Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Function (Oxf) ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075985

RESUMEN

Lymphatic dysfunction is an underlying component of multiple metabolic diseases, including diabetes, obesity, and metabolic syndrome. We investigated the roles of KATP channels in lymphatic contractile dysfunction in response to acute metabolic stress induced by inhibition of the mitochondrial electron transport chain. Ex vivo popliteal lymphatic vessels from mice were exposed to the electron transport chain inhibitors antimycin A and rotenone, or the oxidative phosphorylation inhibitor/protonophore, CCCP. Each inhibitor led to a significant reduction in the frequency of spontaneous lymphatic contractions and calculated pump flow, without a significant change in contraction amplitude. Contraction frequency was restored by the KATP channel inhibitor, glibenclamide. Lymphatic vessels from mice with global Kir6.1 deficiency or expressing a smooth muscle-specific dominant negative Kir6.1 channel were resistant to inhibition. Antimycin A inhibited the spontaneous action potentials generated in lymphatic muscle and this effect was reversed by glibenclamide, confirming the role of KATP channels. Antimycin A, but not rotenone or CCCP, increased dihydrorhodamine fluorescence in lymphatic muscle, indicating ROS production. Pretreatment with tiron or catalase prevented the effect of antimycin A on wild-type lymphatic vessels, consistent with its action being mediated by ROS. Our results support the conclusion that KATP channels in lymphatic muscle can be directly activated by reduced mitochondrial ATP production or ROS generation, consequent to acute metabolic stress, leading to contractile dysfunction through inhibition of the ionic pacemaker controlling spontaneous lymphatic contractions. We propose that a similar activation of KATP channels contributes to lymphatic dysfunction in metabolic disease.

2.
Br J Pharmacol ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982680

RESUMEN

BACKGROUND AND PURPOSE: Triple-negative breast cancer (TNBC) has a poor prognosis due to limited therapeutic options. Recent studies have shown that TNBC is highly dependent on mitochondrial oxidative phosphorylation. The aim of this study was to investigate the potential of coptisine, a novel compound that inhibits the complex I of the mitochondrial electron transport chain (ETC), as a treatment for TNBC. EXPERIMENTAL APPROACH: In this study, mitochondrial metabolism in TNBC was analysed by bioinformatics. In vitro and in vivo experiments (in mice) were conducted to evaluate the potential of coptisine as an ETC complex I-targeting therapeutic agent and to investigate the molecular mechanisms underlying coptisine-induced mitochondrial dysfunction. The therapeutic effect of coptisine was assessed in TNBC cells and xenograft mouse model. KEY RESULTS: We demonstrated that mitochondrial ETC I was responsible for this metabolic vulnerability in TNBC. Furthermore, a naturally occurring compound, coptisine, exhibited specific inhibitory activity against this complex I. Treatment with coptisine significantly inhibited mitochondrial functions, reprogrammed cellular metabolism, induced apoptosis and ultimately inhibited the proliferation of TNBC cells. Additionally, coptisine administration induced prominent growth inhibition that was dependent on the presence of a functional complex I in xenograft mouse models. CONCLUSION AND IMPLICATIONS: Altogether, these findings suggest the promising potential of coptisine as a potent ETC complex I inhibitor to target the metabolic vulnerability of TNBC.

3.
Cancers (Basel) ; 16(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38893249

RESUMEN

Clinical trials with single-agent venetoclax/ABT-199 (anti-apoptotic BCL2 inhibitor) revealed that diffuse large B-cell lymphoma (DLBCL) is not solely dependent on BCL2 for survival. Gaining insight into pathways/proteins that increase venetoclax sensitivity or unique vulnerabilities in venetoclax-resistant DLBCL would provide new potential treatment avenues. Therefore, we generated acquired venetoclax-resistant DLBCL cells and evaluated these together with intrinsically venetoclax-resistant and -sensitive DLBCL lines. We identified resistance mechanisms, including alterations in BCL2 family members that differed between intrinsic and acquired venetoclax resistance and increased dependencies on specific pathways. Although combination treatments with BCL2 family member inhibitors may overcome venetoclax resistance, RNA-sequencing and drug/compound screens revealed that venetoclax-resistant DLBCL cells, including those with TP53 mutation, had a preferential dependency on oxidative phosphorylation. Mitochondrial electron transport chain complex I inhibition induced venetoclax-resistant, but not venetoclax-sensitive, DLBCL cell death. Inhibition of IDH2 (mitochondrial redox regulator) synergistically overcame venetoclax resistance. Additionally, both acquired and intrinsic venetoclax-resistant DLBCL cells were similarly sensitive to inhibitors of transcription, B-cell receptor signaling, and class I histone deacetylases. These approaches were also effective in DLBCL, follicular, and marginal zone lymphoma patient samples. Our results reveal there are multiple ways to circumvent or overcome the diverse venetoclax resistance mechanisms in DLBCL and other B-cell lymphomas and identify critical targetable pathways for future clinical investigations.

4.
Front Oncol ; 14: 1364577, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515569

RESUMEN

Background: Head and neck squamous cell carcinomas (HNSCC) are highly heterogeneous tumors. In the harsh tumor microenvironment (TME), metabolic reprogramming and mitochondrial dysfunction may lead to immunosuppressive phenotypes. Aerobic glycolysis is needed for the activation of cytotoxic T-cells and the absence of glucose may hamper the full effector functions of cytotoxic T-cells. To test the effect of mitochondrial dysfunction on cytotoxic T cell function, slice cultures (SC) of HNSCC cancer were cultivated under different metabolic conditions. Methods: Tumor samples from 21 patients with HNSCC were collected, from which, SC were established and cultivated under six different conditions. These conditions included high glucose, T cell stimulation, and temporarily induced mitochondrial dysfunction (MitoDys) using FCCP and oligomycin A with or without additional T cell stimulation, high glucose and finally, a control medium. Over three days of cultivation, sequential T cell stimulation and MitoDys treatments were performed. Supernatant was collected, and SC were fixed and embedded. Granzyme B was measured in the supernatant and in the SC via immunohistochemistry (IHC). Staining of PD1, CD8/Ki67, and cleaved-caspase-3 (CC3) were performed in SC. Results: Hematoxylin eosin stains showed that overall SC quality remained stable over 3 days of cultivation. T cell stimulation, both alone and combined with MitoDys, led to significantly increased granzyme levels in SC and in supernatant. Apoptosis following T cell stimulation was observed in tumor and stroma. Mitochondrial dysfunction alone increased apoptosis in tumor cell aggregates. High glucose concentration alone had no impact on T cell activity and apoptosis. Apoptosis rates were significantly lower under conditions with high glucose and MitoDys (p=0.03). Conclusion: Stimulation of tumor-infiltrating lymphocytes in SC was feasible, which led to increased apoptosis in tumor cells. Induced mitochondrial dysfunction did not play a significant role in the activation and function of TILs in SC of HNSCC. Moreover, high glucose concentration did not promote cytotoxic T cell activity in HNSCC SC.

5.
Redox Rep ; 29(1): 2312320, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38329114

RESUMEN

Burns and burn sepsis, characterized by persistent and profound hypercatabolism, cause energy metabolism dysfunction that worsens organ injury and systemic disorders. Glutamine (Gln) is a key nutrient that remarkably replenishes energy metabolism in burn and sepsis patients, but its exact roles beyond substrate supply is unclear. In this study, we demonstrated that Gln alleviated liver injury by sustaining energy supply and restoring redox balance. Meanwhile, Gln also rescued the dysfunctional mitochondrial electron transport chain (ETC) complexes, improved ATP production, reduced oxidative stress, and protected hepatocytes from burn sepsis injury. Mechanistically, we revealed that Gln could activate SIRT4 by upregulating its protein synthesis and increasing the level of Nicotinamide adenine dinucleotide (NAD+), a co-enzyme that sustains the activity of SIRT4. This, in turn, reduced the acetylation of shock protein (HSP) 60 to facilitate the assembly of the HSP60-HSP10 complex, which maintains the activity of ETC complex II and III and thus sustain ATP generation and reduce reactive oxygen species release. Overall, our study uncovers a previously unknown pharmacological mechanism involving the regulation of HSP60-HSP10 assembly by which Gln recovers mitochondrial complex activity, sustains cellular energy metabolism and exerts a hepato-protective role in burn sepsis.


Asunto(s)
Quemaduras , Sepsis , Sirtuinas , Humanos , Glutamina/metabolismo , Glutamina/farmacología , Metabolismo Energético , Adenosina Trifosfato/metabolismo , Quemaduras/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Hígado/metabolismo , Proteínas Mitocondriales/metabolismo , Sirtuinas/metabolismo
6.
J Assist Reprod Genet ; 41(3): 767-779, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38372883

RESUMEN

Coenzyme Q10 (CoQ10) is a natural component widely present in the inner membrane of mitochondria. CoQ10 functions as a key cofactor for adenosine triphosphate (ATP) production and exhibits antioxidant properties in vivo. Mitochondria, as the energy supply center of cells, play a crucial role in germ cell maturation and embryonic development, a complicated process of cell division and cellular differentiation that transforms from a single cell (zygote) to a multicellular organism (fetus). Here, we discuss the effects of CoQ10 on oocyte maturation and the important role of CoQ10 in the growth of various organs during different stages of fetal development. These allowed us to gain a deeper understanding of the pathophysiology of embryonic development and the potential role of CoQ10 in improving fertility quality. They also provide a reference for further developing its application in clinical treatments.


Asunto(s)
Antioxidantes , Ubiquinona , Ubiquinona/análogos & derivados , Humanos , Ubiquinona/farmacología , Antioxidantes/farmacología , Mitocondrias/genética , Desarrollo Embrionario/genética
7.
Antioxidants (Basel) ; 12(11)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-38001794

RESUMEN

Mitochondria are specialized organelles, which serve as the "Power House" to generate energy for maintaining heart function. These organelles contain various enzymes for the oxidation of different substrates as well as the electron transport chain in the form of Complexes I to V for producing ATP through the process of oxidative phosphorylation (OXPHOS). Several studies have shown depressed OXPHOS activity due to defects in one or more components of the substrate oxidation and electron transport systems which leads to the depletion of myocardial high-energy phosphates (both creatine phosphate and ATP). Such changes in the mitochondria appear to be due to the development of oxidative stress, inflammation, and Ca2+-handling abnormalities in the failing heart. Although some investigations have failed to detect any changes in the OXPHOS activity in the failing heart, such results appear to be due to a loss of Ca2+ during the mitochondrial isolation procedure. There is ample evidence to suggest that mitochondrial Ca2+-overload occurs, which is associated with impaired mitochondrial OXPHOS activity in the failing heart. The depression in mitochondrial OXPHOS activity may also be due to the increased level of reactive oxygen species, which are formed as a consequence of defects in the electron transport complexes in the failing heart. Various metabolic interventions which promote the generation of ATP have been reported to be beneficial for the therapy of heart failure. Accordingly, it is suggested that depression in mitochondrial OXPHOS activity plays an important role in the development of heart failure.

8.
Eur J Med Chem ; 262: 115885, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37871407

RESUMEN

The opportunistic apicomplexan parasite Toxoplasma gondii is the etiologic agent for toxoplasmosis, which can infect a widespread range of hosts, particularly humans and warm-blooded animals. The present chemotherapy to treat or prevent toxoplasmosis is deficient and is based on diverse drugs such as atovaquone, trimethoprim, spiramycine, which are effective in acute toxoplasmosis. Therefore, a safe chemotherapy is required for toxoplasmosis considering that its responsible agent, T. gondii, provokes severe illness and death in pregnant women and immunodeficient patients. A certain disadvantage of the available treatments is the lack of effectiveness against the tissue cyst of the parasite. A safe chemotherapy to combat toxoplasmosis should be based on the metabolic differences between the parasite and the mammalian host. This article covers different relevant molecular targets to combat this disease including the isoprenoid pathway (farnesyl diphosphate synthase, squalene synthase), dihydrofolate reductase, calcium-dependent protein kinases, histone deacetylase, mitochondrial electron transport chain, etc.


Asunto(s)
Toxoplasma , Toxoplasmosis , Animales , Humanos , Femenino , Embarazo , Toxoplasmosis/tratamiento farmacológico , Atovacuona/metabolismo , Atovacuona/farmacología , Atovacuona/uso terapéutico , Trimetoprim/farmacología , Mamíferos
9.
ACS Chem Neurosci ; 14(17): 3077-3087, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37579290

RESUMEN

Oxidative stress and mitochondrial dysfunction are leading mechanisms that play a crucial role in the progression of Parkinson's disease (PD). Tinospora cordifolia shows a wide range of biological activities including immunomodulatory, antimicrobial, antioxidant, and anti-inflammatory properties. This study explored the neuroprotective activities of T. cordifolia ethanolic extract (TCE) against Rotenone (ROT)-intoxicated Parkinsonian mice. Four experimental groups of mice were formed: control, ROT (2 mg/kg body wt, subcutaneously), TCE (200 mg/kg body wt, oral) + ROT, and TCE only. Mice were pretreated with TCE for a week and then simultaneously injected with ROT for 35 days. Following ROT-intoxication, motor activities, antioxidative potential, and mitochondrial dysfunction were analyzed. Decrease in the activity of the mitochondrial electron transport chain (mETC) complex, loss of mitochondrial membrane potential (Ψm), increase in Bax/Bcl-2 (B-cell lymphoma 2) ratio, and caspase-3 expression are observed in the ROT-intoxicated mice group. Our results further showed ROT-induced reactive oxygen species (ROS)-mediated alpha-synuclein (α-syn) accumulation and mitochondrial dysfunction. However, pre- and cotreatment with TCE along with ROT-intoxication significantly reduced α-syn aggregation and improved mitochondrial functioning in cells by altering mitochondrial potential and increasing mETC activity. TCE also decreases the Bax/Bcl-2 ratio and also the expression of caspase-3, thus reducing apoptosis of the cell. Altogether, TCE is effective in protecting neurons from rotenone-induced cytotoxicity in the Parkinsonian mouse model by modulating oxidative stress, ultimately reducing mitochondrial dysfunction and cell death.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Tinospora , Ratones , Animales , Enfermedad de Parkinson/metabolismo , Rotenona/farmacología , Fármacos Neuroprotectores/farmacología , Tinospora/metabolismo , Caspasa 3/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Estrés Oxidativo , Antioxidantes/farmacología , Mitocondrias/metabolismo
10.
Oncol Lett ; 26(2): 327, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37415631

RESUMEN

Gastric cancer is one of the most lethal cancers worldwide. Research has focused on exploring natural medicines to improve the systematic chemotherapy for gastric cancer. Luteolin, a natural flavonoid, possesses anticancer activities. Nevertheless, the mechanism of the anticancer effects of luteolin is still not clear. The present study aimed to verify the inhibitory effect of luteolin on gastric cancer HGC-27, MFC and MKN-45 cells and to explore the underlying mechanism. A Cell Counting Kit-8 cell viability assay, flow cytometry, western blot, an ATP content assay and an enzyme activity testing assay were used. Luteolin inhibited the proliferation of gastric cancer HGC-27, MFC and MKN-45 cells. Further, it impaired mitochondrial integrity and function by destroying the mitochondrial membrane potential, downregulating the activities of mitochondrial electron transport chain complexes (mainly complexes I, III and V), and unbalancing the expression of B cell lymphoma-2 family member proteins, eventually leading to apoptosis of gastric cancer HGC-27, MFC and MKN-45 cells. The intrinsic apoptosis pathway was involved in luteolin's anti-gastric cancer effects. Furthermore, mitochondria were the main target in luteolin-induced gastric cancer apoptosis. The present study may provide a theoretical basis for the research on the effect of luteolin on the mitochondrial metabolism in cancer cells, and pave the way for its practical application in the future.

11.
Ecotoxicol Environ Saf ; 256: 114829, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36989557

RESUMEN

Heavy metals are ubiquitous environmental pollutants that are extremely dangerous for public health, but the molecular mechanisms of their cytotoxic action are still not fully understood. In the present work, the possible contribution of the mitochondrial ATP-sensitive potassium channel (mK(ATP)), which is usually considered protective for the cell, to hepatotoxicity caused by heavy metals was investigated using polarography and swelling techniques as well as flow cytometry. Using isolated liver mitochondria from adult male Wistar rats and various potassium media containing or not containing penetrating anions (KNO3, KSCN, KAcet, KCl), we studied the effect of mK(ATP) modulators, namely its blockers (5-hydroxydecanoate, glibenclamide, ATP, ADP) and activators (diazoxide, malonate), on respiration and/or membrane permeability in the presence of hepatotoxins such as Cd2+, Hg2+, and Cu2+. It has been shown for the first time that, contrary to Hg2+ and depending on media used, the mK(ATP) modulators affect Cd2+- and/or Cu2+-induced alterations in mitochondrial swelling and respiration rates, although differently, nevertheless, in the ways compatible with mK(ATP) participation in both these cases. On rat AS-30D ascites hepatoma cells, it was found that, unlike Cd2+, an increase in the production of reactive oxygen species was observed with the simultaneous use of Cu2+ and diazoxide; in addition, there was no protective effect of diazoxide against cell death, which also occurred in the presence of Cu2+. In conclusion, the relationships (functional, structural and/or regulatory) between mK(ATP), components of the mitochondrial electron transport chain (CI, CII-CIII and/or ATP synthase, CV) and mitochondrial permeability transition pores were discussed, as well as the role of these molecular structures in the mechanisms of the cytotoxic action of heavy metals.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Mercurio , Metales Pesados , Ratas , Masculino , Animales , Mitocondrias Hepáticas , Canales KATP/metabolismo , Canales KATP/farmacología , Diazóxido/metabolismo , Diazóxido/farmacología , Cadmio/toxicidad , Ascitis/metabolismo , Carcinoma Hepatocelular/metabolismo , Ratas Wistar , Metales Pesados/metabolismo , Mercurio/metabolismo , Neoplasias Hepáticas/metabolismo , Adenosina Trifosfato/metabolismo
12.
Am J Psychiatry ; 180(4): 277-284, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36069020

RESUMEN

OBJECTIVE: Mitochondrial dysfunction has been implicated in the pathophysiology of autism spectrum disorder (ASD) in previous studies of postmortem brain or peripheral samples. The authors investigated whether and where mitochondrial dysfunction occurs in the living brains of individuals with ASD and to identify the clinical correlates of detected mitochondrial dysfunction. METHODS: This case-control study used positron emission tomography (PET) with 2-tert-butyl-4-chloro-5-{6-[2-(2-[18F]fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-pyridazin-3-one ([18F]BCPP-EF), a radioligand that binds to the mitochondrial electron transport chain complex I, to examine the topographical distribution of mitochondrial dysfunction in living brains of individuals with ASD. Twenty-three adult males with high-functioning ASD, with no psychiatric comorbidities and free of psychotropic medication, and 24 typically developed males with no psychiatric diagnoses, matched with the ASD group on age, parental socioeconomic background, and IQ, underwent [18F]BCPP-EF PET measurements. Individuals with mitochondrial disease were excluded by clinical evaluation and blood tests for abnormalities in lactate and pyruvate levels. RESULTS: Among the brain regions in which mitochondrial dysfunction has been reported in postmortem studies of autistic brains, participants with ASD had significantly decreased [18F]BCPP-EF availability specifically in the anterior cingulate cortex compared with typically developed participants. The regional specificity was revealed by a significant interaction between diagnosis and brain regions. Moreover, the lower [18F]BCPP-EF availability in the anterior cingulate cortex was significantly correlated with the more severe ASD core symptom of social communication deficits. CONCLUSIONS: This study provides direct evidence to link in vivo brain mitochondrial dysfunction with ASD pathophysiology and its communicational deficits. The findings support the possibility that mitochondrial electron transport chain complex I is a novel therapeutic target for ASD core symptoms.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Encefalopatías , Masculino , Adulto , Humanos , Trastorno Autístico/diagnóstico por imagen , Trastorno del Espectro Autista/diagnóstico por imagen , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/metabolismo , Estudios de Casos y Controles , Piridinas/metabolismo , Tomografía de Emisión de Positrones , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Ácido Láctico/metabolismo
13.
J Integr Neurosci ; 22(6): 153, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38176930

RESUMEN

Spinal cord injury (SCI) is a serious central nervous system (CNS) injury disease related to hypoxia-ischemia and inflammation. It is characterized by excessive reactive oxygen species (ROS) production, oxidative damage to nerve cells, and mitochondrial dysfunction. Mitochondria serve as the primary cellular origin of ROS, wherein the electron transfer chain complexes within oxidative phosphorylation frequently encounter electron leakage. These leaked electrons react with molecular oxygen, engendering the production of ROS, which culminates in the occurrence of oxidative stress. Oxidative stress is one of the common forms of secondary injury after SCI. Mitochondrial oxidative stress can lead to impaired mitochondrial function and disrupt cellular signal transduction pathways. Hence, restoring mitochondrial electron transport chain (ETC), reducing ROS production and enhancing mitochondrial function may be potential strategies for the treatment of SCI. This article focuses on the pathophysiological role of mitochondrial oxidative stress in SCI and evaluates in detail the neuroprotective effects of various mitochondrial-targeted antioxidant therapies in SCI, including both drug and non-drug therapy. The objective is to provide valuable insights and serve as a valuable reference for future research in the field of SCI.


Asunto(s)
Traumatismos de la Médula Espinal , Humanos , Especies Reactivas de Oxígeno/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Estrés Oxidativo , Antioxidantes/farmacología , Neuroprotección , Médula Espinal/metabolismo
14.
Mol Genet Metab Rep ; 33: 100932, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36338154

RESUMEN

Autoimmune Disease, Multisystem, with Facial Dysmorphism (ADMFD) is an autosomal recessive disorder due to pathogenic variants in the ITCH gene. It is characterized by failure to thrive, dysmorphic facial features, developmental delay, and systemic autoimmunity that can manifest variably with autoimmune hepatitis, thyroiditis, and enteropathy, among other organ manifestations. It was originally described in 10 consanguineous Old Order Amish patients, and more recently in two patients of White British and Black German ethnicities. While the role of ITCH protein in apoptosis and inflammation has previously been characterized, a defect in cellular bioenergetics has not yet been reported in ITCH deficiency. Here we present a Caucasian female originally evaluated for possible mitochondrial respiratory chain deficiency, who ultimately was found to have two novel variants in ITCH with absence of ITCH protein in patient derived fibroblasts. Clinical studies of patient muscle showed mitochondrial DNA copy number of 57% compared to controls. Functional studies in skin fibroblasts revealed decreased activity of mitochondrial fatty acid oxidation and oxidative phosphorylation, and decreased overall ATP production. Our findings confirm mitochondrial energy dysfunction in a patient with ITCH deficiency offering the opportunity to assess alternative therapeutic options.

15.
Trends Parasitol ; 38(12): 1041-1052, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36302692

RESUMEN

The mitochondrial respiratory chain is an essential pathway in most studied eukaryotes due to its roles in respiration and other pathways that depend on mitochondrial membrane potential. Apicomplexans are unicellular eukaryotes whose members have an impact on global health. The respiratory chain is a drug target for some members of this group, notably the malaria-causing Plasmodium spp. This has motivated studies of the respiratory chain in apicomplexan parasites, primarily Toxoplasma gondii and Plasmodium spp. for which experimental tools are most advanced. Studies of the respiratory complexes in these organisms revealed numerous novel features, including expansion of complex size. The divergence of apicomplexan mitochondria from commonly studied models highlights the diversity of mitochondrial form and function across eukaryotic life.


Asunto(s)
Apicomplexa , Malaria , Plasmodium , Toxoplasma , Humanos , Transporte de Electrón , Mitocondrias/metabolismo , Plasmodium/metabolismo , Malaria/parasitología , Apicomplexa/metabolismo
16.
Front Cardiovasc Med ; 9: 895797, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35872903

RESUMEN

Background: Myocardial ischemia/reperfusion (I/R) injury is the main obstacle to percutaneous coronary intervention, lacking effective therapeutic measures in a clinical setting. Herba Siegesbeckiae (HS) is a traditional herb with multiple pharmacological activities and evidence of cardiovascular protection. However, few data are available regarding the role of HS in cardiac I/R. This study aimed to explore the effect and underlying mechanism of HS aqueous extract on cardiac I/R injury. Materials and Methods: Herba Siegesbeckiae aqueous extract was prepared and analyzed by UHPLC-MS/MS. After intragastric administration of HS once daily for 7 days, male Sprague-Dawley rats were subjected to 30 min occlusion of the left anterior descending coronary artery followed by 120 min reperfusion to elicit I/R. Various parameters like myocardial infarction and apoptosis, 12-lead ECG and hemodynamics, cardiac morphology and myocardial enzymes, quantitative proteomics, mitochondrial ultrastructure and electron transport chain (ETC) function, oxidative stress and antioxidation, and NLRP3 inflammasome and inflammation were evaluated. Results: The chemical constituents of HS aqueous extract were mainly divided into flavonoids, diterpenoids, and organic acids. In vivo, HS aqueous extract notably alleviated myocardial I/R injury, as evidenced by a reduction in infarct size, apoptotic cells, and cardiac lesion enzymes; decline of ST-segment elevation; improvement of cardiac function; and preservation of morphology. Quantitative proteomics demonstrated that HS reversed the alteration in the expression of Adgb, Cbr1, Decr1, Eif5, Uchl5, Lmo7, Bdh1, Ckmt2, COX7A, and RT1-CE1 after I/R. In addition, HS preserved myocardial ultrastructure and restored the function of mitochondrial ETC complexes following exposure to I/R; HS significantly suppressed I/R-elicited increase of ROS, RNS, MDA, and 8-OHdG, restrained the acetylation of MnSOD, and recovered the activity of MnSOD; and HS reversed I/R-induced elevation of NLRP3 inflammasome and inhibited the release of inflammatory factors and pyroptosis. Conclusion: Herba Siegesbeckiae aqueous extract ameliorated cardiac I/R injury, which is associated with mitigating oxidative stress, suppressing NLRP3 inflammasome, and restoring mitochondrial function by regulating the expression of Adgb, Cbr1, Decr1, Eif5, Uchl5, Lmo7, Bdh1, Ckmt2, COX7A, and RT1-CE1.

17.
Methods Mol Biol ; 2511: 355-365, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35838974

RESUMEN

Coenzyme Q10 (CoQ10) plays an essential electron carrier role in the mitochondrial electron transfer chain (ETC) as well as being a potent antioxidant and influencing inflammatory mediators. In view of these functions, the reason why certain individuals may be more susceptible to the severe disease or long-term complications (long COVID) of COVID-19 infection may be associated with an underlying deficit in cellular CoQ10 status. Thus, our group has outlined an analytical method for the determination of cellular CoQ10 status using HPLC linked UV detection at 275 nm. This method has been utilized in patient tissue samples to investigate evidence of a CoQ10 deficiency and thus may have potential in determining the possible susceptibility of individuals to severe disease associated with COVID-19 infection or to long COVID.


Asunto(s)
COVID-19 , Ubiquinona , COVID-19/complicaciones , COVID-19/diagnóstico , Humanos , Enfermedades Mitocondriales , Ubiquinona/análogos & derivados , Ubiquinona/química , Ubiquinona/metabolismo , Síndrome Post Agudo de COVID-19
18.
Plant Physiol Biochem ; 185: 55-68, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35661586

RESUMEN

Mitochondria are the major organelles of energy production; however, active mitochondria can decline their energetic role and show a dysfunctional status. Mitochondrial dysfunction was induced by high non-physiological level of L-galactone-1,4-lactone (L-GalL), the precursor of ascorbate (AsA), in plant mitochondria. The dysfunction induced by L-GalL was associated with the fault in the mitochondrial electron partition and reactive oxygen species (ROS) over-production. Using mitochondria from RNAi-plant lines harbouring silenced L-galactone-1,4-lactone dehydrogenase (L-GalLDH) activity, it was demonstrated that such dysfunction is dependent on this enzyme activity. The capacity of alternative respiration was strongly decreased by L-GalL, probably mediated by redox-inactivation of the alternative oxidase (AOX) enzyme. Although, alternative respiration was shown to be the key factor that helps support AsA synthesis in dysfunctional mitochondria. Experiments with respiratory inhibitors showed that ROS formation and mitochondrial dysfunction were more associated with the decline in the activities of COX (cytochrome oxidase) and particularly AOX than with the lower activities of respiratory complexes I and III. The application of high L-GalL concentrations induced proteomic changes that indicated alterations in proteins related to oxidative stress and energetic status. However, supra-optimal L-GalL concentration was not deleterious for plants. Instead, the L-GalLDH activity could be positive. Indeed, it was found that wild type plants performed better growth than L-GalLDH-RNAi plants in response to high non-physiological L-GalL concentrations.


Asunto(s)
Proteínas Mitocondriales , Proteómica , Respiración de la Célula , Lactonas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
19.
Thorac Cancer ; 13(10): 1513-1524, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35429141

RESUMEN

BACKGROUND: Lung cancer is one of the most lethal cancers worldwide. Cisplatin, a widely used anti-lung cancer drug, has been limited in clinical application due to its drug resistance. Medicines targeting mitochondrial electron transport chain (ETC) complexes may be effective candidates for cisplatin-based chemotherapy. METHODS: In this study, the small molecule drug library from Food and Drug Administration FDA was used to screen for medicines targeting ETC. MTT and colony formation assays were used to investigate cell proliferation. Flow cytometry was employed to analyze cell cycle, apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential. Wound scratch and transwell assays were used to detect migration and invasion abilities. The activities of the ETC complex were tested using kits. Western blot analysis was used to investigate the expressions of related proteins. A mouse xenograft model was constructed to verify the antitumor effect in vivo. RESULTS: The results showed that mubritinib can reduce the activation of the PI3K/mTOR signal pathway, disrupt mitochondrial function, significantly increase ROS levels and induce oxidative stress, and ultimately exert its antitumor effect against non-small cell lung cancer (NSCLC) both in vivo and in vitro. In addition, the combination of cisplatin and mubritinib can improve the tumor-suppressive effect of cisplatin. CONCLUSION: Mubritinib can upregulate intracellular ROS concentration and cell apoptosis, inhibit the PI3K signaling pathway and interfere with the function of mitochondria, thus reducing cell proliferation and increasing ROS induced apoptosis by reducing the activation of Nrf2 by PI3K.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Cisplatino/farmacología , Cisplatino/uso terapéutico , Humanos , Neoplasias Pulmonares/patología , Ratones , Mitocondrias/metabolismo , Oxazoles , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Triazoles
20.
Kidney Int ; 102(1): 108-120, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35341793

RESUMEN

Oxidative metabolism in mitochondria regulates cellular differentiation and gene expression through intermediary metabolites and reactive oxygen species. Its role in kidney development and pathogenesis is not completely understood. Here we inactivated ubiquinone-binding protein QPC, a subunit of mitochondrial complex III, in two types of kidney progenitor cells to investigate the role of mitochondrial electron transport in kidney homeostasis. Inactivation of QPC in sine oculis-related homeobox 2 (SIX2)-expressing cap mesenchyme progenitors, which give rise to podocytes and all nephron segments except collecting ducts, resulted in perinatal death from severe kidney dysplasia. This was characterized by decreased proliferation of SIX2 progenitors and their failure to differentiate into kidney epithelium. QPC inactivation in cap mesenchyme progenitors induced activating transcription factor 4-mediated nutritional stress responses and was associated with a reduction in kidney tricarboxylic acid cycle metabolites and amino acid levels, which negatively impacted purine and pyrimidine synthesis. In contrast, QPC inactivation in ureteric tree epithelial cells, which give rise to the kidney collecting system, did not inhibit ureteric differentiation, and resulted in the development of functional kidneys that were smaller in size. Thus, our data demonstrate that mitochondrial oxidative metabolism is critical for the formation of cap mesenchyme-derived nephron segments but dispensable for formation of the kidney collecting system. Hence, our studies reveal compartment-specific needs for metabolic reprogramming during kidney development.


Asunto(s)
Complejo III de Transporte de Electrones , Riñón , Nefronas , Organogénesis , Podocitos , Aminoácidos/deficiencia , Diferenciación Celular , Complejo III de Transporte de Electrones/metabolismo , Femenino , Humanos , Riñón/embriología , Riñón/metabolismo , Mesodermo/metabolismo , Nefronas/metabolismo , Organogénesis/genética , Podocitos/metabolismo , Embarazo , Uréter/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA