively, these findings suggest an important role for AbMT in environmental stress protection and immune regulation in disk abalone.


Asunto(s)
Gastrópodos , Inmunidad Innata , Metalotioneína , Novirhabdovirus , Estrés Oxidativo , Vibrio parahaemolyticus , Animales , Metalotioneína/genética , Metalotioneína/inmunología , Gastrópodos/inmunología , Gastrópodos/genética , Gastrópodos/microbiología , Estrés Oxidativo/efectos de los fármacos , Vibrio parahaemolyticus/fisiología , Inmunidad Innata/genética , Novirhabdovirus/fisiología , Regulación de la Expresión Génica/inmunología , Secuencia de Aminoácidos , Filogenia , Alineación de Secuencia/veterinaria , Listeria monocytogenes/fisiología , Listeria monocytogenes/inmunología , Ratones , Perfilación de la Expresión Génica/veterinaria , Células RAW 264.7 , Metales Pesados/toxicidad , Contaminantes Químicos del Agua
20.
Biomark Res ; 12(1): 38, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594765

RESUMEN

BACKGROUND & AIMS: Metallothionein-3 (hMT3) is a structurally unique member of the metallothioneins family of low-mass cysteine-rich proteins. hMT3 has poorly characterized functions, and its importance for hepatocellular carcinoma (HCC) cells has not yet been elucidated. Therefore, we investigated the molecular mechanisms driven by hMT3 with a special emphasis on susceptibility to sorafenib. METHODS: Intrinsically sorafenib-resistant (BCLC-3) and sensitive (Huh7) cells with or without up-regulated hMT3 were examined using cDNA microarray and methods aimed at mitochondrial flux, oxidative status, cell death, and cell cycle. In addition, in ovo/ex ovo chick chorioallantoic membrane (CAM) assays were conducted to determine a role of hMT3 in resistance to sorafenib and associated cancer hallmarks, such as angiogenesis and metastastic spread. Molecular aspects of hMT3-mediated induction of sorafenib-resistant phenotype were delineated using mass-spectrometry-based proteomics. RESULTS: The phenotype of sensitive HCC cells can be remodeled into sorafenib-resistant one via up-regulation of hMT3. hMT3 has a profound effect on mitochondrial respiration, glycolysis, and redox homeostasis. Proteomic analyses revealed a number of hMT3-affected biological pathways, including exocytosis, glycolysis, apoptosis, angiogenesis, and cellular stress, which drive resistance to sorafenib. CONCLUSIONS: hMT3 acts as a multifunctional driver capable of inducing sorafenib-resistant phenotype of HCC cells. Our data suggest that hMT3 and related pathways could serve as possible druggable targets to improve therapeutic outcomes in patients with sorafenib-resistant HCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA