Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Parasit Vectors ; 17(1): 189, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632598

RESUMEN

BACKGROUND: Toxoplasma gondii, an obligate intracellular parasitic protozoa, infects approximately 30% of the global population. Contracting T. gondii at the primary infection of the mother can result in neonatal microcephaly, chorioretinitis, hydrocephalus, or mortality. Our previous study indicated that pregnant mice infected with T. gondii displayed a decrease in both the number and the suppressive ability of regulatory T cells, accompanied by the reduced Forkhead box P3 (Foxp3). Numerous studies have proved that microRNAs (miRNAs) are implicated in T. gondii infection, but there is meager evidence on the relationship between alterations of miRNAs and downregulation of Foxp3 induced by T. gondii. METHODS: Quantitative reverse transcription polymerase chain reaction was utilized to detect the transcriptions of miRNAs and Foxp3. Protein blotting and immunofluorescence were used to detect the expressions of Foxp3 and related transcription factors. The structure of mouse placenta was observed by hematoxylin and eosin (HE) staining. To examine the activity of miR-7b promoter and whether miR-7b-5p targets Sp1 to suppress Foxp3 expression, we constructed recombinant plasmids containing the full-length/truncated/mutant miR-7b promoter sequence or wildtype/mutant of Sp1 3' untranslated region (3' UTR) to detect the fluorescence activity in EL4 cells. RESULTS: In T. gondii-infected mice, miR-7b transcription was significantly elevated, while Foxp3 expression was decreased in the placenta. In vitro, miR-7b mimics downregulated Foxp3 expression, whereas its inhibitors significantly upregulated Foxp3 expression. miR-7b promoter activity was elevated upon the stimulation of T. gondii antigens, which was mitigated by co-transfection of mutant miR-7b promoter lacking peroxisome proliferator-activated receptor γ (PPARγ) target sites. Additionally, miR-7b mimics diminished Sp1 expression, while miR-7b inhibitors elevated its expression. miR-7b mimics deceased the fluorescence activity of Sp1 3' untranslated region (3' UTR), but it failed to impact the fluorescence activity upon the co-transfection of mutant Sp1 3' UTR lacking miR-7b target site. CONCLUSIONS: T. gondii infection and antigens promote miR-7b transcription but inhibit Foxp3 protein and gene levels. T. gondii antigens promote miR-7b promoter activity by a PPARγ-dependent mechanism. miR-7b directly binds to Sp1 3' UTR to repress Sp1 expression. Understanding the regulatory functions by which T. gondii-induced miR-7b suppresses Foxp3 expression can provide new perspectives for the possible therapeutic avenue of T. gondii-induced adverse pregnancy outcomes.


Asunto(s)
Factores de Transcripción Forkhead , MicroARNs , Toxoplasma , Animales , Femenino , Ratones , Embarazo , Regiones no Traducidas 3' , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , MicroARNs/genética , Placenta/metabolismo , Placenta/parasitología , Placenta/patología , PPAR gamma/genética , PPAR gamma/metabolismo , Transducción de Señal , Toxoplasma/patogenicidad , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Toxoplasmosis/genética , Toxoplasmosis/metabolismo , Toxoplasmosis/parasitología
2.
J Mol Histol ; 55(3): 279-301, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38639812

RESUMEN

Tramadol is a novel centrally acting analgesic. Despite, its implementation during pregnancy may impair neuronal survival and synaptic development in neonatal cerebella. The current investigation assessed the histological and ultrastructural alterations in postnatal cortical cerebellar neuronal development induced by prenatal tramadol. 30 offsprings were divided to control group I: fifteen pups born to mothers given saline from D10 till D21 of gestation. Tramadol-treated group II: fifteen pups born to mothers received tramadol HCL (50 mg/kg/day) from D10 till D21 of gestation. Pups were categorized into three subgroups (a, b, and c) and offered for sacrifice on the seventh, fourteenth and twenty-first post-natal days. Light microscopic examination revealed the overcrowding and signs of red degeneration affecting purkinje cell layer. Neurodegenerative signs of both purkinje and granule cell neurons were also confirmed by TEM in form of chromatin condensation, dilated Golgi channels, disrupted endoplasmic reticulum, marked infolding of the nuclear envelope and decrease in granule cell precursors. In addition, the astrocytic processes and terminal nerve axons appeared with different degrees of demyelination and decreased number of oligodendrocytes and degenerated mitochondria. Furthermore, group II exhibited an increase in P53 immune expression. The area percentage of apoptotic cells detected by TUNEL assay was significantly increased. Besides to the significant decrease of Ki67 immunoreactivity in the stem neuronal cell progenitors. Quantitative PCR results showed a significant decline in micro RNA7 gene expression in tramadol treated groups resulting in affection of multiple target genes in P53 signaling pathways, improper cortical size and defect in neuronal development.


Asunto(s)
Proteína Ácida Fibrilar de la Glía , Antígeno Ki-67 , MicroARNs , Efectos Tardíos de la Exposición Prenatal , Transducción de Señal , Tramadol , Proteína p53 Supresora de Tumor , Animales , Tramadol/farmacología , Tramadol/efectos adversos , MicroARNs/genética , MicroARNs/metabolismo , Embarazo , Transducción de Señal/efectos de los fármacos , Femenino , Ratas , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Antígeno Ki-67/metabolismo , Antígeno Ki-67/genética , Cerebelo/efectos de los fármacos , Cerebelo/ultraestructura , Cerebelo/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/ultraestructura , Apoptosis/efectos de los fármacos , Ratas Wistar , Animales Recién Nacidos
3.
Aging Cell ; 23(6): e14145, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38494663

RESUMEN

Aging is intricately linked to immune system dysfunction. Recent studies have highlighted the biological function of microRNA-7 (miR-7) as a novel regulator of immune cell function and related diseases. However, the potential role of miR-7 in aging remains unexplored. Here, we investigated the contribution of miR-7 to d-gal-induced aging in mice, focusing on its regulation of senescent Kupffer cells. Our findings revealed that miR-7 deficiency significantly ameliorated the aging process, characterized by enhanced CD4+ T-cell activation. However, the adoptive transfer of miR-7-deficient CD4+T cells failed to improve the age-related phenotype. Further analysis showed that miR-7 deficiency significantly reduced IL-1ß production in liver tissue, and inhibiting IL-1ß in vivo slowed down the aging process in mice. Notably, IL-1ß is mainly produced by senescent Kupffer cells in the liver tissue of aging mice, and miR-7 expression was significantly up-regulated in these cells. Mechanistically, KLF4, a target of miR-7, was down-regulated in senescent Kupffer cells in aging mouse model. Furthermore, miR-7 deficiency also modulated the NF-κB activation and IL-1ß production in senescent Kupffer cells through KLF4. In conclusion, our findings unveil the role of miR-7 in d-gal-induced aging in mice, highlighting its regulation of KLF4/NF-κB/IL-1ß pathways in senescent Kupffer cells. This research may enhance our understanding of miRNA-based aging immune cells and offer new avenues for new intervention strategies in aging process.


Asunto(s)
Envejecimiento , Galactosa , Factor 4 Similar a Kruppel , Macrófagos del Hígado , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Macrófagos del Hígado/metabolismo , Ratones , Factor 4 Similar a Kruppel/metabolismo , Galactosa/metabolismo , Senescencia Celular/genética , Ratones Endogámicos C57BL , Masculino , Interleucina-1beta/metabolismo
4.
Biomolecules ; 13(8)2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37627250

RESUMEN

MicroRNAs (miRNAs) are a class of small noncoding RNA that can regulate physiological and pathological processes through post-transcriptional regulatory gene expression. As an important member of the miRNAs family, microRNA-7 (miR-7) was first discovered in 2001 to play an important regulatory role in tissue and organ development. Studies have shown that miR-7 participates in various tissue and organ development processes, tumorigenesis, aging, and other processes by regulating different target molecules. Notably, a series of recent studies have determined that miR-7 plays a key regulatory role in the occurrence of inflammation and related diseases. In particular, miR-7 can affect the immune response of the body by influencing T cell activation, macrophage function, dendritic cell (DC) maturation, inflammatory body activation, and other mechanisms, which has important potential application value in the intervention of related diseases. This article reviews the current regulatory role of miR-7 in inflammation and related diseases, including viral infection, autoimmune hepatitis, inflammatory bowel disease, and encephalitis. It expounds on the molecular mechanism by which miR-7 regulates the occurrence of inflammatory diseases. Finally, the existing problems and future development directions of miR-7-based intervention on inflammation and related diseases are discussed to provide new references and help strengthen the understanding of the pathogenesis of inflammation and related diseases, as well as the development of new strategies for clinical intervention.


Asunto(s)
Encefalitis , Enfermedades Inflamatorias del Intestino , MicroARNs , ARN Pequeño no Traducido , Humanos , Inflamación/genética , MicroARNs/genética
5.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(3): 484-492, 2023 Jun.
Artículo en Chino | MEDLINE | ID: mdl-37407538

RESUMEN

Parkinson's disease(PD)is the second most common neurodegenerative disease after Alzheimer's disease,with high morbidity and high disability rate.Since the early symptoms of PD are not typical and often similar to those of normal aging or other diseases.It is easy to missed diagnosis and misdiagnosis,which seriously affects the diagnosis and treatment of this disease and aggravetes the burden on the patients' life.MicroRNAs(miRNA)are a class of endogenous non-coding RNAs that are involved in post-transcriptional regulation by binding to target messenger RNAs(mRNA).They are highly conserved,short,easy to obtain,and can stably exist in peripheral body fluids.They have been used as biomarkers for a variety of diseases.Recent studies have demonstrated that miRNA play an important role in the development of PD.This paper reviews the recent research progress of miR-7/124/155,three mature miRNA in PD,aiming to provide reference for clarifying the pathogenesis and guiding the diagnosis and treatment of PD.


Asunto(s)
MicroARNs , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , MicroARNs/genética , Regulación de la Expresión Génica , Biomarcadores/metabolismo
6.
Pathol Res Pract ; 248: 154578, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37320865

RESUMEN

Triple-negative breast cancer (TNBC) seriously affects woman's health. The present work is to study the working mechanism of lncRNA SNHG11 in TNBC. The expressions of SNHG11, microRNA (miR)- 7-5p, specificity protein 2 (SP2) and mucin 1 (MUC-1) in TNBC tissues and cells were detected. SNHG11, miR-7-5p and SP2 expressions were then evaluated for TNBC cell malignant behaviors. The relationships among SNHG11, miR-7-5p and SP2 were predicted and verified. Finally, the binding of the transcription factor SP2 to MUC-1 promoter was detected. Abnormally elevated SNHG11, SP2 and MUC-1 expressions were observed in cultured TNBC cells and tumor tissues. SNHG11 knockdown in TNBC cells. Silencing SP2 weakened the promoting effect of SNHG11 on TNBC progression. SNHG11 negatively regulated miR-7-5p expression and positively regulated SP2 expression. SP2 bound to the P2 site of MUC-1 promoter, and SP2 knockdown suppressed MUC-1 expression. It was demonstrated that lncRNA SNHG11 promoted TNBC cell malignant behaviors to facilitate TNBC progression. The study is first of its kinds to unravel the potential of lncRNA SNHG11 in relation to TNBC.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Neoplasias de la Mama Triple Negativas , Femenino , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética
7.
Mol Med Rep ; 27(5)2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37026508

RESUMEN

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that a data panel portraying cell migration and invasion assay data shown in Fig. 7C was strikingly similar to a panel that had appeared in another article by different authors at a different research institute, which had been submitted for publication earlier than the submission date of this article. Moreover, a large number of overlapping data panels were identified comparing the data in Figs. 4A and B and 7C and D. Owing to the fact that the contentious data in Fig. 7C in the above article were already under consideration for publication prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 14: 2127-2134, 2016; DOI: 10.3892/mmr.2016.5477].

8.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-981295

RESUMEN

Parkinson's disease(PD)is the second most common neurodegenerative disease after Alzheimer's disease,with high morbidity and high disability rate.Since the early symptoms of PD are not typical and often similar to those of normal aging or other diseases.It is easy to missed diagnosis and misdiagnosis,which seriously affects the diagnosis and treatment of this disease and aggravetes the burden on the patients' life.MicroRNAs(miRNA)are a class of endogenous non-coding RNAs that are involved in post-transcriptional regulation by binding to target messenger RNAs(mRNA).They are highly conserved,short,easy to obtain,and can stably exist in peripheral body fluids.They have been used as biomarkers for a variety of diseases.Recent studies have demonstrated that miRNA play an important role in the development of PD.This paper reviews the recent research progress of miR-7/124/155,three mature miRNA in PD,aiming to provide reference for clarifying the pathogenesis and guiding the diagnosis and treatment of PD.


Asunto(s)
Humanos , Enfermedad de Parkinson , Enfermedades Neurodegenerativas , MicroARNs/genética , Regulación de la Expresión Génica , Biomarcadores/metabolismo
9.
J Zhejiang Univ Sci B ; 23(11): 915-930, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36379611

RESUMEN

Targeted gene therapy has become a promising approach for lung cancer treatment. In our previous work, we reported that the targeted expression of microRNA-7 (miR-7) operated by thyroid transcription factor-1 (TTF-1) promoter inhibited the growth of human lung cancer cells in vitro and in vivo; however, the intervention efficiency needed to be further improved. In this study, we identified the core promoter of TTF-1 (from -1299 bp to -871 bp) by 5' deletion assay and screened out the putative transcription factors nuclear factor-1 (NF-1) and activator protein-1 (AP-1). Further analysis revealed that the expression level of NF-1, but not AP-1, was positively connected with the activation of TTF-1 core promoter in human non-small-cell lung cancer (NSCLC) cells. Moreover, the silencing of NF-1 could reduce the expression level of miR-7 operated by TTF-1 core promoter. Of note, we optimized four distinct sequences to form additional NF-1-binding sites (TGGCA) in the sequence of TTF-1 core promoter (termed as optTTF-1 promoter), and verified the binding efficiency of NF-1 on the optTTF-1 promoter by electrophoretic mobility shift assay (EMSA). As expected, the optTTF-1 promoter could more effectively drive miR-7 expression and inhibit the growth of human NSCLC cells in vitro, accompanied by a reduced transduction of NADH dehydrogenase (ubiquinone) 1α subcomplex 4 (NDUFA4)/protein kinase B (Akt) pathway. Consistently, optTTF-1 promoter-driven miR-7 expression could also effectively abrogate the growth and metastasis of tumor cells in a murine xenograft model of human NSCLC. Finally, no significant changes were detected in the biological indicators or the histology of some important tissues and organs, including heart, liver, and spleen. On the whole, our study revealed that the optimized TTF-1 promoter could more effectively operate miR-7 to influence the growth of human NSCLC cells, providing a new basis for the development of microRNA-based targeting gene therapy against clinical lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Animales , Humanos , Ratones , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Nucleares/metabolismo , Glándula Tiroides/metabolismo , Glándula Tiroides/patología , Factor Nuclear Tiroideo 1/genética , Factores de Transcripción/metabolismo
10.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35955699

RESUMEN

MicroRNA-7a2 (miR-7a2) plays fundamental roles in the female reproductive axis, and estrogen is indispensable for maintaining ovary function. However, the interaction between miR-7a2 and ovarian function is unclear. The present study aimed to determine whether and how miR-7a2 functions in estrogen synthesis. Firstly, the results verified that miR-7a was highly expressed in ovarian granulosa cells. The knockout (KO) of miR-7a2 caused infertility and abnormal ovarian function in mice. Concomitantly, the Cyp19a1 expression and estrogen synthesis were significantly inhibited, which was validated in primary granulosa cells. The mice transplanted with miR-7a2 KO ovaries showed similar results; however, estrogen supplementation reversed infertility. In the in vitro experiment, follicle-stimulating hormone (FSH) significantly improved the expression of miR-7a and Cyp19a1 and the synthesis of estrogen. However, the miR-7a2 KO markedly reversed the function of FSH. Also, FSH upregulated miR-7a by activating the (c-Jun N-terminal kinase) JNK signaling pathway. In addition, Golgi apparatus protein 1 (Glg1) was shown to be the target gene of miR-7a2. These findings indicated that miR-7a2 is essential for ovarian functions with respect to estrogen synthesis through the targeted inhibition of the expression of Glg1 and then promoting Cyp19a1 expression; the physiological process was positively regulated by FSH via the JNK signaling pathway in granulosa cells.


