Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 13: 957066, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903479

RESUMEN

Biotic-abiotic hybrid systems (BAHs) constructed by integrating biological methanogens with photocatalysts offer novel approaches for the effective solar-driven conversion of CO2 to CH4, providing significant inspiration for achieving carbon neutrality and alleviating the energy crisis. As metal photocatalysts would cause photocorrosion that damages microbial cells and lead to system imbalance. Therefore, exploring suitable metal-free photocatalysts is of particular importance in the search for more efficient and sustainable BAHs to improve the actual operability and applicability. Herein, black phosphorus/carbon nitride (BPCN x ) as an alternative metal-free heterostructure was combined with Methanosarcina barkeri (M. barkeri) to construct M. barkeri-BPCN x hybrid systems, and their cyclic methanogenesis performance was investigated. Our results demonstrated that BPCN x promotes the separation of photogenerated charges and enhances the quantum yield, providing a sustained energy source for the cyclically driven M. barkeri reduction of CO2 to CH4 under visible light. Our system achieved a total CH4 yield of 1087.45 ± 29.14 µmol gcat -1 after three cycles, 1.96 times higher than that of M. barkeri-Ni@CdS. M. barkeri-BPCN x overcame the defects of the metal photocatalyst and kept cell permeability, achieving cyclic stability and effectively maintaining the activity of M. barkeri. These results highlight the viable role of BPCN x as a metal-free photocatalysts in the construction of BAHs for the sustained and efficient methanation of CO2, which is conducive to the development of an environmentally-friendly, low-cost, and efficient strategy for the conversion of CO2 to CH4.

2.
Angew Chem Int Ed Engl ; 60(40): 21772-21777, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34339595

RESUMEN

Understanding catalyst deactivation by coking is crucial for knowledge-based catalyst and process design in reactions with carbonaceous species. Post-mortem analysis of catalyst coking is often performed by bulk characterization methods. Here, hard X-ray ptychographic computed tomography (PXCT) was used to study Ni/Al2 O3 catalysts for CO2 methanation and CH4 dry reforming after artificial coking treatment. PXCT generated quantitative 3D maps of local electron density at ca. 80 nm resolution, allowing to visualize and evaluate the severity of coking in entire catalyst particles of ca. 40 µm diameter. Coking was primarily revealed in the nanoporous solid, which was not detectable in resolved macropores. Coke formation was independently confirmed by operando Raman spectroscopy. PXCT is highlighted as an emerging characterization tool for nanoscale identification, co-localization, and potentially quantification of deactivation phenomena in 3D space within entire catalyst particles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA