Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Discov Oncol ; 15(1): 193, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806777

RESUMEN

BACKGROUND: 5-fluorouracil (5-FU) is conventionally used in chemotherapy for colon adenocarcinomas. Acquired resistance of 5-FU remains a clinical challenge in colon cancer, and efforts to develop targeted agents to reduce resistance have not yielded success. Protosappanin B (PSB), the main component of Lignum Sappan extract, is known to exhibit anti-tumor effects. However, whether and how PSB could improve 5-FU resistance in colon cancer have not yet been established. In this study, we aimed to explore the effects and underlying mechanisms of PSB in 5-FU-induced chemoresistance in colon adenocarcinoma. METHODS: Forty-seven paired colon cancer tissue samples from patients who received 5-FU chemotherapy were collected as clinical samples. Two 5-FU resistant colon cancer cell lines were established for in vitro experiments. Reverse transcription-quantitative PCR (RT-qPCR) was performed to determine the mRNA and microRNA (miRNA) expression levels in colon adenocarcinoma tissues and cell lines. Cell Counting Kit-8 (CCK-8) and flow cytometry assays were performed to evaluate cell proliferation and apoptosis, respectively. RESULTS: LINC00612 was highly expressed in colon adenocarcinoma samples and 5-FU resistant colon cancer cells. LINC00612 knockdown enhances 5-FU chemosensitivity in 5-FU resistant cells. Notably, PSB treatment attenuated LINC00612 expression in 5-FU resistant colon adenocarcinoma cells. Moreover, PSB treatment reversed the increase in LINC00612-induced 5-FU resistance. Mechanistically, LINC00612 specifically bound to miR-590-3p, which promoted 5-FU resistance in colon adenocarcinoma cells and attenuated the inhibitory effect of LINC00612 on GOLPH3 expression. CONCLUSION: PSB attenuates 5-FU chemoresistance in colon adenocarcinoma by regulating the LINC00612/miRNA-590-3p/GOLPH3 axis.

2.
Genesis ; 62(3): e23599, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38764323

RESUMEN

BACKGROUND: Increasing evidence suggests that circular RNA (circRNA) plays a regulatory role in the progression of renal cell carcinoma (RCC). However, the precise function and underlying mechanism of circSCNN1A in RCC progression still remain unclear. METHODS: The expression levels of circSCNN1A, microRNA-590-5p (miR-590-5p), claudin 8 (CLDN8), cyclin D1, matrix metalloprotein 2 (MMP2), MMP9, E-cadherin, N-cadherin and vimentin were detected by a quantitative real-time polymerase chain reaction and Western blotting analysis. Immunohistochemistry assay was performed to analyze the positive expression rate of CLDN8. Cell proliferation was investigated by cell colony formation, 5-Ethynyl-2'-deoxyuridine and DNA content quantitation assays. Cell migration and invasion were assessed by wound-healing and transwell invasion assays. Interactions among circSCNN1A, miR-590-5p and CLDN8 were identified by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. Xenograft mouse model assay was conducted to verify the effect of circSCNN1A on tumor formation in vivo. RESULTS: CircSCNN1A and CLDN8 expression were significantly downregulated, while miR-590-5p was upregulated in both RCC tissues and cells. CircSCNN1A overexpression inhibited RCC cell proliferation, migration and invasion, accompanied by decreases of cyclin D1, MMP2, MMP9, N-cadherin and vimentin expression and an increase of E-cadherin expression. CircSCNN1A acted as a miR-590-5p sponge and regulated RCC cell processes by binding to miR-590-5p. CLDN8, a target gene of miR-590-5p, was involved in the regulation of the biological behaviors of RCC cells by miR-590-5p. In addition, circSCNN1A induced CLDN8 production by interacting with miR-590-5p. Further, circSCNN1A suppressed tumor formation in vivo. CONCLUSION: CircSCNN1A inhibited RCC cell proliferation, migration and invasion by regulating the miR-590-5p/CLDN8 pathway.


Asunto(s)
Carcinoma de Células Renales , Movimiento Celular , Proliferación Celular , Claudinas , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , MicroARNs , Invasividad Neoplásica , ARN Circular , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Animales , Movimiento Celular/genética , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Ratones , Línea Celular Tumoral , ARN Circular/genética , ARN Circular/metabolismo , Claudinas/genética , Claudinas/metabolismo , Ratones Desnudos , Femenino , Masculino
3.
Arch Esp Urol ; 77(2): 135-141, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38583005

RESUMEN

BACKGROUND: Wilms' tumour is the most prevalent abdominal malignancy in children. This study focused on the mechanism of the miR-590-3p/Dickkopf 1 (DKK1) axis in Wilms' tumour. METHODS: The mRNA levels of miR-590-3p and DKK1 in 49 pairs of Wilms' tumour pathological specimens and normal tissues were determined using real-time quantitative polymerase chain reaction (RT-qPCR). Wilms' tumour cells' invasion ability and proliferative ability were assessed using a Transwell assay and Cell Counting Kit-8 (CCK-8) assay, respectively. Dual-luciferase assay was performed to evaluate the potential relationship between miR-590-3p and DKK1 in Wilms tumour. Furthermore, a mouse transplanted tumour model was constructed to explore the function of miR-590-3p inhibitor on Wilms' tumour growth in vivo. RESULTS: DKK1 emerged as a target gene of miR-590-3p in Wilms' tumour. DKK1 expression was downregulated (p < 0.01), but miR-590-3p was overexpressed (p < 0.01) in Wilms' tumour tissues compared to normal tissues. miR-590-3p overexpression accelerated Wilms' tumour invasive ability and cell proliferation (p < 0.01). Additionally, DKK1 partially reversed miR-590-3p-induced proliferation (p < 0.05) and invasion ability (p < 0.01). Furthermore, downregulation of miR-590-3p restrained the growth rate of transplanted tumours in nude mice (p < 0.01). CONCLUSIONS: Through the regulation of DKK1, miR-590-3p accelerated the invasion and proliferation of Wilms' tumour. The study suggests that the miR-590-3p/DKK1 axis represents a novel mechanism in Wilms' tumour.


Asunto(s)
Neoplasias Renales , MicroARNs , Tumor de Wilms , Niño , Humanos , Ratones , Animales , MicroARNs/genética , Ratones Desnudos , Movimiento Celular/genética , Tumor de Wilms/genética , Tumor de Wilms/metabolismo , Tumor de Wilms/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo
4.
Arch. esp. urol. (Ed. impr.) ; 77(2): 135-141, mar. 2024. tab, graf, ilus
Artículo en Inglés | IBECS | ID: ibc-231934

RESUMEN

Background: Wilms’ tumour is the most prevalent abdominal malignancy in children. This study focused on the mechanism of the miR-590-3p/Dickkopf 1 (DKK1) axis in Wilms’ tumour. Methods: The mRNA levels of miR-590-3p and DKK1 in 49 pairs of Wilms’ tumour pathological specimens and normal tissues were determined using real-time quantitative polymerase chain reaction (RT-qPCR). Wilms’ tumour cells’ invasion ability and proliferative ability were assessed using a Transwell assay and Cell Counting Kit-8 (CCK-8) assay, respectively. Dual-luciferase assay was performed to evaluate the potential relationship between miR-590-3p and DKK1 in Wilms tumour. Furthermore, a mouse transplanted tumour model was constructed to explore the function of miR-590-3p inhibitor on Wilms’ tumour growth in vivo. Results: DKK1 emerged as a target gene of miR-590-3p in Wilms’ tumour. DKK1 expression was downregulated (p < 0.01), but miR-590-3p was overexpressed (p < 0.01) in Wilms’ tumour tissues compared to normal tissues. miR-590-3p overexpression accelerated Wilms’ tumour invasive ability and cell proliferation (p < 0.01). Additionally, DKK1 partially reversed miR-590-3p-induced proliferation (p < 0.05) and invasion ability (p < 0.01). Furthermore, downregulation of miR-590-3p restrained the growth rate of transplanted tumours in nude mice (p < 0.01). Conclusions: Through the regulation of DKK1, miR-590-3p accelerated the invasion and proliferation of Wilms’ tumour. The study suggests that the miR-590-3p/DKK1 axis represents a novel mechanism in Wilms’ tumour. (AU)


Asunto(s)
Tumor de Wilms , MicroARNs/análisis
5.
Chem Biol Drug Des ; 103(1): e14394, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37955049

RESUMEN

Tanshinone IIA (TSIIA) exhibits inhibitory function in atherosclerosis (AS) progression, and circular RNAs (circRNAs) are pivotal regulators in AS. However, the relation between TSIIA and circ_0000231 in AS pathogenesis remains unknown. In this study, oxidized low-density lipoprotein (ox-LDL) was used to establish AS cell model. Treatment of ox-LDL inhibited cell growth but promoted apoptosis, inflammation, and oxidative stress. Then, TSIIA was shown to attenuate ox-LDL-induced endothelial injury. Furthermore, the protective effect of TSIIA against ox-LDL-induced endothelial cell injury was reversed by circ_0000231. Circ_0000231 was identified as a miR-590-5p sponge. Also, miR-590-5p downregulation restored the protection of TSIIA for endothelial cell function. Moreover, circ_0000231 was found to upregulate thioredoxin interacting protein (TXNIP) level via targeting miR-590-5p. TXNIP overexpression mitigated the regulatory function of circ_0000231 knockdown after co-treatment with ox-LDL and TSIIA. TXNIP upregulation recovered the inhibitory regulation of TSIIA in ox-LDL-induced cell damage. In addition, TSIIA inactivated NF-kapaB (NF-κB) signaling pathway via regulating miR-590-5p/TXNIP axis by downregulating circ_0000231. All these results suggested that TSIIA inhibited ox-LDL-induced AS progression in endothelial cells by affecting NF-κB pathway via circ_0000231/miR-590-5p/TXNIP.


Asunto(s)
Abietanos , Células Endoteliales , MicroARNs , Humanos , FN-kappa B , Lipoproteínas LDL/farmacología , Apoptosis , Proliferación Celular , MicroARNs/genética , Células Endoteliales de la Vena Umbilical Humana
6.
Cancer Cell Int ; 23(1): 301, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017477

RESUMEN

BACKGROUND: T lymphoma invasion and metastasis 1 (Tiam1) is a tumor related gene that specifically activates Rho-like GTPases Rac1 and plays a critical role in the progression of various malignancies. Glycolysis plays an important role in cancer progression, it is crucial for supplying energy and producing metabolic end products, which can maintain the survival of tumor cells. As yet, however, the mechanism of Tiam1 in glycolysis reprogramming of pancreatic cancer (PC) remains to be clarified. Here, we investigated the functional role of Tiam1 in PC cell proliferation, metastasis and glycolysis reprogramming. It is expected to provide a new direction for clinical treatment. METHODS: The clinical relevance of Tiam1 was evaluated in 66 patients with PC, the effect of Tiam1 on cell proliferation was detected via 5-Ethynyl-2'-deoxyuridine (EdU) and colony formation. The ability of cell migration was detected by the wound healing and Transwell. Quantitative real time polymerase chain reaction (qRT-PCR) and luciferase reporter gene experiments clarify the regulatory relationship of miR-590-5p inhibiting Tiam1. Detection of the molecular mechanism of Tiam1 regulating glucose metabolism reprogramming in PC by glucose metabolism kit. RNA sequencing and Co-Immunoprecipitation (CoIP) have identified glucose transporter protein 3 (SLC2A3) as a key downstream target gene for miR-590-5p/Tiam1. RESULTS: We found that Tiam1 expression increased in PC tissues and was associated with lymph node metastasis. The silencing or exogenous overexpression of Tiam1 significantly altered the proliferation, invasion, and angiogenesis of PC cells through glucose metabolism pathway. In addition, Tiam1 could interact with the crucial SLC2A3 and promote the evolution of PC in a SLC2A3-dependent manner. Moreover, miR-590-5p was found to exacerbate the PC cell proliferation, migration and invasion by targeting Tiam1. Furthermore, the reversing effects on proliferation, migration and invasion were found in PC cells with miR-590-5p/Tiam1 overexpression after applying glucose metabolism inhibition. CONCLUSIONS: Our findings demonstrate the critical role of Tiam1 in PC development and the miR-590-5p/Tiam1/SLC2A3 signaling pathway may serve as a target for new PC therapeutic strategies.

7.
Aging (Albany NY) ; 15(15): 7440-7450, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37540226

RESUMEN

Glioma is a general neurological tumor and circular RNAs (circRNAs) have been implicated in glioma development. However, the underlying mechanisms and circRNA biological functions responsible for the regulation of glioma progression remain unknown. In this study, we employ next-generation sequencing (NGS) to investigate altered circRNA expression in glioma tissues. Regulatory mechanisms were studied using luciferase reporter analyses, transwell migration, CCK8, and EdU analysis. Tumorigenesis and metastasis assays were utilized to determine the function of hsa_circ_0010889 in glioma. Our results showed that hsa_circ_0010889 expression increased in glioma cell lines and tissues, indicating that hsa_circ_0010889 may be involved in glioma progression. Downregulation of hsa_circ_0010889 inhibited glioma invasion and proliferation in both in vitro and in vivo experiments and luciferase report assays found that miR-590-5p and SATB1 were downstream targets for hsa_circ_0010889. SATB1 overexpression or miR-590-5p inhibition reversed glioma cells proliferation and migration post-silencing of hsa_circ_0010889. Taken together, our study demonstrates that hsa_circ_0010889 downregulation inhibits glioma progression through the miR-590-5p/SATB1 axis.


Asunto(s)
Glioma , Proteínas de Unión a la Región de Fijación a la Matriz , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Regulación hacia Abajo , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Glioma/patología , Factores de Transcripción/metabolismo , Proliferación Celular/genética
8.
Mol Biol Rep ; 50(8): 6819-6827, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37392283

RESUMEN

OBJECTIVE: The mechanisms of ovarian cancer generate chemotherapy resistance are still unclear. This study aimed to explore the role of microRNA (miR)-590-5p in regulating hMSH2 expression and cisplatin resistance in ovarian cancer. METHODS: MiR-590-5p was identified as a regulator of hMSH2 with miRDB database and Target Scan database. Then cisplatin sensitive cell line (SKOV3) and resistant cell line (SKOV3-DDP) of ovarian cancer were cultured for cell functional assay and molecular biology assay. The expression levels of MiR-590-5p and hMSH2 were compared between the two cell lines. Dual luciferase reporter assay was used to verify the targeted regulatory relationship between miR-590-5p and hMSH2. CCK-8 assay and cell apoptosis assay were utilized to assess the role of MiR-590-5p and hMSH2 in cell viability under cisplatin. RESULTS: The expression of hMSH2 was significantly decreased, and miR-590-5p was significantly up-regulated in SKOV3-DDP. Up-regulation of hMSH2 weakened the viability of SKOV3 and SKOV3-DDP cell under cisplatin. Transfection with miR­590-5p mimics reduced the expression of hMSH2 and enhanced the viability of ovarian cancer cells under cisplatin, whereas inhibition of miR­590-5p increased the expression of hMSH2, and decreased ovarian cancer cells' viability under cisplatin. Furthermore, luciferase reporter assay showed that hMSH2 was a direct target of miR-590-5p. CONCLUSION: The present study demonstrates that miR­590-5p promotes cisplatin resistance of ovarian cancer via negatively regulating hMSH2 expression. Inhibition of miR­590-5p decreases ovarian cancer cells' viability under cisplatin. Thus miR­590-5p and hMSH2 may serve as therapeutic targets for cisplatin resistant ovarian cancer.


Asunto(s)
MicroARNs , Neoplasias Ováricas , Femenino , Humanos , Línea Celular Tumoral , Proliferación Celular , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , MicroARNs/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo
9.
J Biochem Mol Toxicol ; 37(9): e23406, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37392398

RESUMEN

Lung adenocarcinoma (LUAD) is usually found at the metastatic stage. Circular RNA dihydrouridine synthase 2-like (DUS2L) (circDUS2L) has been discovered to be upregulated in LUAD. Nevertheless, the function of circDUS2L in LUAD has not been verified. Levels of circDUS2L, microRNA-590-5p (miR-590-5p), and phosphoglycerate mutase 1 (PGAM1) mRNA were analyzed using quantitative real-time polymerase chain reaction (RT-qPCR). Cell proliferation, apoptosis, metastasis, and invasion were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), colony formation, 5-ethynyl-2'-deoxyuridine (Edu), flow cytometry, and transwell assays. Protein levels were detected by western blotting. Cell glycolysis was analyzed by measuring cell glucose consumption, lactate production, and extracellular acidification rate (ECAR). The regulatory mechanism of circDUS2L in LUAD cells was analyzed by bioinformatics analysis, dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation (RIP) assays. Xenograft assay was conducted to confirm the function of circDUS2L in vivo. CircDUS2L was highly expressed in LUAD tissues and cells. CircDUS2L silencing constrained xenograft tumor growth in vivo. CircDUS2L knockdown induced apoptosis, repressed viability, colony formation, proliferation, metastasis, invasion, and glycolysis of LUAD cells in vitro by releasing miR-590-5p via functioning as a miR-590-5p sponge. MiR-590-5p was lowly expressed in LUAD tissues and cells, and miR-590-5p mimic curbed malignant behaviors and glycolysis of LUAD cells by targeting PGAM1. PGAM1 was overexpressed in LUAD tissues and cells, and circDUS2L sponged miR-590-5p to regulate PGAM1 expression. CircDUS2L elevated PGAM1 expression through functioning as a miR-590-5p sponge, thus driving malignant behaviors and glycolysis of LUAD cells.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , MicroARNs , Humanos , Fosfoglicerato Mutasa/genética , Adenocarcinoma del Pulmón/genética , ARN Circular/genética , Proliferación Celular , Neoplasias Pulmonares/genética , MicroARNs/genética , Línea Celular Tumoral
10.
Environ Toxicol ; 38(10): 2440-2449, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37417879

RESUMEN

Dysregulated circWHSC1 has been shown to play potential roles in diverse cancer types, including ovarian cancer, endometrial cancer and hepatocellular carcinoma (HCC). The objective of this study was to investigate its expression, underlying role and regulatory mechanism in non-small-cell lung cancer (NSCLC). The expression of circWHSC1 was determined by real-time PCR. After knockdown of circWHSC1 expression in NSCLC cells, the proliferation, migration, and invasion were detected using CCK-8, colony formation, and Transwell assays, and the effects of circWHSC1 on NSCLC tumorigenesis in vivo was also investigated. With the help of luciferase reporter and pull-down assays, we further explored the downstream mechanism of circWHSC1 in NSCLC cells. CircWHSC1 was highly expressed in NSCLC tissues and cell lines. The inhibition of circWHSC1 suppressed the malignant properties of NSCLC cells, as evidenced by the reduction of proliferation, migration and invasion. CircWHSC1 sponged miR-590-5p and functioned as an oncogene in NSCLC by increasing sex determining region Y-boxprotein 5 (SOX5) expression. CircWHSC1 may contribute to the oncogenicity of NSCLC via the regulation of miR-590-5p/SOX5 axis, which might be a novel therapeutic target in NSCLC.


Asunto(s)
Carcinoma Hepatocelular , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Hepáticas , Neoplasias Pulmonares , MicroARNs , Femenino , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , MicroARNs/genética , MicroARNs/metabolismo , Pronóstico , Línea Celular Tumoral , Proliferación Celular/genética , Biomarcadores , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción SOXD/genética , Factores de Transcripción SOXD/metabolismo
11.
BMC Cancer ; 23(1): 396, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37138218

RESUMEN

BACKGROUND: There is considerable evidence that microRNAs (miRNAs) regulate several key tumor-associated genes/pathways and may themselves have a dual regulatory function either as tumor suppressors or oncogenic miRNA, depending on the tumor type. MicroRNA-590-3p (miR-590-3p) is a small non-coding RNA involved in the initiation and progression of numerous tumors. However, its expression pattern and biological role in hepatocellular carcinoma (HCC) are controversial. RESULTS: In the current work, computational and RT-qPCR analysis revealed that HCC tissues and cell lines exhibited miR-590-3p downregulation. Forced expression of miR-590-3p attenuated HepG2 cells proliferation, migration, and repressed EMT-related gene expression. Bioinformatic, RT-qPCR, and luciferase assays revealed that MDM2 is a direct functional target of miR-590-3p. Moreover, the knockdown of MDM2 mimicked the inhibitory effect of miR-590-3p in HepG2 cells. CONCLUSION: We have identified not only novel targets for miR-590-3p in HCC, but also novel target genes for miR590-3p/MDM2 pathway in HCC like SNAIL, SLUG, ZEB1, ZEB2, and N-cadherin. Furthermore, these findings demonstrate a crucial role for MDM2 in the regulatory mechanism of EMT in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-37066904

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) are the emerging informative RNAs, involved in cardiovascular diseases including atherosclerosis (AS). Endothelial injury is the initial qualitative change of AS. Thus, the objective of this study was to confirm the dysregulation and mechanism of circ_0000231 in cell model of AS at early stage in human umbilical vein endothelial cells (HUVECs) induced by oxidized low-density lipoprotein (ox-LDL). METHODS: The expression of circ_0000231, miR-590-5p and programmed cell death 4 (PDCD4) was detected using real-time quantitative PCR and western blot. Cell injury was measured with MTT, flow cytometry, caspase-3 activity assay and enzyme-linked immunosorbent assay (ELISA). The interaction among circ_0000231, miR-590-5p and PDCD4 was validated by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) and pull-down assays. RESULTS: Stress ox-LDL decreased cell viability, and increased apoptosis rate and caspase-3 activity in HUVECs in a dose- and time-dependent manner in concomitant with promotions of interleukin-6, interleukin-1ß, tumor necrosis factor-α, LC3-II/I and Beclin-1 levels. Besides, circ_0000231 and PDCD4 expressions were upregulated, and miR-590-5p was downregulated in ox-LDL-stimulated HUVECs. Functionally, knockdown of circ_0000231 and overexpression of miR-590-5p could suppress ox-LDL-elicited above effects on apoptosis, autophagy and inflammatory response, accompanied with PDCD4 downregulation. Physically, miR-590-5p could directly interact with circ_0000231 and PDCD4. CONCLUSION: Downregulation of circ_0000231 suppresses HUVECs from ox-LDL-induced injury partially through regulating miR-590-5p/PDCD4 axis via competing endogenous RNA mechanism, showing a novel potential target for the pathology and treatment of endothelial injury in AS.

13.
World J Gastrointest Oncol ; 15(1): 76-89, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36684043

RESUMEN

BACKGROUND: As reported, multiple circular RNAs (circRNAs) interfere with colorectal cancer (CRC) progression. Here, circRNA_0001658 (circ_0001658) is focused on studying how it works in CRC. AIM: Clarify the expression pattern, biological function, and underlying mechanism of circ_0001658 of CRC tumorigenesis. METHODS: In CRC-related chip data retrieved using the database named Gene Expression Omnibus, different expressions of circRNAs between CRC and normal tissue samples were identified. Quantitative Real-time PCR and Western blot ensured the analysis on circ_0001658, microRNA-590-5P (miR-590-5p), and methyltransferase-like 3 (METTL3) mRNA expressions in tissues and cells. Cell counting kit-8 and flow cytometry were used to detect cell proliferation, apoptosis and migration. The targeting relations between circ_0001658, miR-590-5p, and METTL3 mRNA 3'-untranslated region were under the verification of bioinformatics prediction and dual luciferase-based reporter gene assays. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were employed on the downstream targets of miR-590-5p using the Database for Annotation, Visualization and Integrated Discovery database. RESULTS: Circ_0001658 and METTL3 mRNA was elevated in CRC tissues and cells, whereas miR-590-5p was decreased. Circ_0001658 overexpression promoted the proliferation of HT29 cells, inhibited apoptosis, and accelerated the cell cycle. In SW480 cells, knocking down circ_0001658 had the opposite effect. Circ_0001658 could specifically bind to miR-590-5p and negatively modulate its expressions; METTL3 is a miR-590-5p target that can be positively regulated by circ 0001658. Circ 0001658 was inversely associated with miR-590-5p expression while positively with METTL3 expressions. CONCLUSION: Circ_0001658 regulates the miR-590-5p/METTL 3-axis to increase CRC cell growth and decrease apoptosis.

14.
Cancer Med ; 12(1): 445-458, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35655441

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) have critical functions within esophageal squamous cell carcinoma (ESCC). However, the function and mechanism underlying ESCC-associated lncRNA-1 (ESCCAL-1) in ESCC tumorigenesis have not been well clarified. METHODS: ESCCAL-1, miR-590 and LRP6 were quantified using qRT-PCR. Cell viability, migration and invasion abilities were measured using CCK-8 assay and transwell assays. The protein pression was determined with western blot assay. The xenograft model assays were used to examine the impact of ESCCAL-1 on tumorigenic effect in vivo. Direct relationships among ESCCAL-1, miR-590 and LRP6 were confirmed using dual-luciferase reporter assays. RESULTS: The present work discovered the ESCCAL-1 up-regulation within ESCC. Furthermore, ESCCAL-1 was found to interact with miR-590 and consequently restrict its expression. Functionally, knocking down ESCCAL-1 or over-expressing miR-590 hindered ESCC cell growth, invasion, and migration in vitro. Moreover, inhibition of miR-590 could reverse the effect of knockdown of ESCCAL-1 on cells. Importantly, it was confirmed that LRP6 was miR-590's downstream target and LRP6 over-expression also partly abolished the role of miR-590 overexpression in ESCC cells. CONCLUSION: We have uncovered a novel regulatory network comprising aberrant interaction of ESCCAL-1/miR-590/LRP6 participated in ESCC progression.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs , ARN Largo no Codificante , Humanos , Carcinoma de Células Escamosas de Esófago/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Esofágicas/patología , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal , Proliferación Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo
15.
Regen Ther ; 21: 322-330, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36110972

RESUMEN

Introduction: Partial necrosis of skin flaps is still a substantial problem in plastic and reconstructive surgery. In this study, the role of miR-590-3p in adipose-derived stem cells (ADSCs) transplantation in improving the survival of skin flap in a mouse model was delved into. Method: An abdominal perforator flap model was established in mice. The histopathological examination of mice skin tissues after ADSCs transplantation was implemented using Hematoxylin & eosin (H&E) staining. Immunohistochemistry (IHC) or immunofluorescence (IF) staining was utilized to assess the PCNA or CD31 levels. The concentrations of VEGFA in the culture medium were quantified using a VEGFA ELISA kit. Result: The damage of tissue in the skin flap was dramatically relieved by ADSCs transplantation. MiR-590-3p overexpression notably suppressed, while miR-590-3p knockdown facilitated skin flap survival by regulating PCNA, VCAM-1, and VEGFA levels. MiR-590-3p targeted VEGFA to regulate its expression. The knockdown of VEGFA significantly inhibited, while overexpression of VEGFA notably promoted the survival of skin flap. Conclusion: ADSCs transplantation promotes skin flap survival by boosting angiogenesis. The miR-590-3p/VEGFA axis modulates skin flap angiogenesis and survival in ADSCs. These results reveal that interfering with miR-590-3p in ADSCs could potentially be a novel therapeutic target for the improvement of skin flap survival.

16.
Aging (Albany NY) ; 14(14): 5783-5799, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35852862

RESUMEN

Accumulating evidence has indicated that Complement factor H-related 3 (CFHR3) plays an essential role in various diseases. However, the biological functions of CFHR3 in hepatocellular carcinoma (HCC) remain largely unclear. Therefore, we perform a further study on CFHR3 in HCC. In this article, we report the suppressive role of CFHR3 in the proliferation and metastasis of HCC cells. CFHR3 downregulation is closely associated with large (T3-T4) HCC, tumor recurrence, and advanced (stage III-IV) clinical stage, functioning as an independent factor for the prognoses of HCC patients. Knockdown of CFHR3 promotes proliferation, migration, and invasion of HCC cells. Mechanistically, downregulation of CFHR3 is induced by miR-590-3p binding to the 3' untranslated region (UTR) of CFHR3. CFHR3 downregulation promotes the phosphorylation of STAT3 protein, thereby suppressing p53 expression. The promotional effect upon downregulation of CFHR3 induced by CFHR3 stable knockdown or miR-590-3p on HCC cell malignant phenotypes is attenuated by STAT3 inhibitor, S3I-201. In conclusion, our results reveal that CFHR3 is a protective biomarker for HCC patients, and targeting the miR-590-3p/CFHR3/p-STAT3/p53 signaling axis provides a promising strategy for HCC therapeutics.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Regiones no Traducidas 3' , Proteínas Sanguíneas , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Complemento C3 , Factor H de Complemento/genética , Factor H de Complemento/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , MicroARNs/metabolismo , Recurrencia Local de Neoplasia/genética , Factor de Transcripción STAT3 , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
17.
Cancer Treat Res Commun ; 32: 100593, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35752082

RESUMEN

Accumulating evidence suggests the critical role of miR-590-5p in various aspects of cellular homeostasis, including cancer. Furthermore, we and others have recently demonstrated that miRNA-590-5p acts as an oncogene in some cancers while it acts as a tumor-suppressor in others. However, the role of miR-590-5p in oncogenesis is more complex, like a double-edged sword. Thus, this systematic review introduces the concept, mechanism, and biological function of miR-590-5p to resolve this apparent paradox. We have also described the involvement of miR-590-5p in crucial cancer-hallmarks processes like proliferation, invasion, metastasis, and chemo radioresistance. Finally, we have presented the possible genes/pathways targets of miR-590-5p through bioinformatics analysis. This review may help in designing better biomarkers and therapeutic targets for cancers.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , MicroARNs , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular , Humanos , MicroARNs/genética
18.
J Pharm Pharmacol ; 74(8): 1193-1204, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35640631

RESUMEN

OBJECTIVES: Circular RNA (CircRNA) is a class of non-coding RNA transcripts, with multiple pathophysiological functions. Instead, the mechanism and function of circRNA in gastric cancer (GC) are not fully deciphered. METHODS: CircRNA_0026344 (circ_0026344), microRNA (miR)-590-5p and programmed cell death 4 (PDCD4) mRNA expression levels in GC tissues and cells were probed by quantitative real-time PCR. Cell viability, migration and aggressiveness were examined by cell counting kit-8 and transwell assays. Additionally, the interplay among circ_0026344, miR-590-5p and PDCD4 was verified with bioinformatics and dual-luciferase reporter gene assay. Western blot was conducted to probe PDCD4 protein expression. KEY FINDINGS: Circ_0026344 expression was underexpressed in GC tissues and cells, which was associated with clinicopathological characteristics such as tumour size, tumor-node-metastasis stage and lymph node metastasis. Circ_0026344 overexpression restrained the malignant biological behaviours of GC cells, while circ_0026344 knockdown functioned oppositely. Circ_0026344 could act as a competing endogenous RNA of miR-590-5p to negatively modulate its expression, and this miRNA could mitigate the impact of circ_0026344 on GC cells. In addition, PDCD4 was identified as the downstream target of miR-590-5p, and PDCD4 expression was positively modulated by circ_0026344. CONCLUSIONS: Circ_0026344 up-regulates PDCD4 expression via sponging miR-590-5p, thus inhibiting the progression of GC. This study further expounds the underlying molecular mechanism in the GC progression.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , MicroARNs , Proteínas de Unión al ARN , Neoplasias Gástricas , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Humanos , MicroARNs/genética , ARN Circular/genética , Proteínas de Unión al ARN/genética , Neoplasias Gástricas/patología
19.
Clin. transl. oncol. (Print) ; 24(3): 546-555, marzo 2022.
Artículo en Inglés | IBECS | ID: ibc-203549

RESUMEN

ObjectiveAccumulating evidence has been revealed that miR-590 is involved in the progression and carcinogenesis of various cancers. However, the molecular mechanism of miR-590 in non-small-cell lung cancer (NSCLC) remains unclear.MethodsQuantitative reverse transcription-PCR (qRT-PCR), western blot, MTT, and transwell assay were applied to investigate the functional role of miR-590 in this study. Dual luciferase reporter assay was utilized to investigate the interaction between YAP1 and miR-590 expression. Cells transfected with miR-590 mimic or inhibitor were subjected to western blot to investigate the role of Wnt/β-catenin signaling in NSCLC modulated by miR-590.ResultsMiR-590 was down-regulated in NSCLC tissues and cells. Kaplan–Meier analysis found that the higher expression of miR-590 in NSCLC patients, the more improved survival rate of NSCLC patients. Over-expression of miR-590 inhibited NSCLC cell proliferation, migration, and invasion. Moreover, increasing miR-590 suppressed Yes-associated protein 1 (YAP1) expression and inhibited the Wnt/β-catenin pathway in NSCLC cells. Furthermore, miR-590 was negatively correlated with YAP1 expression.ConclusionThese findings demonstrated that the miR-590/YAP1 axis exerted an important role in the progression of NSCLC, suggesting that miR-590 might be the appealing prognostic marker for NSCLC treatment.


Asunto(s)
Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , MicroARNs/fisiología , Proteínas RGS/fisiología , Células Tumorales Cultivadas , Vía de Señalización Wnt/fisiología
20.
Mol Biol Rep ; 49(3): 2237-2244, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35066768

RESUMEN

BACKGROUND: Many studies have revealed that microRNA (miRNA) molecules may take part in idiopathic pulmonary fibrosis (IPF). But, the role of miRNAs in the development of IPF is not yet clear. METHODS: We investigated the plasma levels of miR-21, miR-590, miR-192, and miR-215 in IPF (n = 88) and healthy control (n = 20) groups in this study. We compared the expression levels of target miRNAs in patients with IPF and healthy participants. We grouped the patients with IPF according to age, forced vital capacity, carbon monoxide diffusing capacity (DLCO), gender-Age-pulmonary physiology (GAP) score, the presence of honeycombing and compared the expression levels of target miRNAs in these clinical subgroups. RESULTS: 82 (93.18%) of the patients with IPF were male and the mean age was 66.6 ± 8.6 years. There was no significant difference between the gender and age distributions of IPF and the control group. The mean plasma miR-21 and miR-590 levels in IPF group were significantly higher than in the control group (p < 0.0001, p < 0.0001, respectively). There was no significant difference between the miR-192 and miR-215 expression levels of the IPF and control group. Both miR-21 and miR-590 correlated positively with age (p = 0.041, p = 0.007, respectively) while miR-192 and miR-215 displayed a negative correlation with age (p = 0.0002, p < 0.0001, respectively). The levels of miR-192 and miR-215 increased as the GAP score decreased. The levels of miR-192 in patients with honeycombing were significantly lower than in those without honeycombing (p = 0.003). CONCLUSIONS: Our study showed that both miR-21 and miR-590 were overexpressed in IPF. The miR-21 and miR-590 were associated with DLCO, while miR-192 and miR-215 were associated with the GAP score and honeycombing.


Asunto(s)
Fibrosis Pulmonar Idiopática , MicroARNs , Anciano , Humanos , Fibrosis Pulmonar Idiopática/genética , Pulmón , Masculino , MicroARNs/genética , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...