Asunto(s)
Infertilidad , MicroARNs , Animales , Estrógenos/metabolismo , Femenino , Hormona Folículo Estimulante/metabolismo , Células de la Granulosa/metabolismo , Infertilidad/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , MicroARNs/genética , MicroARNs/metabolismo
11.
Exp Neurol ; 357: 114159, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35779615

RESUMEN

Activation of an innate immune response serves as a key, contributing factor in perinatal brain injury. The current study sought to evaluate the clinical significance of innate defense regulatory peptide 1018 (IDR-1018)-derived peptide mediating ceRNA regulation network as a biomarker in neonatal mice with hypoxic-ischemic brain damage (HIBD). Firstly, bioinformatics analyses were performed to screen the HIBD-related candidate genes, miRNAs, and lncRNAs. The StarBase, miRDB, and LncBase databases were retrieved to obtain the lncRNA-miRNA-mRNA network, which revealed the ceRNA regulatory network mediated by IDR-1018. Subsequently, RT-qPCR was adopted to determine the expression patterns of MIAT, miR-7a-5p, and Plp2 in neonatal mice with HIBD after treatment with IDR-1018. Moreover, the relationship among mRNA, miRNA, and lncRNA in primary hippocampal neurons was verified by means of dual-luciferase reporter assay and RIP assay. Initial findings demonstrated that Plp2, mmu-miR-7a-5p, and three lncRNAs (MIAT, XIST, and 1700020I14RIK) were related to HIBD. Moreover, IDR-1018 could relieve HIBD in neonatal mice. Plp2 and MIAT were down-regulated, while mmu-miR-7a-5p was up-regulated in the striatum, hippocampus, and cortical tissues of the neonatal mice with HIBD, whereas treatment with the IDR-1018 could revere these trends. Additionally, MIAT acted as a ceRNA of miR-7a-5p to elevate Plp2 expression. In conclusion, our findings highlighted that IDR-1018 relieved HIBD in neonatal mice via the MIAT/miR-7a-5p/Plp2 axis.


Asunto(s)
Lesiones Encefálicas , Hipoxia-Isquemia Encefálica , MicroARNs , ARN Largo no Codificante , Animales , Animales Recién Nacidos , Péptidos Catiónicos Antimicrobianos , Apoptosis/genética , Biología Computacional , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/genética , Hipoxia-Isquemia Encefálica/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Péptidos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero
12.
Brain Res Bull ; 188: 214-222, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35835410

RESUMEN

The current study aimed to elucidate the effects of Sevoflurane on neuronal autophagy and ischemic brain injury by regulating miR-7a/ATG7 axis. The rat model of middle cerebral artery occlusion (MCAO) was established by thread embolization. The expression pattern of microRNA-7a (miR-7a) and autophagy-related gene 7 (ATG7) was subsequently determined in Sevoflurane-treated MCAO rats with their relation and effects on neuronal autophagy and ischemic brain injury further analyzed. Bioinformatics analysis confirmed that miR-7a could target to inhibit ATG7 in ischemic brain injury samples. Sevoflurane could alleviate ischemic brain injury in rats by reducing the level of neuronal autophagy-related factors. The expression of miR-7a was up-regulated and ATG7 was down-regulated in the brain tissues of MCAO rats after Sevoflurane treatment. ATG7 was found to induce neuronal autophagy during autophagy in the brain tissues of MCAO rats. In summary, Sevoflurane exerts protective effects on ischemic brain injury via inhibiting autophagy of neurons and microglia through the miR-7a-mediated downregulation of ATG7.


Asunto(s)
Lesiones Encefálicas , MicroARNs , Animales , Autofagia , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Regulación hacia Abajo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Ratas , Sevoflurano/farmacología
13.
Stem Cells Dev ; 31(13-14): 357-368, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35652338

RESUMEN

The pituitary gland is inhabited by a subpopulation of SOX2+ stem cells. However, the regulatory mechanisms underlying pituitary stem cell development remain poorly understood. In this study, we demonstrate that microRNA-7a (miR-7a) is enriched in the developing pituitary and is spatiotemporally expressed in the pituitary stem cells. Constitutive deletion of mir-7a2 in mice results in pituitary dysplasia emerging during birth, which is primarily manifested as malformed anterior lobes. Using immunofluorescence, immunohistochemistry, or in situ hybridization, we observe that the specification of hormone-expressing cells is not impeded post mir-7a2 deletion at birth, although the terminal differentiation of gonadotropes is inhibited. Further investigation of neonatal and adult pituitaries in mir-7a2 knockout mice reveals an expansion of the SOX2+ pituitary stem cell compartment. The inhibition of epithelial-mesenchymal like transition seems to be responsible for this phenotype, rather than abnormal proliferation or apoptosis. Furthermore, our data suggest that Gli3 and Ckap4 are potential targets of miR-7a in pituitary stem cells. In summary, our results identify miR-7a2 as a crucial factor involved in pituitary stem cell development.


Asunto(s)
MicroARNs , Hipófisis , Células Madre , Animales , Diferenciación Celular/genética , Ratones , MicroARNs/genética , Hipófisis/citología , Factores de Transcripción SOXB1 , Células Madre/citología
14.
Eur J Med Res ; 27(1): 46, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35317842

RESUMEN

BACKGROUND: Long noncoding RNA (lncRNA)-regulated mechanism in acute lung injury (ALI) has attracted special interests in study researches. We planned to disclose whether KCNQ1 overlapping transcript 1 (Kcnq1ot1) is involved in ALI and its mechanism. METHODS: The lipopolysaccharide (LPS)-induced ALI model was established in mice. Kcnq1ot1, microRNA (miR)-7a-5p and Reticulon 3 (Rtn3) levels were measured in lung tissues of mice. The vector that changed Kcnq1ot1, miR-7a-5p and Rtn3 expression was injected into LPS-treated mice, and pathological damage, fibrosis, apoptosis and inflammatory response were subsequently examined in lung tissues. The relation between Kcnq1ot1 and miR-7a-5p, and that between miR-7a-5p and Rtn3 were identified. RESULTS: Kcnq1ot1 and Rtn3 expression increased while miR-7a-5p expression decreased in LPS-treated mice. Reduced Kcnq1ot1 or elevated miR-7a-5p alleviated pathological damage, fibrosis, apoptosis and inflammatory response in ALI mice, while overexpressed Rtn3 worsened ALI in mice. Downregulation of Rtn3 reversed the exacerbation of miR-7a-5p downregulation in ALI mice. Kcnq1ot1 competitively bound to miR-7a-5p and miR-7a-5p negatively mediated Rtn3 expression. CONCLUSION: Our experiments evidence that silencing Kcnq1ot1 upregulates miR-7a-5p to suppress Rtn3 expression, thereby diminishing LPS-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda/genética , MicroARNs/genética , ARN Largo no Codificante/fisiología , Animales , Lipopolisacáridos/administración & dosificación , Masculino , Ratones , Ratones Endogámicos BALB C
15.
World J Gastrointest Oncol ; 13(11): 1741-1754, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34853647

RESUMEN

BACKGROUND: Spasmolytic polypeptide-expressing metaplasia (SPEM) is a potential preneoplastic lesion. AIM: To elucidate the microRNA (miR)-7-mediated preventive and inhibitive effects of Yiwei Xiaoyu granules (YWXY) in SPEM lesions. METHODS: Gastric mucosa biopsies were collected from chronic atrophic gastritis patients and healthy people with signed informed consent. YWXY was administered to the mice with induced SPEM by tamoxifen, and the gastric mucosa was harvested on the tenth day of the experiment. Then immunohistochemistry and immunofluorescence were performed to validate the SPEM, lesions and the potential mechanism was investigated. RNA transcripts were detected with reverse transcription-quantitative polymerase chain reaction. RESULTS: The expression of miR-7 was downregulated in the SPEM lesions, and expression of trefoil factor 2 (TFF2) and clusterin was high in the human gastric mucosa. In vivo experiments showed that YWXY could inhibit the cell proliferation in the tamoxifen-induced SPEM lesions by regulating Ki67. Simultaneously, YWXY could restore the expression of miR-7 by regulating TFF2 by detection with immunofluorescence but not with reverse transcription-quantitative polymerase chain reaction, indicating its potential mechanism of targeting miR-7 by mediating TFF2. The expression of vascular endothelial growth factor-ß and gastric intrinsic factor was restored within 3 d of YWXY administration for the SPEM lesions, speculating that the possible mechanism of YWXY is to inhibit the development and progression of SPEM by regulating vascular endothelial growth factor-ß and gastric intrinsic factor. CONCLUSION: miR-7 downregulation is an early event in SPEM through regulation of TFF2 in human gastric mucosa. YWXY is able to inhibit the cell proliferation and restore the expression of miR-7 by mediating TFF2 in the SPEM mouse model.

16.
Neurotherapeutics ; 18(4): 2529-2540, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34697773

RESUMEN

α-Synuclein is a key protein in the pathogenesis of Parkinson's disease as it accumulates in fibrillar form in affected brain regions. Misfolded α-synuclein seeds recruit monomeric α-synuclein to form aggregates, which can spread to anatomically connected brain regions, a phenomenon that correlates with clinical disease progression. Thus, downregulating α-synuclein levels could reduce seeding and inhibit aggregate formation and propagation. We previously reported that microRNA-7 (miR-7) protects neuronal cells by downregulating α-synuclein expression through its effect on the 3'-untranslated region of SNCA mRNA; however, whether miR-7 blocks α-synuclein seeding and propagation in vivo remains unknown. Here, we induced miR-7 overexpression in the mouse striatum unilaterally by infusing adeno-associated virus 1 (AAV-miR-7) followed by inoculation with recombinant α-synuclein preformed fibrils (PFF) a month later. Compared with control mice injected with non-targeting AAV-miR-NT followed by PFF, AAV-miR-7 pre-injected mice exhibited lower levels of monomeric and high-molecular-weight α-synuclein species in the striatum, and reduced amount of phosphorylated α-synuclein in the striatum and in nigral dopamine neurons. Accordingly, AAV-miR-7-injected mice had less pronounced degeneration of the nigrostriatal pathway and better behavioral performance. The neuroinflammatory reaction to α-synuclein PFF inoculation was also significantly attenuated. These data suggest that miR-7 inhibits the formation and propagation of pathological α-synuclein and protects against neurodegeneration induced by PFF. Collectively, these findings support the potential of miR-7 as a disease modifying biologic agent for Parkinson's disease and related α-synucleinopathies.


Asunto(s)
MicroARNs , Enfermedades Neurodegenerativas/genética , Sinucleinopatías , Animales , Encéfalo/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
17.
Exp Ther Med ; 22(4): 1093, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34504547

RESUMEN

Inhibition of aldehyde dehydrogenase 1 family member A3 (ALDH1A3) has been revealed to lead to significant increase of microRNA (miR)-7 expression and decrease of CD44 expression in breast cancer stem cells (BCSCs), however the mechanism is not clear. The aim of the present study was to investigate the regulatory relationship between ALDH1A3, miR-7, and CD44 in BCSCs. The expression of ALDH1A3 was inhibited by small interfering RNA (siRNA or si), and the expression of miR-7 was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Then, the ratio of CD44+ cells was analyzed by flow cytometry in MDA-MB-231 cells. The dual-luciferase reporter system was used to demonstrate that miR-7 binds to transforming growth factor-ß receptor 2 (TGFBR2) 3'UTR, and ChIP-PCR determined whether the transcription factor Smad3 binds to the upstream regulatory region of the CD44 promoter. The results revealed that siALDH1A3 downregulated ALDH1A3 and promoted miR-7 expression, which resulted in downregulation of CD44 expression. siALDH1A3 also downregulated the CD44 expression on the surface of MDA-MB-231 cells and inhibited the G2/M phase in BCSCs as analyzed by flow cytometry. In addition, lenti-miR-7 cells transfected with TGF-ß1 + SB431542 revealed that lenti-miR-7 inhibited the TGF-ß1 pathway by inhibiting Smad2/3/4 expression and, thus, downregulated CD44 expression. miR-7 was revealed to directly bind to the TGFBR2 3'UTR through dual-luciferase reporter assay, and Smad3, a transcription factor, through ChIP-PCR was demonstrated to bind to the upstream region of the CD44 promoter. These results demonstrated the existence of the ALDH1A3-miR-7-TGFBR2-Smad3-CD44 axis in MDA-MB-231 cells. RT-qPCR results of 12 breast cancer surgical specimens and SK-BR-3, MCF-7, and LD cell lines further confirmed the presence of the regulatory axis. In conclusion the findings from the present study demonstrated that the ALDH1A3-miR-7-TGFBR2-Smad3-CD44 regulatory axis was highly efficient in the inhibition of CD44 expression in BCSCs, and that the regulatory expression of ALDH1A3 and miR-7 may provide a strategy in the therapy of breast cancer.

18.
Mol Med Rep ; 24(4)2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34368881

RESUMEN

Following the publication of this paper, it was drawn to the Editors' attention by a concerned reader that certain of the Transwell cell migration data shown in Fig. 4 were strikingly similar to data appearing in different form in other articles by different authors. Owing to the fact that the contentious data in the above article had already been published elsewhere, or were already under consideration for publication, prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive any reply. The Editor apologizes to the readership for any inconvenience caused. [the original article was published in Molecular Medicine Reports 12: 5443­5448, 2015; DOI: 10.3892/mmr.2015.4032].

19.
Biochem Biophys Res Commun ; 573: 80-85, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34399097

RESUMEN

Spinal cord injury (SCI) is a devastating neurological condition for which there are no effective therapies. Following an initial injury, there is a cascade of multiple downstream events termed secondary injury. Thus, therapeutic approaches targeting a single pathway may not offer the best solution for treating SCI. One of the most attractive properties of microRNAs (miR) as potential therapeutics is that they are highly effective in regulating complex biological pathways by targeting multiple genes and pathways. The current study investigated the role of miR-7-5p (miR-7), which was previously shown to have neuroprotective functions, in promoting motor function recovery following SCI. We used an adeno-associated virus 1 (AAV1) vector to deliver the gene encoding miR-7 to the spinal cord of adult mice and found that this virus was mainly transduced into the neurons of the spinal cord. Transduction of AAV1-miR-7 improved hindlimb locomotor function following SCI over an 8-week observation period. This improvement was accompanied by reduced neuronal loss in the lesion. In addition, the beneficial effect of miR-7 was associated with enhanced levels of TH-positive axons in the lesion. Taken together, we suggest that miR-7 improves motor function recovery after SCI by protecting neuronal death and increasing axon levels. These findings suggest that miR-7 could be developed as a potential treatment for SCI in human.


Asunto(s)
MicroARNs/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Actividad Motora , Recuperación de la Función , Traumatismos de la Médula Espinal/patología
20.
Oncol Lett ; 21(2): 139, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33552258

RESUMEN

Senescence is activated in response to gemcitabine to prevent the propagation of cancer cells. However, there is little evidence on whether senescence is involved in gemcitabine resistance in pancreatic cancer. Increasing evidence has demonstrated that microRNAs (miRs) are potential regulators of cellular senescence. The present study aimed to investigate whether aberrant miR-7 expression modulated senescence to influence pancreatic cancer resistance to chemotherapy. In the present study, cell senescence assay, ALDEFLUOR™ assay, luciferase reporter assay, flow cytometry, quantitative PCR, immunohistochemistry and western blot analysis were performed to explore the association between senescence and gemcitabine therapy response, and to clarify the underlying mechanisms. The present study revealed that gemcitabine-induced chronically existing senescent pancreatic cells possessed stemness markers. Therapy-induced senescence led to gemcitabine resistance. Additionally, it was found that miR-7 expression was decreased in gemcitabine-resistant pancreatic cancer cells, and that miR-7 acted as an important regulator of cellular senescence by targeting poly (ADP-ribose) polymerase 1 (PARP1)/NF-κB signaling. When miR-7 expression was restored, it was able to sensitize pancreatic cancer cells to gemcitabine. In conclusion, the present study demonstrated that miR-7 regulated cellular senescence and relieved gemcitabine resistance by targeting the PARP1/NF-κB axis in pancreatic cancer cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA