Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Oncol Rep ; 52(3)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39027990

RESUMEN

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the immunohistochemical data shown in Fig. 5C were strikingly similar to data appearing in different form in another article written by different authors at different research institutes that had already been submitted for publication elsewhere prior to the submission of this paper to Oncology Reports [Wu X, Cai D, Zhang F, Li M and Wan Q: Long noncoding RNA TUSC7 inhibits cell proliferation, migration and invasion by regulating SOCS4 (SOCS5) expression through targeting miR­616 in endometrial carcinoma. Life Sci 231: 116549, 2019]. In addition, the CACNA203 western blot data shown in Fig. 2A­c and B­C respectively looked strikingly similar, even though different experiments were intended to have been shown in these figure parts. In view of the fact that the contentious data had already apparently been submitted for publication prior to the receipt of this paper at Oncology Reports, and owing to a overall lack of confidence in the presentation of the data, the Editor of has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 43: 121­132, 2020; DOI: 10.3892/or.2019.7396].

2.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(5): 598-607, 2024 May 15.
Artículo en Chino | MEDLINE | ID: mdl-38752248

RESUMEN

Objective: To investigate the feasibility of selenium-methylselenocysteine (SMC) to promote peripheral nerve regeneration and its mechanism of action. Methods: Rat Schwann cells RSC96 cells were randomly divided into 5 groups, which were group A (without any treatment, control group), group B (adding 100 µmol/L H 2O 2), group C (adding 100 µmol/L H 2O 2+100 µmol/L SMC), group D (adding 100 µmol/L H 2O 2+200 µmol/L SMC), group E (adding 100 µmol/L H 2O 2+400 µmol/L SMC); the effect of SMC on cell proliferation was detected by MTT method, and the level of oxidative stress was detected by immunofluorescence for free radicals [reactive oxygen species (ROS)] after determining the appropriate dose group. Thirty-six 4-week-old male Sprague Dawley rats were randomly divided into 3 groups, namely, the sham operation group (Sham group), the sciatic nerve injury group (PNI group), and the SMC treatment group (SMC group), with 12 rats in each group; the rats in the PNI group were fed with food and water normally after modelling operation, and the rats in the SMC group were added 0.75 mg/kg SMC to the drinking water every day. At 4 weeks after operation, the sciatic nerves of rats in each group were sampled for neuroelectrophysiological detection of highest potential of compound muscle action potential (CMAP). The levels of inflammatory factors [interleukin 17 (IL-17), IL-6, IL-10 and oxidative stress factors catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA)] were detected by ELISA assay. The luxol fast blue (LFB) staining was used to observe the myelin density, fluorescence intensity of glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP) was observed by immunofluorescence staining, and myelin morphology was observed by transmission electron microscopy with measurement of axon diameter. Western blot was used to detect the protein expressions of p38 mitogen-activated protein kinases (p38MAPK), phosphorylated p38MAPK (p-p38MAPK), heme oxygenase 1 (HO-1), and nuclear factor erythroid 2-related factor 2 (Nrf2). Results: MTT assay showed that the addition of SMC significantly promoted the proliferation of RSC96 cells, and the low concentration could achieve an effective effect, so the treatment method of group C was selected for the subsequent experiments; ROS immunofluorescence test showed that group B showed a significant increase in the intensity of ROS fluorescence compared with that of group A, and group C showed a significant decrease in the intensity of ROS fluorescence compared with that of group B ( P<0.05). Neuroelectrophysiological tests showed that the highest potential of CMAP in SMC group was significantly higher than that in PNI and Sham groups ( P<0.05). ELISA assay showed that the levels of IL-6, IL-17, and MDA in PNI group were significantly higher than those in Sham group, and the levels of IL-10, SOD, and CAT were significantly lower; the levels of IL-6, IL-17, and MDA in SMC group were significantly lower than those in PNI group, and the levels of IL-10, SOD, and CAT were significantly higher ( P<0.05). LFB staining and transmission electron microscopy showed that the myelin density and the diameter of axons in the SMC group were significantly higher than those of the PNI group and the Sham group ( P<0.05). Immunofluorescence staining showed that the fluorescence intensity of GFAP and MBP in the SMC group were significantly stronger than those in the PNI group and Sham group ( P<0.05). Western blot showed that the relative expressions of Nrf2 and HO-1 proteins in the SMC group were significantly higher than those in the PNI group and Sham group, and the ratio of p-p38MAPK/p38MAPK proteins was significantly higher in the PNI group than that in the SMC group and Sham group ( P<0.05). Conclusion: SMC may inhibit oxidative stress and inflammation after nerve injury by up-regulating the Nrf2/HO-1 pathway, and then inhibit the phosphorylation of p38MAPK pathway to promote the proliferation of Schwann cells, which ultimately promotes the formation of myelin sheaths and accelerates the regeneration of peripheral nerves.


Asunto(s)
Regeneración Nerviosa , Estrés Oxidativo , Ratas Sprague-Dawley , Células de Schwann , Nervio Ciático , Selenio , Selenocisteína , Animales , Regeneración Nerviosa/efectos de los fármacos , Ratas , Masculino , Selenocisteína/análogos & derivados , Selenocisteína/farmacología , Células de Schwann/metabolismo , Células de Schwann/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Nervio Ciático/efectos de los fármacos , Selenio/farmacología , Proliferación Celular/efectos de los fármacos , Traumatismos de los Nervios Periféricos/metabolismo
3.
Clin Lymphoma Myeloma Leuk ; 24(6): 364-374, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38378362

RESUMEN

BACKGROUND: Therapies for relapsed/refractory acute myeloid leukemia remain limited and outcomes poor, especially amongst patients who are ineligible for cytotoxic chemotherapy or targeted therapies. PATIENTS AND METHODS: This phase 1b trial evaluated venetoclax, a B-cell lymphoma-2 (BCL-2) inhibitor, plus cobimetinib, a MEK1/2 inhibitor, in patients with relapsed/refractory acute myeloid leukemia, ineligible for cytotoxic chemotherapy. Two-dimensional dose-escalation was performed for venetoclax dosed daily, and for cobimetinib dosed on days 1-21 of each 28-day cycle. RESULTS: Thirty patients (median [range] age: 71.5 years [60-84]) received venetoclax-cobimetinib. The most common adverse events (AEs; in ≥40.0% of patients) were diarrhea (80.0%), nausea (60.0%), vomiting (40.0%), febrile neutropenia (40.0%), and fatigue (40.0%). Overall, 66.7% and 23.3% of patients experienced AEs leading to dose modification/interruption or treatment withdrawal, respectively. The composite complete remission (CRc) rate (complete remission [CR] + CR with incomplete blood count recovery + CR with incomplete platelet recovery) was 15.6%; antileukemic response rate (CRc + morphologic leukemia-free state/partial remission) was 18.8%. For the recommended phase 2 dose (venetoclax: 600 mg; cobimetinib: 40 mg), CRc and antileukemic response rates were both 12.5%. Failure to achieve an antileukemic response was associated with elevated baseline phosphorylated ERK and MCL-1 levels, but not BCL-xL. Baseline mutations in ≥1 signaling gene or TP53 were noted in nonresponders and emerged on treatment. Pharmacodynamic biomarkers revealed inconsistent, transient inhibition of the mitogen-activated protein kinase (MAPK) pathway. CONCLUSION: Venetoclax-cobimetinib showed limited preliminary efficacy similar to single-agent venetoclax, but with added toxicity. Our findings will inform future trials of BCL-2/MAPK pathway inhibitor combinations.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Azetidinas , Compuestos Bicíclicos Heterocíclicos con Puentes , Leucemia Mieloide Aguda , Piperidinas , Sulfonamidas , Humanos , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Sulfonamidas/administración & dosificación , Anciano , Masculino , Femenino , Persona de Mediana Edad , Azetidinas/uso terapéutico , Azetidinas/farmacología , Azetidinas/administración & dosificación , Piperidinas/uso terapéutico , Piperidinas/farmacología , Anciano de 80 o más Años , Leucemia Mieloide Aguda/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Resultado del Tratamiento , Resistencia a Antineoplásicos/efectos de los fármacos
4.
Cancers (Basel) ; 15(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38136350

RESUMEN

The BRAF V600E mutation is frequently found in cancer. It activates the MAPK pathway and promotes cancer cell proliferation, making BRAF an excellent target for anti-cancer therapy. While BRAF-targeted therapy is highly effective for melanoma, it is often ineffective against other cancers harboring the BRAF mutation. In this study, we evaluate the effectiveness of a proteolysis targeting chimera (PROTAC), SJF-0628, in directing the degradation of mutated BRAF across a diverse panel of cancer cells and determine how these cells respond to the degradation. SJF-0628 treatment results in the degradation of BRAF V600E and a decrease in Mek activation in all cell lines tested, but the effects of the treatment on cell signaling and cell proliferation are cell-line-specific. First, BRAF degradation killed DU-4475 and Colo-205 cells via apoptosis but only partially inhibited the proliferation of other cancer cell lines. Second, SJF-0628 treatment resulted in co-degradation of MEK in Colo-205 cells but did not have the same effect in other cell lines. Finally, cell lines partially inhibited by BRAF degradation also contain other oncogenic drivers, making them multi-driver cancer cells. These results demonstrate the utility of a PROTAC to direct BRAF degradation and reveal that multi-driver oncogenesis renders some colorectal cancer cells resistant to BRAF-targeted treatment.

5.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37762678

RESUMEN

Vasculogenic mimicry (VM) is an intriguing phenomenon observed in tumor masses, in which cancer cells organize themselves into capillary-like channels that closely resemble the structure and function of blood vessels. Although VM is believed to contribute to alternative tumor vascularization, the detailed regulatory mechanisms controlling these cellular processes remain poorly understood. Our study aimed to investigate the role of Early Growth Response 1 (EGR1) in regulating VM in aggressive cancer cells, specifically MDA-MB-231 triple-negative breast cancer cells. Our study revealed that EGR1 promotes the formation of capillary-like tubes by MDA-MB-231 cells in a 3-dimensional Matrigel matrix. EGR1 was observed to upregulate Kruppel-like factor 4 (KLF4) expression, which regulates the formation of the capillary-like tube structure. Additionally, our findings highlight the involvement of the ERK1/2 and p38 mitogen-activated protein kinase pathways in mediating the expression of EGR1 and KLF4, underscoring their crucial role in VM in MDA-MB-231 cells. Understanding these regulatory mechanisms will provide valuable insights into potential therapeutic targets for preventing VM during the treatment of triple-negative breast cancer.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Línea Celular , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Factor 4 Similar a Kruppel , Activación Transcripcional , Neoplasias de la Mama Triple Negativas/genética , Regulación hacia Arriba
6.
Pediatr Neurosurg ; 58(5): 290-298, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37604126

RESUMEN

BACKGROUND: Paediatric low-grade gliomas (pLGGs) are the most common primary brain tumour in children. Though considered benign, slow-growing lesions with excellent overall survival, their long-term morbidity can be significant, both from the tumour and secondary to treatment. Vast progress has been made in recent years to better understand the molecular biology underlying pLGGs, with promising implications for new targeted therapeutic strategies. SUMMARY: A multi-layered classification system of biologic subgroups, integrating distinct molecular and histological features has evolved to further our clinical understanding of these heterogeneous tumours. Though surgery and chemotherapy are the mainstays of treatment for pLGGs, many tumours are not amenable to surgery and/or progress after conventional chemotherapy. Therapies targeting common genetic aberrations in the RAS-mitogen-activated protein kinase (RAS/MAPK) pathway have been the focus of many recent studies and offer new therapeutic possibilities. Here, we summarise the updated molecular classification of pLGGs and provide a review of current treatment strategies, novel agents, and open trials. KEY MESSAGES: (1) There is a need for treatment strategies in pLGG that provide lasting tumour control and better quality of survival through minimising toxicity and protecting against neurological, cognitive, and endocrine deficits. (2) The latest World Health Organisation classification of pLGG incorporates a growing wealth of molecular genetic information by grouping tumours into more biologically and molecularly defined entities that may enable better risk stratification of patients, and consideration for targeted therapies in the future. (3) Novel agents and molecular-targeted therapies offer new therapeutic possibilities in pLGG and have been the subject of many recent and currently open clinical studies. (4) Adequate molecular characterisation of pLGG is therefore imperative in today's clinical trials, and treatment responses should not only be evaluated radiologically but also using neurological, visual, and quality of life outcomes to truly understand treatment benefits.


Asunto(s)
Neoplasias Encefálicas , Glioma , Niño , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Calidad de Vida , Glioma/genética , Glioma/terapia
7.
Microorganisms ; 11(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37512890

RESUMEN

This study explored the potential of Lactococcus lactis subsp. lactis CAB701 as a probiotic strain, focusing on its immunostimulatory properties. Despite adverse conditions in the gastrointestinal environment, this strain exhibited remarkable survivability, as evidenced by its tolerance to acid, bile, and pancreatin, coupled with its impressive ability to adhere to Caco-2 cells. It also exhibited significant antioxidant activity, similar to the established probiotic Lacticaseibacillus rhamnosus GG (LGG). Our research elucidates the potent immunostimulatory effects of L. lactis subsp. lactis CAB701. This strain significantly enhanced nitric oxide production in RAW 264.7, far exceeding that obtained with LGG. An in-depth examination revealed elevated expression of key inflammatory mediators, including inducible nitric oxide synthase, tumor necrosis factor-alpha, cyclooxygenase-2, interleukin (IL)-1 beta, and IL-6. L. lactis subsp. lactis CAB701 increases the expression of critical signaling proteins in the mitogen-activated protein kinase pathway. This prompted a substantial increase in the expression of phosphorylated c-Jun N-terminal kinases and extracellular signal-regulated kinases, suggesting their role in modulating these immune-related pathways. Overall, these findings demonstrate the significant immunostimulatory capacity of L. lactis subsp. lactis CAB701, positioning it as a potential candidate for probiotic use, especially in applications that enhance immune responses.

8.
Front Pharmacol ; 14: 1101991, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36755948

RESUMEN

Objective: FCN-159 is a highly active mitogen-activated extracellular signal-regulated kinase 1/2 (MEK1/2) inhibitor in patients with advanced melanoma and neurofibromatosis type 1 (NF1). We report a population pharmacokinetic (PopPK) model-based analysis of FCN-159 and its application to inform dose selection for NF1 pediatric trials. Methods: PK data collected from patients with advanced melanoma and NF1 in two clinical studies (NCT03932253 and NCT04954001) were analyzed using a non-linear mixed effects model. The adult model was adapted by incorporating allometric scaling for PK projection in 2-17 years old children. Pediatric exposure in different body surface area (BSA) bins was simulated to identify nominal doses (i.e., dose amounts given as integers) and BSA bin cutoffs to achieve exposure comparable to adults' optimal exposure across the entire pediatric BSA range. Results: The final dataset consisted of 45 subjects with a total of 1030 PK samples. The PK of FCN-159 was well-described by a 2-compartment model with first-order linear elimination and delayed first-order absorption. Covariates, including BSA, age, sex, albumin, total protein, and cancer type, were identified as statistically significant predictors of FCN-159 disposition. Simulations based on the final model projected daily doses of 4 mg/m2 QD with optimized BSA bin cutoffs would allow fixed nominal doses within each bin and result in steady state exposure approximating the adult exposure observed at the recommended phase 2 dose (RP2D) in NF1, which is 8 mg QD. Conclusion: The developed population PK model adequately described the PK profile of FCN-159, which was adapted using allometric scaling to inform dose selection for NF1 pediatric trials.

9.
Clin Lymphoma Myeloma Leuk ; 23(1): e59-e70, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36450626

RESUMEN

INTRODUCTION: Mitogen-activated protein kinase pathway mutations are present in >50% of patients with relapsed/refractory (R/R) multiple myeloma (MM). MEK inhibitors show limited single-agent activity in R/R MM; combination with B-cell lymphoma-2 (BCL-2) and programmed death-ligand 1 inhibition may improve efficacy. This phase Ib/II trial (NCT03312530) evaluated safety and efficacy of cobimetinib (cobi) alone and in combination with venetoclax (ven) with/without atezolizumab (atezo) in patients with R/R MM. PATIENTS AND METHODS: Forty-nine patients were randomized 1:2:2 to cobi 60 mg/day on days 1-21 (n = 6), cobi 40 mg/day on days 1-21 + ven 800 mg/day on days 1-28 with/without atezo 840 mg on days 1 and 15 of 28-day cycles (cobi-ven, n = 22; cobi-ven-atezo, n = 21). Safety run-in cohorts evaluated cobi-ven and cobi-ven-atezo dose levels. RESULTS: Any-grade common adverse events (AEs) with cobi, cobi-ven, and cobi-ven-atezo, respectively, included diarrhea (33.3%, 81.8%, 90.5%) and nausea (16.7%, 50.0%, 66.7%); common grade ≥3 AEs included anemia (0%, 22.7%, 23.8%), neutropenia (0%, 13.6%, 38.1%), and thrombocytopenia (0%, 18.2%, 23.8%). The overall response rate for all-comers was 0% (cobi), 27.3% (cobi-ven), and 28.6% (cobi-ven-atezo), and 0%, 50.0%, and 100%, respectively, in patients with t(11;14)+. Biomarker analysis demonstrated non-t(11;14) patient selection with NRAS/KRAS/BRAF mutation or high BCL-2/BCL-2-L1 ratio (>52% of the study population) could enrich for responders to the cobi-ven combination. CONCLUSIONS: Cobi-ven and cobi-ven-atezo demonstrated manageable safety with moderate activity in all-comers, and higher activity in patients with t(11;14)+ MM, supporting a biomarker-driven approach for ven in MM.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/etiología , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Compuestos Bicíclicos Heterocíclicos con Puentes/efectos adversos , Proteínas Proto-Oncogénicas c-bcl-2
10.
Acta Anatomica Sinica ; (6): 392-399, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1015196

RESUMEN

[ Abstract] Objective To study the effect of sulodexide on the repair of diabetic retinopathy and the regulation of MAPK pathway in rats. Methods Totally 72 rats were randomly divided into normal control group, diabetic retinopathy group, low, middle and high dose of sulodexide group and metformin hydrochloride group. Except normal control group, other rats were intraperitoneally injected with streptozotocin to establish the rat model of diabetic retinopathy. Rats in the low, middle and high dose sulodexide groups were given sulodexide by intragastric administration of 10 mg / kg,20 mg / kg and 40 mg / kg, respectively. Metformin hydrochloride group was given metformin hydrochloride of 200 mg / kg, once a day for 12 weeks. The levels of fasting blood glucose (FBG), glycosylated hemoglobin (HbA1c) and serum levels of advanced glycation end products (AGEs), interleukin-6 (IL-6), IL-1β, and levels of glucose transporter 1 (GLUT-1), glucose transporter 3(GLUT-3), superoxide dismutase (SOD) and malondialdehyde (MDA) in retina were detected. The levels of p38 MAPK and phosphorylated p38 MAPK (p-p38 MAPK) in retina were detected by immunohistochemistry and Western blotting. Retinal pathological changes and ganglion cell count were examined by HE staining. Results The levels of FBG and HbA1c, serum AGEs, IL-6, IL-1 β, GLUT-1, GLUT-3, MDA and p38 MAPK mRNA, p38 MAPK, p-p38 MAPK / p38 MAPK and immunohistochemical integral optical density of retina in sulodexide group were significantly lower than those in diabetic retinopathy group (P < 0. 05), while the SOD level and ganglion cell number in retinal tissue were significantly higher than those in diabetic retinopathy group (P < 0. 05) . Conclusion Sulodexide can regulate blood glucose level and retinal glucose metabolism in diabetic retinopathy rats, and repair retinal pathological damage, and its mechanism may be related to the regulation of MAPK pathway.

11.
Hum Exp Toxicol ; 41: 9603271221145401, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36508695

RESUMEN

INTRODUCTION: Osteoarthritis (OA) is one of the most common joint diseases in the elderly population. Proinflammatory cytokines, such as Interleukin-1ß (IL-1ß), play an important role in the development and progression of OA. Dapansutrile is a specific inhibitor of the NOD-like receptor protein 3 (NLRP3) inflammasome and exhibits anti-inflammatory properties. METHODS: In this study, we investigated the protective effect and the underlying mechanism of dapansutrile on cartilage degeneration in vitro and in vivo. In the present study, chondrocytes were isolated from rats and then were treated with dapansutrile. After that, the expression of (Cox-2, inducible nitric oxide synthase (iNOS), Mmp-3, Mmp-9, Mmp-13 and IL-10) were evaluated at RNA level, then the expression of (COX-2, MMP-3, MMP-9, MMP-13, SOX-9 and COL2) were evaluated at protein level. Subsequently, the activation of the mitogen-activated protein kinase (MAPK) pathway was tested using western blotting (WB). Additionally, the rat OA model was developed to evaluate the protective effects of dapansutrile in vivo. RESULTS: The results showed that dapansutrile had no obvious cytotoxicity on rat chondrocytes at 24 h (0, 1, 2, 5 and 10 µM). Dapansutrile significantly decreased IL-1ß-induced upregulation of COX2, iNOS, matrix metalloproteinase 3 (MMP3), 9 (MMP9) and 13 (MMP13), and reversed IL-1ß-induced the downregulation of IL-10, SOX9 and COL2. Dapansutrile also inhibited IL-1ß-induced upregulation of the MAPK signaling pathway by downregulating the expression levels of phospho-ERK, and phospho-P38 in a concentration dependent manner. In addition, dapansutrile exhibited protective effects in rat OA model with lower Mankin's score and Osteoarthritis Research Society International (OARSI) score. CONCLUSION: Our study suggested that dapansutrile effectively inhibited chondrocyte inflammation by suppressing MAPK signaling pathway in vitro, and ameliorated cartilage degeneration in vivo, indicating an anti-inflammatory effect in OA treatment.


Asunto(s)
Metaloproteinasa 3 de la Matriz , Osteoartritis , Anciano , Ratas , Humanos , Animales , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/farmacología , Metaloproteinasa 3 de la Matriz/uso terapéutico , Metaloproteinasa 9 de la Matriz/metabolismo , Interleucina-10 , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Condrocitos , Osteoartritis/genética , Interleucina-1beta/metabolismo , Inflamación/metabolismo , Transducción de Señal , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ciclooxigenasa 2/metabolismo
12.
Ann Transl Med ; 10(22): 1227, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36544674

RESUMEN

Background: Hypoxia (low-oxygen tension) and excessive osteoclast activation are common conditions in many bone loss diseases, such as osteoporosis, rheumatoid arthritis (RA), and pathologic fractures. Hypoxia-inducible factor 1 alpha (HIF1α) regulates cellular responses to hypoxic conditions. However, it is not yet known how HIF1α directly affects osteoclast differentiation and activation. This study sought to. explore the effects of HIF1α on osteoclast differentiation and it's molecular mechanisms. Methods: L-mimosine, a prolyl hydroxylase (PHDs) domain inhibitor, was used to stabilize HIF1α in normoxia. In the presence of receptor activator of nuclear factor-kB (NF-kB) ligand (RANKL), RAW264.7 cells were cultured and stimulated by treatment with L-mimosine at several doses to maintain various levels of intracellular HIF1α. The multi-nucleated cells were assessed by a tartrate-resistant acid phosphatase (TRAP) and F-actin ring staining assays. The osteoclast-specific genes, such as Cathepsin K, ß3-Integrin, TRAP, c-Fos, nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), and matrix metallo-proteinase 9 (MMP9), were analyzed by real time-polymerase chain reaction (RT-PCR). The expression of relevant proteins was analyzed by Western blot. Results: L-mimosine increased the content of intracellular HIF1α in a dose-dependent manner, which in turn promoted RANKL-induced osteoclast formation and relevant protein expression by upregulating the mitogen-activated protein kinase (MAPK) pathways. Conclusions: Our findings suggest that HIF1α directly increases the osteoclast differentiation of RANKL-mediated RAW264.7 cells in vitro by upregulating the MAPK pathways.

13.
Int J Med Sci ; 19(8): 1307-1319, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928717

RESUMEN

Tissue regeneration is the preferred treatment for dentin and bone tissue defects. Dental pulp stem cells (DPSCs) have been extensively studied for their use in tissue regeneration, including the regeneration of dentin and bone tissue. LIM mineralization protein-1 (LMP-1) is an intracellular non-secretory protein that plays a positive regulatory role in the mineralization process. In this study, an LMP-1-induced DPSCs model was used to explore the effect of LMP-1 on the proliferation and odonto/osteogenic differentiation of DPSCs, as well as the underlying mechanisms. As indicated by the cell counting kit-8 assay, the results showed that LMP-1 did not affect the proliferation of DPSCs. Overexpression of LMP-1 significantly promoted the committed differentiation of DPSCs and vice versa, as shown by alkaline phosphatase activity assay, alizarin red staining, western blot assay, quantitative real-time polymerase chain reaction assay, and in vivo mineralized tissue formation assay. Furthermore, inhibiting the activation of the extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) pathways using specific pathway inhibitors showed that the ERK1/2 and p38 MAPK pathways attenuated the differentiation of DPSCs. Besides, the expression of BMP signaling pathway components were also determined, which suggested that LMP-1 could activate BMP-2/Smad1/5 signaling pathway. Our results not only indicated the underlying mechanism of LMP-1 treated DPSCs but also provided valuable insight into therapeutic strategies in regenerative medicine.


Asunto(s)
Osteogénesis , Proteínas Quinasas p38 Activadas por Mitógenos , Diferenciación Celular , Proliferación Celular/genética , Células Cultivadas , Pulpa Dental/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 3 Activada por Mitógenos , Osteogénesis/genética , Transducción de Señal , Células Madre/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Mol Biol Rep ; 49(9): 8317-8324, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35708859

RESUMEN

BACKGROUND: Icariin, the main pharmacological active flavonoid extracted from Epimedi herba, can regulate cellular processes in diverse diseases. The aim of this study was to explore the effects and mechanisms of icariin on proliferation and adipogenesis of bone marrow mesenchymal stem cells (BMSCs) in aplastic anemia (AA). METHODS AND RESULTS: Bone marrow mesenchymal stem cells were isolated from posterior tibias and femurs of AA rats that were induced by benzene and cyclophosphamide and gavaged with icariin. The isolated BMSCs were characterized morphologically and immunologically by positive markers (CD29 and CD90) and negative markers (CD34 and CD45). CCK-8 assay was performed to examine the BMSCs proliferation. Cell apoptosis and cell cycle were detected by flow cytometry. Oil red O staining was carried out to evaluate the adipogenesis of BMSCs. The mRNA expression of PPARγ, C/EBP-α, and FABP4 was measured by qRT-PCR. The protein levels of p-p38/p38, p-JNK/JNK, p-ERK/ERK, PPARγ, C/EBP-α, and FABP4 were detected using Western blotting. Icariin promoted the proliferation of BMSCs from AA rats in a dose-dependent manner. The protein levels of p-p38/p38, p-JNK/JNK, and p-ERK/ERK were downregulated in BMSCs from AA rats after icariin treatment. Icariin inhibited the apoptosis and arrested cell cycle at G/S phase of BMSCs from AA rats. The adipogenesis of BMSCs from AA rats was also suppressed after icariin treatment. However, the effects of icariin on BMSCs were weakened by p38 agonist addition. CONCLUSIONS: Icariin promoted the proliferation and inhibited the apoptosis and adipogenesis of BMSCs in AA by suppressing MAPK pathway.


Asunto(s)
Anemia Aplásica , Células Madre Mesenquimatosas , Anemia Aplásica/tratamiento farmacológico , Anemia Aplásica/metabolismo , Animales , Células de la Médula Ósea , Diferenciación Celular , Células Cultivadas , Flavonoides/metabolismo , Flavonoides/farmacología , Células Madre Mesenquimatosas/metabolismo , PPAR gamma/metabolismo , Ratas
15.
J Orthop Translat ; 34: 1-10, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35531425

RESUMEN

Background/Objectives: Advanced thermoplastic materials, such as polyether-ether-ketone (PEEK) and highly cross-linked polyethylene (HXLPE), have been increasingly used as orthopaedic implant materials. Similar to other implants, PEEK-on-HXLPE prostheses produce debris from polymer wear that may activate the immune response, which can cause osteolysis, and ultimately implant failure. In this study, we examined whether the anti-inflammatory properties of zinc oxide nanoparticles (ZnO NPs) could attenuate polymer wear particle-induced inflammation. Methods: RAW264.7 â€‹cells were cultured with PEEK or PE particles and gradient concentrations of ZnO NPs. Intracellular mRNA expression and protein levels of pro-inflammatory factors TNF-α, IL-1ß, and IL-6 were detected. An air pouch mouse model was constructed to examine the inflammatory response and expression of pro-inflammatory factors in vivo. Furthermore, an osteolysis rat model was used to evaluate the activation of osteoclasts and destruction of bone tissue induced by polymer particles with or without ZnO NPs. Protein expression of the MEK-ERK-COX-2 pathway was also examined by western blotting to elucidate the mechanism underlying particle-induced anti-inflammatory effects. Results: ZnO NPs (≤50 â€‹nm, 5 â€‹µg/mL) showed no obvious cytotoxicity and attenuated PEEK or PE particle-induced inflammation and inflammatory osteolysis by reducing MEK and ERK phosphorylation and decreasing COX-2 expression. Conclusion: ZnO NPs (≤50 â€‹nm, 5 â€‹µg/mL) attenuated polymer wear particle-induced inflammation via regulation of the MEK-ERK-COX-2 axis. Further, ZnO NPs reduced bone tissue damage caused by particle-induced inflammatory osteolysis. The translational potential of this article: Polymer wear particles can induce inflammation and osteolysis in the body after arthroplasty. ZnO NPs attenuated polymer particle-induced inflammation and inflammatory osteolysis. Topical use of ZnO NPs and blended ZnO NP/polymer composites may provide promising approaches for inhibiting polymer wear particle-induced inflammatory osteolysis, thus expanding the range of polymers used in joint prostheses.

16.
Indian J Dermatol Venereol Leprol ; 88(4): 452-463, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35138057

RESUMEN

Ras/mitogen-activated protein kinase pathway dysregulation results in a group of disorders, collectively termed as RASopathies. Neurofibromatosis type 1, Noonan syndrome, Noonan syndrome with multiple lentigines, Noonan syndrome/loose anagen hair, Legius syndrome, Costello syndrome, cardio-facio-cutaneous syndrome and capillary malformation-arteriovenous malformation are the well-recognized RASopathies. These are characterized by multi-organ tumours and hamartomas. Some other features in common are facial dysmorphism, skeletal abnormalities, congenital heart disease, neurocognitive abnormalities and risk of various solid-organ and haematological malignancies. Some of the RASopathies are heterogeneous, caused by several gene mutations resulting in variations in phenotypes and severity ranging from mild to fatal. Significant phenotypic overlaps among different disorders, often makes it difficult to pinpoint a clinical diagnosis. Specific cutaneous manifestations are present in some of the RASopathies and are often the earliest clinical signs/symptoms. Hence, dermatologists contribute significantly as primary care physicians by identifying disorder-specific cutaneous lesions. However, diagnostic work-up and management of these disorders are often multidisciplinary. Confirmation of diagnosis is possible only by genetic mapping in each case. Genetic counseling of the patients and the affected families is an important component of the management. The aim of this review is description of cutaneous manifestations of RASopathies in the background of multi-system involvement to enable dermatologists a comprehensive and logical approach to work up and diagnose such patients in the absence of facility for specific molecular testing.


Asunto(s)
Síndrome de Costello , Displasia Ectodérmica , Síndrome de Noonan , Síndrome de Costello/genética , Dermatólogos , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Humanos , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/genética , Proteínas ras/genética , Proteínas ras/metabolismo
17.
Food Chem ; 384: 132358, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35193024

RESUMEN

Methylglyoxal (MGO), a reactive α-oxoaldehyde formed in many foods and beverages during processing and storage, has neurotoxicity. The purpose of this study was to investigate the inhibition mechanism of (-)-epigallocatechin-3-gallate (EGCG) on MGO-induced PC12 cells damage. Cell apoptosis and reactive oxygen species (ROS) level were measured with fluorescent staining methods. Western blotting was used to detect the signal transduction mechanism. The results indicated that EGCG decreased ROS level, inhibited apoptosis and increased the expression of brain-derived neurotrophic factor. Pathways analysis revealed that the neuroprotective mechanism of EGCG might rely on regulating mitogen-activated protein kinase (MAPK) and downstream pathways. Multi-spectroscopy and molecular docking indicated that EGCG inhibited MGO-derived advanced glycation end products (AGEs) formation. Moreover, the neurotoxicity of AGEs could be alleviated by EGCG. These results suggested that EGCG could attenuate MGO-induced nerve damage via regulating MAPK and downstream pathways and inhibiting AGEs formation.


Asunto(s)
Catequina , Piruvaldehído , Animales , Catequina/análogos & derivados , Catequina/farmacología , Productos Finales de Glicación Avanzada/química , Óxido de Magnesio , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Piruvaldehído/toxicidad , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
18.
Hum Cell ; 35(2): 613-627, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35044631

RESUMEN

Cell-cell interactions between cancer cells and neighboring adipose tissue-derived stromal cells (ATSCs) are known to regulate the aggressiveness of cancer cells. In addition, the radiation-induced bystander effect is an important modulator of cancer cell kinetics. Radiation therapy is often given for urinary cancer, but the biological effects of the irradiated cancer stroma, including adipose tissue, on urothelial carcinoma (UC) remain unclear. We investigated the bystander effect of irradiated ATSCs on UC using a collagen gel culture method to replicate irradiated ATSC-cancer cell interactions after a single 12-Gy dose of irradiation. Proliferative activity, invasive capacity, protein expression and nuclear translocation of p53 binding protein-1 (53BP1) were analyzed. Irradiated ATSCs significantly inhibited the growth and promoted the apoptosis of UC cells in comparison to non-irradiated controls. The invasiveness of UC cells was increased by irradiated ATSCs, but not irradiated fibroblasts. Nuclear translocation of 53BP1 protein due to the bystander effect was confirmed in the irradiated group. Irradiated ATSCs regulated the expressions of the insulin receptor, insulin-like growth factor-1 and extracellular signal-regulated kinase-1/2 in UC. In conclusion, the bystander effect of irradiated ATSCs is a critical regulator of UC, and the actions differed depending on the type of mesenchymal cell involved. Our alternative culture model is a promising tool for further investigations into radiation therapy for many types of cancer.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Tejido Adiposo , Efecto Espectador/efectos de la radiación , Carcinoma de Células Transicionales/metabolismo , Humanos , Células del Estroma/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo
19.
Histopathology ; 80(1): 196-215, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34958507

RESUMEN

Cutaneous histiocytoses constitute a heterogeneous group of diseases characterised by the cutaneous accumulation of cells with the cytological and phenotypic features of macrophages or dendritic cells. The clinical spectrum ranges from self-resolving, skin-limited conditions to severe, multiorgan disease with a high morbidity rate. Until recently, cutaneous histiocytoses were classified according to the immunophenotype of the pathological cells, with differentiation between Langerhans cell histiocytosis (LCH) [CD1a+, CD207 (langerin)+] and non-Langerhans cell histiocytosis (CD68+, CD163+, CD1a-, CD207-). Over the last 12 years, a number of new pathophysiological findings (in particular, molecular pathology results) regarding histiocytoses have contributed to a new classification based on molecular alterations, as well as on clinical and imaging characteristics and the phenotype. The most frequent entities in children are juvenile xanthogranuloma and LCH.


Asunto(s)
Histiocitosis/patología , Piel/patología , Niño , Progresión de la Enfermedad , Histiocitosis de Células de Langerhans/patología , Humanos , Xantogranuloma Juvenil/patología
20.
Biochem Cell Biol ; 100(1): 9-16, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34658256

RESUMEN

Cardiovascular and related metabolic diseases are significant global health challenges. Glucagon-like peptide 1 (GLP-1) is a brain-gut peptide secreted by the ileal endocrine system and is now an established drug target in type 2 diabetes (T2DM). GLP-1 targeting agents have been shown not only to treat T2DM, but also to exert cardiovascular protective effects by regulating multiple signaling pathways. The mitogen-activated protein kinase (MAPK) pathway, a common signal transduction pathway for transmitting extracellular signals to downstream effector molecules, is involved in regulating diverse cellular physiological processes, including cell proliferation, differentiation, stress, inflammation, functional synchronization, transformation, and apoptosis. The purpose of this review is to highlight the relationship between GLP-1 and cardiovascular disease (CVD) and discuss how GLP-1 exerts cardiovascular protective effects through the MAPK signaling pathway. This review also discusses the future challenges in fully characterizing and evaluating the CVD protective effects of GLP-1 receptor agonists (GLP-1RA) at the cellular and molecular levels. A better understanding of the MAPK signaling pathway that is dysregulated in CVD may aid in the design and development of promising GLP-1RA.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/uso terapéutico , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA