Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 422
Filtrar
1.
Free Radic Biol Med ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39389212

RESUMEN

BACKGROUND: Ultraviolet B(UVB) triggers a pro-survival response through mitophagy, but the role of FUNDC1-mediated mitophagy in photodamaged skin remains unexplored. OBJECTIVES: To clarify the function of mitophagy in UVB-induced photodamaged skin. METHODS: To investigate the role of FUNDC1-mediated mitophagy in UVB-induced mitochondrial damage and cell apoptosis, FUNDC1 knockdown in C57BL/6 mice was performed using adeno-associated virus. Additionally, FUNDC1 overexpression and knockdown in HaCaT cells were conducted using lentivirus. A comprehensive analysis was conducted on a panel of human sun-exposed skin samples, alongside control samples, to assess the expression levels of FUNDC1. RESULTS: In UVB-induced C57BL/6 mice, the dorsal skin showed photodamage including erythema, scaling, erosion, and scabs. The expression levels of PINK1, Parkin, and BNIP3 did not show significant changes, while FUNDC1 expression consistently declined along with LC3B. Cytochrome C, Bax, and cleaved-caspase3 were upregulated, while Bcl2 was downregulated. UVB-induced HaCaT cells showed mitochondrial damage, accompanied by FUNDC1 downregulation and BNIP3 upregulation, while PINK1 and Parkin showed no significant changes. FUNDC1 overexpression led to an increase in mtROS and a decrease in mitochondrial membrane potential and ATP levels, indicating complete mitochondrial clearance and exacerbated cell death. FUNDC1 knockdown protected against UVB-induced photodamage in mice and mitigated mitochondrial damage and apoptosis in HaCaT cells by activating compensatory PINK1/Parkin-dependent mitophagy, which was evidenced by upregulation of PINK1 and Bcl2 and downregulation of Bax. In human sun-exposed skin samples, there was a decrease in the number of FUNDC1+ cells compared with non-sun-exposed controls. CONCLUSIONS: FUNDC1-mediated mitophagy regulates skin photodamage and provides a novel mechanism for resisting photodamage, presenting a potential target for future therapeutic interventions.

2.
Int Immunopharmacol ; 143(Pt 1): 113324, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39393274

RESUMEN

Cardiac fibrosis is associated with myocardial remodeling following myocardial infarction (MI), which can lead to heart failure, arrhythmias, and even death. This study aimed to determine the effects of tubuloside A (TA) on cardiac fibrosis after MI and elucidate their underlying molecular mechanisms. Rats were divided into the following groups: sham (fake surgery), MI, MI + 1 mg/kg TA, and MI + 3 mg/kg TA. Compared with MI, the addition of TA significantly reduced mortality, improved cardiac function, decreased infarct size, and inhibited myocardial injury and fibrosis. To verify the direct targets of TA, we used cellular thermal shift assay and drug affinity responsive target stability to analyze drug-protein interactions and discovered that TA can bind directly to TGM2 and inhibit its enzymatic activity. Furthermore, to investigate whether TA can inhibit the TGF-ß1-mediated activation of cardiac fibroblasts (CFs) through TGM2, we overexpressed TGM2 in CF cells and treated them with TA. We found that TA inhibited the activity of TGM2 in CF cells and reduced α-SMA, collagen-I, and collagen-III levels, thereby inhibiting the progression of fibrosis. Similarly, we found that TA could exert anti-inflammatory and antiapoptotic effects by inhibiting TGM2. Overall, we demonstrated that TA is a potential candidate drug for inhibiting the impacts of myocardial infarction and cardiac fibrosis, reducing postinfarction fibrosis by inhibiting the NF-κB signaling pathway and suppressing mitochondrial pathway-mediated apoptosis. Therefore, focusing on drug discovery strategies for TA may provide a promising therapeutic approach for MI.

3.
Mol Med Rep ; 30(4)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39219287

RESUMEN

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the TUNEL assay data shown in Fig. 1C on p. 2853 and Fig. 5H on p. 2857 were strikingly similar to data that had already been published in different form in different articles written by different authors at different research institutes, or were submitted for publication at around the same time (a number of of which have now been retracted). Owing to the fact that the contentious data in the above article had already been published, or were already under consideration for publication, prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 19: 2849­2860, 2019; DOI: 10.3892/mmr.2019.9946].

4.
Meat Sci ; 219: 109652, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39265386

RESUMEN

Tenderness is considered a crucial attribute of postmortem meat quality, directly influencing consumers' preferences and industrial economic benefits. The degradation of myofibrillar proteins by endogenous enzymes within muscle fibers is believed to be the most effective pathway for meat tenderization. After animals are slaughtered and exsanguinated, there is a significant accumulation of reactive oxygen species (ROS), and a dramatic depletion of adenosine triphosphate (ATP) in muscle, leading to inevitable cell death. Caspases are activated in postmortem muscle cells, which disrupt the cell structure and improve meat tenderness through protein hydrolysis. In this review, we systematically summarized the three primary types of cell death studied in postmortem muscle: apoptosis, autophagy and necrosis. Furthermore, we emphasized the molecular mechanisms of apoptosis and its corresponding apoptotic pathways (mitochondrial apoptosis, death receptors, and endoplasmic reticulum stress) that affect meat tenderness during muscle conversion to meat. Additionally, factors affecting apoptosis were comprehensively discussed, such as ROS, heat shock proteins, calcium (Ca2+)/calpains, and Bcl-2 family proteins. Finally, this comprehensive review of existing research reveals that apoptosis is mainly mediated by the mitochondrial pathway. This ultimately leads to myofibrillar proteins degradation through caspase activation, improving meat tenderness. This review summarizes the research progress on postmortem muscle apoptosis and its molecular mechanisms in meat tenderization. We hope this will enhance understanding of postmortem meat tenderness and provide a theoretical basis for meat tenderization techniques development in the future.

5.
Heliyon ; 10(16): e36176, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39224278

RESUMEN

The dysfunction of pancreatic ß-cells plays a pivotal role in the pathogenesis of type 2 diabetes mellitus (T2DM). Despite numerous studies demonstrating the anti-inflammatory and antioxidant properties of puerarin, the protective effects of puerarin on ß-cells remain poorly understood. Hence, this study aimed to explore the effects of puerarin on ß-cell dysfunction in a hyperglycemic environment via the PINK/Parkin-mediated mitochondrial autophagy pathway. The alterations in cell viability of MIN6 cells exposed to glucose concentrations of 5 mM, 10 mM, 20 mM, and 30 mM for 24 h, 48 h, and 72 h, respectively, were assessed using the CCK-8 assay to optimize the modeling conditions. Subsequently, cellular insulin secretion was measured using enzyme-linked immunosorbent assay (ELISA), apoptosis rate by flow cytometry, mitochondrial membrane potential alteration by JC-1, cellular ROS production by the DCFH-DA fluorescent probe, and fusion of cellular autophagosomes and lysosomes through adenoviral infection analysis. Furthermore, gene and protein expression levels of the PINK/Parkin-mediated mitochondrial autophagy pathway and mitochondrial apoptosis pathway were assessed using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot, respectively. Results indicated a significant decrease in MIN6 cell viability following 48 h of exposure to 30 mM glucose concentration. Puerarin intervention markedly attenuated ROS production, restored mitochondrial membrane potential, induced PINK/Parkin-mediated mitochondrial autophagy, suppressed activation of the mitochondrial apoptotic pathway, mitigated apoptosis, and enhanced insulin secretion in a high glucose (HG) environment. The findings of this investigation contribute to a deeper understanding of the precise mechanism underlying the protective effects of puerarin on ß-cells and offer a theoretical foundation for advancing puerarin-based therapeutics aimed at ameliorating T2DM.

6.
Biomed Pharmacother ; 180: 117510, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39341077

RESUMEN

OBJECTIVE: Morusin (Mor), a prenylated flavonoid isolated from the root bark of Morus alba L., exhibits potent anti-tumour effects; however, the molecular target of Mor is still not entirely clear. This study aimed to elucidate the mechanism of Mor against hepatocellular carcinoma (HCC) and identify potential molecular targets. METHODS: Mitochondrial function was assessed by measuring the mitochondrial membrane potential, mitochondrial ultrastructure, oxygen consumption, and ATP levels. Mor-induced mitophagy was confirmed using western blotting, immunofluorescence, and fluorescent probes. Transcriptomics, flow cytometry, western blotting, qRT-PCR and biochemical assays were used to reveal the molecular mechanisms and targets of Mor against HCC. We further validated the interaction between Mor and the target proteins using molecular docking and biolayer interferometry (BLI). The inhibitory effect of Mor in vivo was evaluated using a Hep3B murine xenograft model. RESULTS: Mor significantly reduced the ATP citrate lyase (ACLY) expression and inhibited ACLY activity in HCC cells. BLI analysis demonstrated a direct interaction between Mor and the ACLY active domain. Mor-induced ACLY inhibition led to ROS accumulation in HCC cells, which caused mitochondrial damage, triggered PINK1/Parkin-mediated mitophagy, and ultimately induced mitochondrial apoptosis. We further verified that ROS is crucial in the apoptotic action of Mor through experiments regarding an ROS scavenger. Mor also significantly inhibited tumour xenograft growth in vivo. In addition, analysis of human liver cancer clinical samples revealed elevated ACLY levels positively correlated with histologic grade. CONCLUSION: Collectively, our findings highlight Mor as a potent bioactive inhibitor of ACLY and a promising candidate for HCC therapy.

7.
Neurosci Lett ; 842: 137988, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39288883

RESUMEN

This work probed into the role of latent transforming growth factor beta binding protein 2 (LTBP2) in intracranial aneurysm (IA). The rats underwent IA modeling and then stereotactic injection of short hairpin RNA against LTBP2 (shLTBP2). Hematoxylin-eosin (HE) staining was employed to assess IA model and vascular remodeling. Rat vascular smooth muscle cells (VSMCs) were transfected with shLTBP2, LTBP2 overexpression plasmid and fibroblast growth factor 2 (FGF2) overexpression plasmid. The mRNA and protein expressions of LTBP2, FGF2 and mitochondrial apoptosis-related factors (Caspase-3, Cyt-c, Mcl-1) were tested through qRT-PCR and Western blot. Cell viability, proliferation and apoptosis were examined by cell counting kit-8, EdU assay and flow cytometry. The up-regulated LTBP2 and down-regulated FGF2 were detected in IA rats. LTBP2 knockdown promoted vascular remodeling and Mcl-1 level, and restrained cell apoptosis and expressions of Caspase-3 and Cyt-c in IA model rats. Moreover, LTBP2 knockdown potentiated cell viability, proliferation and FGF2 level, and repressed apoptosis in rat VSMCs, while overexpressed LTBP2 exerted opposite effects. FGF2 overexpression promoted proliferation and Mcl-1 level, and inhibited apoptosis and expressions of Caspase-3 and Cyt-c in rat VSMCs, which also reversed the effects of overexpressed LTBP2 on these aspects. Collectively, LTBP2 down-regulates FGF2 to repress VSMCs proliferation and vascular remodeling in an IA rat model.

8.
Front Pharmacol ; 15: 1451553, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39295929

RESUMEN

Background: Leukopenia can be caused by chemotherapy, which suppresses bone marrow function and can impact the effectiveness of cancer treatment. Qijiao Shengbai Capsule (QJSB) is commonly used to treat leukopenia, but the specific bioactive components and mechanisms of action are not well understood. Objectives and results: This study aimed to analyze the active ingredients of QJSB and its potential targets for treating leukopenia using network pharmacology and molecular docking. Through a combination of serum pharmacochemistry, multi-omics, network pharmacology, and validation experiments in a murine leukopenia model, the researchers sought to understand how QJSB improves leukopenia. The study identified 16 key components of QJSB that act in vivo to increase the number of white blood cells in leukopenic mice. Multi-omics analysis and network pharmacology revealed that the PI3K-Akt and MAPK signaling pathways are important in the treatment of leukopenia with QJSB. Five specific targets (JUN, FOS, BCl-2, CASPAS-3) were identified as key targets. Conclusion: Validation experiments confirmed that QJSB regulates genes related to cell growth and inhibits apoptosis, suggesting that apoptosis may play a crucial role in leukopenia development and that QJSB may improve immune function by regulating apoptotic proteins and increasing CD4+ T cell count in leukopenic mice.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39289934

RESUMEN

BACKGROUND: To improve the prognosis outcome of lung cancer patients, more investigations are still needed. Previous reports have demonstrated the function of Ferulic Acid (FA) in lung cancer; thus, we have attempted to probe more molecular mechanisms underlying FA application in lung cancer. METHODS: CCK8 and colony formation experiments have been employed to explore cell viability and proliferation. Cell apoptosis was evaluated through flow cytometry. Cell morphology was observed with a microscope. MMP was assessed by JC-1 and LDH activity was evaluated by relative kit. Western blot assays were performed to examine the expression levels of GSDMD, GSDMD-N, caspase family proteins, and ROS/JNK/Bax mitochondrial apoptosis pathway downstream proteins. Flow cytometry analysis also measured the level of ROS. Tissues from animal models were taken for IHC analysis of C-caspase-1. RESULTS: FA was found to inhibit proliferation, change cell morphology, decrease MMP, and enhance LDH activity, suggesting its ability to induce pyroptosis of lung cancer cells. Both caspase-1 and GSDMD were found to be involved in the pyroptosis of lung cancer cells treated with FA, and caspase-1 mediated GSDMD. Moreover, FA was validated to regulate pyroptosis by ROS/JNK/Bax mitochondrial apoptosis pathway in vitro and in vivo. CONCLUSION: In summary, FA regulates GSDMD through ROS/JNK/Bax mitochondrial apoptosis pathway to induce pyroptosis in lung cancer cells, which may offer a theoretical basis for pyroptosis in the occurrence of lung cancer.

10.
J Hazard Mater ; 480: 135904, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39303616

RESUMEN

Vanadium (V) is a poisonous metallic environmental pollutant which poses hazard to the animal health of the liver. Competitive endogenous ribonucleic acids (ceRNAs) are essential elements of mitochondrial function and apoptosis, and their effects have been associated with the metal toxicity mechanism. However, the specific mechanism of ceRNAs in V-induced mitochondrial apoptosis in the liver has not been adequately investigated. Hence, we established an in vivo model of ducks exposed to V for 44 days and an in vitro model of V exposure duck hepatocyte knockdown/overexpression. Results showed that V exposure triggered the differential expression of 1106 lncRNAs and 11 miRNAs in the liver. Besides, we established the lncRNA-00742/miR-116/CD74 regulatory network by the dual luciferase reporter gene. Our results also found that V induced mitochondrial injury and up-regulated the expression levels of mitochondrial apoptosis-related factors. Furthermore, knockdown of miR-116 attenuated V-induced mitochondrial injury and apoptosis in hepatocytes. In contrast, overexpression of miR-116 and knockdown of CD74 exacerbated mitochondrial injury and apoptosis. BTZO-1 upregulated the CD74 level and alleviated V-induced mitochondrial apoptosis. In summary, V induced mitochondrial damage and apoptosis in duck liver by activating the lncRNA-00742/miR-116/CD74 axis. This research firstly revealed the mechanism of lncRNA-related ceRNAs regulating V-induced mitochondrial apoptosis.

11.
Front Pharmacol ; 15: 1434988, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39193344

RESUMEN

Background: It is unknown how cancer cells override apoptosis and maintain progression under nutrition-deprived conditions within the tumor microenvironment. Phosphoenolpyruvate carboxykinase (PEPCK or PCK) catalyzes the first rate-limiting reaction in gluconeogenesis, which is an essential metabolic alteration that is required for the proliferation of cancer cells under glucose-limited conditions. However, if PCK-mediated gluconeogenesis affects apoptotic cell death of non small cell lung cancer (NSCLC) and its potential mechanisms remain unknown. Methods: RNA-seq, Western blot and RT-PCR were performed in A549 cell lines cultured in medium containing low or high concentrations of glucose (1 mM vs. 20 mM) to gain insight into how cancer cells rewire their metabolism under glucose-restriction conditions. Stable isotope tracing metabolomics technology (LC-MS) was employed to allow precise quantification of metabolic fluxes of the TCA cycle regulated by PCK2. Flow Cytometry was used to assess the rates of early and later apoptosis and mitochondrial ROS in NSCLC cells. Transwell assays and luciferase-based in vivo imaging were used to determine the role of PCK2 in migration and invasion of NSCLC cells. Xenotransplants on BALB/c nude mice to evaluate the effects of PCK2 on tumor growth in vivo. Western blot, Immunohistochemistry and TUNEL assays to evaluate the protein levels of mitochondrial apoptosis. Results: This study report that the mitochondrial resident PCK (PCK2) is upregulated in dependent of endoplasmic reticulum stress-induced expression of activating transcription factor 4 (ATF4) upon glucose deprivation in NSCLC cells. Further, the study finds that PCK2-mediated metabolism is required to decrease the burden of the TCA cycles and oxidative phosphorylation as well as the production of mitochondrial reactive oxygen species. These metabolic alterations in turn reduce the activation of Caspase9-Caspase3-PARP signal pathway which drives apoptotic cell death. Importantly, silencing PCK2 increases apoptosis of NSCLC cells under low glucose condition and inhibits tumor growth both in vitro and in vivo. Conclusion: In summary, PCK2-mediated metabolism is an important metabolic adaptation for NSCLC cells to acquire resistance to apoptosis under glucose deprivation.

12.
Nutrients ; 16(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39203920

RESUMEN

Rosa sterilis (RS) is a characteristic fruit in southwestern China that has numerous health benefits; however, its pharmacological effect needs further clarification, especially with respect to the exploration of its potential anti-breast-cancer effect, as there are still knowledge gaps in this regard. This study was designed to investigate the protective effects of Rosa sterilis juice (RSJ) on breast cancer (BC) through in vitro cellular experiments and by establishing mouse 4T1 breast xenograft tumors. This study also had the aim of elucidating RSJ's underlying mechanisms. RSJ can inhibit cell proliferation, affect cell morphology, and impact the clone formation ability of BC; furthermore, it can promote apoptosis by triggering the mitochondrial apoptosis pathway. In mouse 4T1 breast xenograft tumors, RSJ markedly inhibited tumor growth, relieved the pathological lesions, lowered the expression of Ki67, and regulated the expression of the apoptosis-associated protein. Moreover, we observed that RSJ can inhibit the Jak2/Stat3 signaling pathway both in vivo and in vitro. Overall, our research reveals that RSJ can alleviate BC by triggering the mitochondrial apoptosis pathway and suppressing the Jak2/Stat3 pathway, providing new dietary intervention strategies for BC.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Janus Quinasa 2 , Mitocondrias , Rosa , Factor de Transcripción STAT3 , Transducción de Señal , Janus Quinasa 2/metabolismo , Animales , Apoptosis/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Femenino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias de la Mama/patología , Transducción de Señal/efectos de los fármacos , Ratones , Humanos , Línea Celular Tumoral , Rosa/química , Proliferación Celular/efectos de los fármacos , Jugos de Frutas y Vegetales , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3365-3372, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041100

RESUMEN

This study aims to investigate the effect of ergosterol peroxide(EP) on the apoptosis of human hepatocellular carcinoma and its mechanism of action. The cell viability of HepG2 and SK-Hep-1 cells with 0(blank control), 2.5, 5, 10, 20, 40, and 80 µmol·L~(-1) of EP after 24, 48, and 72 h of action was detected by using CCK-8 assay, and the half inhibitory concentrations(IC_(50)) at 24, 48, and 72 h were calculated. Formal experiments were performed to detect the effect of EP on intracellular reactive oxygen species(ROS) using DCFH-DA staining, the effect of EP on intracellular mitochondrial membrane potential using JC-1 staining, the number of apoptotic cells using Annexin V-FITC/PI double-staining after HepG2 cells were co-cultured with 0(blank control), 10, 20, 40 µmol·L~(-1) EP for 48 h. The effects of EP at different concentrations on apoptotic morphology were detected using AO/EB staining. The effects of different concentrations of EP on the protein expression of mitochondrial apoptosis pathway-related proteins B cell lymphoma 2(Bcl-2), cytochrome C(Cyt-C), Bcl-2-related X protein(Bax), caspase-3, cleaved caspase-3, caspase-9, and cleaved caspase-9 were examined by using Western blot. The results showed that different concentrations of EP could inhibit the proliferation of hepatocellular carcinoma with concentration-and time-dependent trends. Compared with the blank control group, the ROS level in the EP-treated group increased significantly(P<0.05). The mitochondrial membrane potential decreased significantly(P<0.05). The total apoptosis rate increased significantly(P<0.05). The expression of Bcl-2 protein was significantly down-regulated, and the expression of Cyt-C, Bax, cleaved caspase-9, and cleaved caspase-3 were significantly up-regulated(P<0.05). In summary, EP may inhibit the proliferation of hepatocellular carcinoma by modulating the mitochondria-mediated apoptosis pathway and induce apoptosis.


Asunto(s)
Apoptosis , Carcinoma Hepatocelular , Ergosterol , Neoplasias Hepáticas , Potencial de la Membrana Mitocondrial , Mitocondrias , Especies Reactivas de Oxígeno , Humanos , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ergosterol/farmacología , Ergosterol/análogos & derivados , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Células Hep G2 , Citocromos c/metabolismo , Caspasa 3/metabolismo , Caspasa 3/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Caspasa 9/metabolismo , Caspasa 9/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética
14.
Sci Rep ; 14(1): 16809, 2024 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039202

RESUMEN

Long-term exposure to hyperglycemic conditions leads to ß-cell dysfunction, particularly mitochondrial dysfunction, and inflammatory and oxidative stress responses, which are considered the primary causes of ß-cell death and the hallmarks of diabetes. Plant-active ingredients may play a key role in glycemic control. Epigallocatechin gallate (EGCG) is a characteristic catechin derived from tea that possesses anti-diabetic properties. Nonetheless, its underlying mechanisms remain elusive. Herein, the protective role of EGCG on high glucose (33 mM)-induced pancreatic beta cell dysfunction and its possible molecular mechanisms were investigated. Briefly, MIN6 cells were treated with glucose and EGCG (10 µM, 20 µM, and 40 µM) for 48 h. Our results revealed that EGCG dose-dependently restored mitochondrial membrane potential and concomitantly alleviated cell apoptosis. Mechanistically, the expression level of apoptotic protein BAX and Dynamic related protein 1 (DRP1) was significantly downregulated following EGCG treatment, whereas that of the anti-apoptotic protein BCL-2 was significantly upregulated. Taken together, EGCG alleviated high glucose-induced pancreatic beta cell dysfunction by targeting the DRP1-related mitochondrial apoptosis pathway and thus can serve as a nutritional intervention for the preservation of beta cell dysfunction in patients with type 2 diabetes mellitus.


Asunto(s)
Apoptosis , Catequina , Dinaminas , Glucosa , Células Secretoras de Insulina , Mitocondrias , Catequina/análogos & derivados , Catequina/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Apoptosis/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Glucosa/metabolismo , Dinaminas/metabolismo , Dinaminas/genética , Animales , Ratones , Línea Celular , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
15.
Neurochem Res ; 49(10): 2699-2724, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38916813

RESUMEN

Dysfunction of Schwann cells, including cell apoptosis, autophagy inhibition, dedifferentiation, and pyroptosis, is a pivotal pathogenic factor in induced diabetic peripheral neuropathy (DPN). Histone deacetylases (HDACs) are an important family of proteins that epigenetically regulate gene transcription by affecting chromatin dynamics. Here, we explored the effect of HDAC1 on high glucose-cultured Schwann cells. HDAC1 expression was increased in diabetic mice and high glucose-cultured RSC96 cells, accompanied by cell apoptosis. High glucose also increased the mitochondrial pathway apoptosis-related Bax/Bcl-2 and cleaved caspase-9/caspase-9 ratios and decreased endoplasmic reticulum response-related GRP78, CHOP, and ATF4 expression in RSC96 cells (P < 0.05). Furthermore, overexpression of HDAC1 increased the ratios of Bax/Bcl-2, cleaved caspase-9/caspase-9, and cleaved caspase-3 and reduced the levels of GRP78, CHOP, and ATF4 in RSC96 cells (P < 0.05). In contrast, knockdown of HDAC1 inhibited high glucose-promoted mitochondrial pathway apoptosis and suppressed the endoplasmic reticulum response. Moreover, RNA sequencing revealed that U4 spliceosomal RNA was significantly reduced in HDAC1-overexpressing RSC96 cells. Silencing of U4 spliceosomal RNA led to an increase in Bax/Bcl-2 and cleaved caspase-9 and a decrease in CHOP and ATF4. Conversely, overexpression of U4 spliceosomal RNA blocked HDAC1-promoted mitochondrial pathway apoptosis and inhibited the endoplasmic reticulum response. In addition, alternative splicing analysis of HDAC1-overexpressing RSC96 cells showed that significantly differential intron retention (IR) of Rpl21, Cdc34, and Mtmr11 might be dominant downstream targets that mediate U4 deficiency-induced Schwann cell dysfunction. Taken together, these findings indicate that HDAC1 promotes mitochondrial pathway-mediated apoptosis and inhibits the endoplasmic reticulum stress response in high glucose-cultured Schwann cells by decreasing the U4 spliceosomal RNA/IR of Rpl21, Cdc34, and Mtmr11.


Asunto(s)
Apoptosis , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Glucosa , Histona Desacetilasa 1 , Mitocondrias , Células de Schwann , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/fisiología , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Células de Schwann/metabolismo , Células de Schwann/efectos de los fármacos , Glucosa/metabolismo , Mitocondrias/metabolismo , Chaperón BiP del Retículo Endoplásmico/metabolismo , Ratones , Histona Desacetilasa 1/metabolismo , Masculino , Diabetes Mellitus Experimental/metabolismo , Ratas , Ratones Endogámicos C57BL , Línea Celular
16.
Phytomedicine ; 130: 155745, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38833788

RESUMEN

BACKGROUND AND AIMS: Isogarcinol, a natural compound extracted from the fruits of Garcinia oblongifolia, has potential chemopreventive activity. This study aimed to elucidate the anti-tumor effects and mechanism of action of isogarcinol on nasopharyngeal carcinoma (NPC). METHODS: Isogarcinol was isolated from Garcinia oblongifolia by using chromatographic separation. The anti-tumor effects of isogarcinol in NPC cells were tested by MTT assay, flow cytometry, wound healing assay, western blotting, transwell assay, colony formation assay, immunofluorescence, and transmission electron microscopy (TEM). The anti-tumor efficacy in vivo was evaluated in NPC cells xenograft models. RESULTS: Functional studies revealed that isogarcinol inhibited the proliferation, colony formation, migration and invasion abilities of NPC cells in vitro. Isogarcinol caused mitochondrial damage to overproduce reactive oxygen species through reducing the mitochondrial membrane potential and ΔΨm. Isogarcinol also substantially inhibited NPC cells growth in a xenograft tumor model without any obvious toxicity when compared with paclitaxel (PTX). Mechanistic studies have illustrated that isogarcinol increased the Bax/Bcl-2 ratio, cleaved caspase-3, and cytoplasmic cytochrome C levels to induce mitochondrial apoptosis. The ROS overproduction by isogarcinol could suppress EMT pathway via decreasing the levels of p-Akt and Snail. Furthermore, isogarcinol promoted the conversion of LC3-Ⅰ to LC3-Ⅱ, but increased p62 level to block autophagic flux, resulting in the accumulation of damaged mitochondria to promote autophagic cell death in NPC cells. CONCLUSION: This study provides a new theoretical foundation for the anti-tumor application of Garcinia oblongifolia and confirms that isogarcinol could be developed as a candidate drug for NPC treatment with low toxicity.


Asunto(s)
Antineoplásicos Fitogénicos , Garcinia , Ratones Desnudos , Mitocondrias , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Garcinia/química , Animales , Mitocondrias/efectos de los fármacos , Línea Celular Tumoral , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Antineoplásicos Fitogénicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Muerte Celular Autofágica/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Frutas/química
17.
J Ethnopharmacol ; 331: 118277, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38697407

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Chemotherapy tolerance weakened efficacy of chemotherapy drugs in the treating gastric cancer (GC). Banxiaxiexin decoction (BXXXD) was widely used in digestive diseases for thousands of years in Traditional Chinese medicine (TCM). In order to better treat GC, three other herbs were added to BXXXD to create a new prescription named Modified Banxiaxiexin decoction (MBXXXD). Although MBXXXD potentially treated GC by improving chemotherapy tolerance, the possible mechanisms were still unknown. AIM OF THE STUDY: To explore the therapeutic effect of MBXXXD on GC patients and explore the possible anti-cancer mechanism. MATERIALS AND METHODS: A randomized controlled trial (n = 146) was conducted to evaluate the clinical efficacy between MBXXXD + chemotherapy (n = 73) and placebo + chemotherapy (n = 73) in GC patients by testing overall survival, progression free survival, clinical symptoms, quality of life score, tumor markers, T cell subpopulation, and adverse reactions. Network pharmacology was conducted to discover the potential mechanism of MBXXXD in treating GC. Metabolic activity assay, cell clone colony formation and mitochondrial apoptosis were detected in human GC cell lines including AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD. Multiple pathways including P53, AKT, IκB, P65, P38, ERK, JNK p-AKT, p-P65, p-P38, p-ERK and p-JNK in AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD and GC patients treated by MBXXXD + chemotherapy were also detected. RESULTS: MBXXXD + chemotherapy promoted overall survival and progression free survival, improved clinical symptoms and quality of life score, increased T4 lymphocyte ratio and T8 lymphocyte ratio as well as T4/T8 lymphocyte ratio, and alleviated adverse reactions in GC patients. Network pharmacology predicted multiple targets and pathways of MBXXXD in treating GC including apoptosis, P53 pathway, AKT pathway, MAPK pathway. MBXXXD inhibited cell viability, decreased cell clone colony formation, and promoted mitochondrial apoptosis by producing reactive oxygen species (ROS), promoting mitochondrial permeability transition pore (MPTP) and the cleavage of pro-caspase-3 and pro-caspase-9, and decreasing mito-tracker red Chloromethyl-X-rosamine (CMXRos) in AGS cell, KNM-45 cell and SGC7901 cell. MBXXXD up-regulated the expression of P53 and IκB, and down-regulated the expression of p-AKT, p-P65, p-P38, p-ERK, p-JNK, AKT, P65, P38, ERK and JNK AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD and GC patients treated by MBXXXD + chemotherapy. CONCLUSION: MBXXXD benefitted chemotherapy for GC by regulating multiple targets and pathways.


Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Femenino , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Persona de Mediana Edad , Masculino , Línea Celular Tumoral , Anciano , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Adulto , Farmacología en Red
18.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2230-2246, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38812238

RESUMEN

Total triterpenoids from the fruits of Chaenomeles speciosa(TCS) are active components in the prevention and treatment of gastric mucosal damage, which have potential anti-aging effects. However, it is still unclear whether TCS can improve gastric aging, especially its molecular mechanism against gastric aging. On this basis, this study explored the effect and mechanism of TCS on senescent GES-1 cells induced by D-galactose(D-gal) to provide scientific data for the clinical use of TCS to prevent gastric aging. GES-1 cells cultured in vitro and those transfected with overexpression GLS1(GLS1-OE) plasmid of glutaminase 1(GLS1) were induced to aging by D-gal, and then TCS and or GLS1 inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide(BPTES) were given. Cell survival rate, positive rate of ß-galactosidase(SA-ß-gal) staining, mitochondrial membrane potential(MMP), and apoptosis were investigated. GLS1 activity, levels of glutamine(Gln), glutamate(Glu), α-ketoglutarate(α-KG), urea, and ammonia in supernatant and cells were detected by enzyme-linked immunosorbent assay(ELISA) and colorimetric methods. The mRNA and protein expressions of GLS1 and the related genes of the mitochondrial apoptosis signaling pathway were measured by real-time fluorescence quantitative PCR and Western blot. The results manifested that compared with the D-gal model group and GLS1-OE D-gal model group, TCS significantly decreased the SA-ß-gal staining positive cell rate and MMP of D-gal-induced senescent GES-1 cells and GLS1-OE senescent GES-1 cells, inhibited the survival of senescent cells, and promoted their apoptosis(P<0.01). It decreased the activity of GLS1 and the content of Gln, Glu, α-KG, urea, and ammonia in supernatant and cell(P<0.01), reduced the concentration of cytochrome C(Cyto C) in mitochondria and the mRNA and protein expressions of GLS1 and proliferating nuclear antigen in cells(P<0.01). The mRNA expression of Bcl-2 and Bcl-xl, the protein expression of pro-caspase-9 and pro-caspase-3, and the ratio of Bcl-2/Bax and Bcl-xl/Bad in cells were decreased(P<0.01). Cyto C concentration in the cytoplasm, the mRNA expressions of Bax, Bad, apoptosis protease activating factor 1(Apaf-1), and protein expressions of cleaved-caspase-9, cleaved-caspase-3, cleaved-PARP-1 were increased(P<0.01). The aforementioned results indicate that TCS can counteract the senescent GES-1 cells induced by D-gal, and its mechanism may be closely related to suppressing the Gln/GLS1/α-KG metabolic axis, activating the mitochondrial apoptosis pathway, and thereby accelerating the apoptosis of the senescent cells and eliminating senescent cells.


Asunto(s)
Apoptosis , Frutas , Galactosa , Glutaminasa , Glutamina , Mitocondrias , Transducción de Señal , Triterpenos , Apoptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Triterpenos/farmacología , Triterpenos/química , Humanos , Transducción de Señal/efectos de los fármacos , Línea Celular , Frutas/química , Glutamina/farmacología , Glutamina/metabolismo , Glutaminasa/metabolismo , Glutaminasa/genética , Senescencia Celular/efectos de los fármacos , Ácidos Cetoglutáricos/farmacología , Ácidos Cetoglutáricos/metabolismo
19.
J Cardiovasc Transl Res ; 17(4): 946-958, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38568407

RESUMEN

Myocardial ischemia/reperfusion injury (MI/RI) is identified as a severe vascular emergency, and the treatment strategy of MI/RI still needs further improvement. The present study aimed to investigate the potential effects of mild therapeutic hypothermia (MTH) on MI/RI and underlying mechanisms. In ischemia/reperfusion (I/R) rats, MTH treatment significantly improved myocardial injury, attenuated myocardial infarction, and inhibited the mitochondrial apoptosis pathway. The results of proteomics identified SLC25A10 as the main target of MTH treatment. Consistently, SLC25A10 expressions in I/R rat myocardium and hypoxia and reoxygenation (H/R) cardiomyocytes were significantly suppressed, which was effectively reversed by MTH treatment. In H/R cardiomyocytes, MTH treatment significantly improved cell injury, mitochondrial dysfunction, and inhibited the mitochondrial apoptosis pathway, which were partially reversed by SLC25A10 deletion. These findings suggested that MTH treatment could protect against MI/RI by modulating SLC25A10 expression to suppress mitochondrial apoptosis pathway, providing new theoretical basis for clinical application of MTH treatment for MI/RI.


Asunto(s)
Apoptosis , Modelos Animales de Enfermedad , Hipotermia Inducida , Mitocondrias Cardíacas , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Ratas Sprague-Dawley , Animales , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/genética , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Masculino , Transducción de Señal , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Células Cultivadas , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Ratas
20.
Chem Biol Interact ; 395: 110994, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38582339

RESUMEN

Exposure to environmental pollutants, including nanomaterials, has a significant impact on tumor progression. The increased demand for black phosphorus nanosheets (BPNSs), driven by their exceptional properties, raises concerns about potential environmental contamination. Assessing their toxicity on tumor growth is essential. Herein, we employed a range of biological techniques, including cytotoxicity measurement, bioinformatics tools, proteomics, target gene overexpression, Western blot analysis, and apoptosis detection, to investigate the toxicity of BPNSs across A549, HepG-2, MCF-7, and Caco-2 cell lines. Our results demonstrated that BPNSs downregulated the expression of ADIPOQ and its associated downstream pathways, such as AMP-activated protein kinase (AMPK), nuclear factor erythroid 2-related factor 2 (Nrf2), and other unidentified pathways. These downregulated pathways ultimately led to mitochondria-dependent apoptosis. Notably, the specific downstream pathways involved varied depending on the type of tumors. These insightful findings not only confirm the consistent inhibitory effects of BPNSs across different tumor cells, but also elucidate the cytotoxicity mechanisms of BPNSs in different tumors, providing valuable information for their safe application and health risk assessment.


Asunto(s)
Adiponectina , Apoptosis , Proliferación Celular , Regulación hacia Abajo , Nanoestructuras , Fósforo , Transducción de Señal , Humanos , Fósforo/química , Proliferación Celular/efectos de los fármacos , Adiponectina/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Nanoestructuras/química , Nanoestructuras/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proteínas Quinasas Activadas por AMP/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA