Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genetics ; 227(1)2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38457127

RESUMEN

Since 1999, The Arabidopsis Information Resource (www.arabidopsis.org) has been curating data about the Arabidopsis thaliana genome. Its primary focus is integrating experimental gene function information from the peer-reviewed literature and codifying it as controlled vocabulary annotations. Our goal is to produce a "gold standard" functional annotation set that reflects the current state of knowledge about the Arabidopsis genome. At the same time, the resource serves as a nexus for community-based collaborations aimed at improving data quality, access, and reuse. For the past decade, our work has been made possible by subscriptions from our global user base. This update covers our ongoing biocuration work, some of our modernization efforts that contribute to the first major infrastructure overhaul since 2011, the introduction of JBrowse2, and the resource's role in community activities such as organizing the structural reannotation of the genome. For gene function assessment, we used gene ontology annotations as a metric to evaluate: (1) what is currently known about Arabidopsis gene function and (2) the set of "unknown" genes. Currently, 74% of the proteome has been annotated to at least one gene ontology term. Of those loci, half have experimental support for at least one of the following aspects: molecular function, biological process, or cellular component. Our work sheds light on the genes for which we have not yet identified any published experimental data and have no functional annotation. Drawing attention to these unknown genes highlights knowledge gaps and potential sources of novel discoveries.


Asunto(s)
Arabidopsis , Bases de Datos Genéticas , Anotación de Secuencia Molecular , Arabidopsis/genética , Genoma de Planta , Ontología de Genes , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
Genetics ; 227(1)2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38301657

RESUMEN

FlyBase (flybase.org) is a model organism database and knowledge base about Drosophila melanogaster, commonly known as the fruit fly. Researchers from around the world rely on the genetic, genomic, and functional information available in FlyBase, as well as its tools to view and interrogate these data. In this article, we describe the latest developments and updates to FlyBase. These include the introduction of single-cell RNA sequencing data, improved content and display of functional information, updated orthology pipelines, new chemical reports, and enhancements to our outreach resources.


Asunto(s)
Bases de Datos Genéticas , Drosophila melanogaster , Animales , Drosophila melanogaster/genética , Genes de Insecto , Genoma de los Insectos , Genómica/métodos
3.
Genetics ; 227(1)2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38376816

RESUMEN

PomBase (https://www.pombase.org), the model organism database (MOD) for fission yeast, was recently awarded Global Core Biodata Resource (GCBR) status by the Global Biodata Coalition (GBC; https://globalbiodata.org/) after a rigorous selection process. In this MOD review, we present PomBase's continuing growth and improvement over the last 2 years. We describe these improvements in the context of the qualitative GCBR indicators related to scientific quality, comprehensivity, accelerating science, user stories, and collaborations with other biodata resources. This review also showcases the depth of existing connections both within the biocuration ecosystem and between PomBase and its user community.


Asunto(s)
Schizosaccharomyces , Schizosaccharomyces/genética , Bases de Datos Genéticas , Genoma Fúngico
4.
Genetics ; 224(1)2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36864549

RESUMEN

Danio rerio is a model organism used to investigate vertebrate development. Manipulation of the zebrafish genome and resultant gene products by mutation or targeted knockdown has made the zebrafish a good system for investigating gene function, providing a resource to investigate genetic contributors to phenotype and human disease. Phenotypic outcomes can be the result of gene mutation, targeted knockdown of gene products, manipulation of experimental conditions, or any combination thereof. Zebrafish have been used in various genetic and chemical screens to identify genetic and environmental contributors to phenotype and disease outcomes. The Zebrafish Information Network (ZFIN, zfin.org) is the central repository for genetic, genomic, and phenotypic data that result from research using D. rerio. Here we describe how ZFIN annotates phenotype, expression, and disease model data across various experimental designs, how we computationally determine wild-type gene expression, the phenotypic gene, and how these results allow us to propagate gene expression, phenotype, and disease model data to the correct gene, or gene related entity.


Asunto(s)
Genoma , Pez Cebra , Humanos , Animales , Pez Cebra/genética , Genómica/métodos , Fenotipo , Expresión Génica
5.
Genetics ; 224(1)2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36755307

RESUMEN

Xenbase (https://www.xenbase.org/), the Xenopus model organism knowledgebase, is a web-accessible resource that integrates the diverse genomic and biological data from research on the laboratory frogs Xenopus laevis and Xenopus tropicalis. The goal of Xenbase is to accelerate discovery and empower Xenopus research, to enhance the impact of Xenopus research data, and to facilitate the dissemination of these data. Xenbase also enhances the value of Xenopus data through high-quality curation, data integration, providing bioinformatics tools optimized for Xenopus experiments, and linking Xenopus data to human data, and other model organisms. Xenbase also plays an indispensable role in making Xenopus data interoperable and accessible to the broader biomedical community in accordance with FAIR principles. Xenbase provides annotated data updates to organizations such as NCBI, UniProtKB, Ensembl, the Gene Ontology consortium, and most recently, the Alliance of Genomic Resources, a common clearing house for data from humans and model organisms. This article provides a brief overview of key and recently added features of Xenbase. New features include processing of Xenopus high-throughput sequencing data from the NCBI Gene Expression Omnibus; curation of anatomical, physiological, and expression phenotypes with the newly created Xenopus Phenotype Ontology; Xenopus Gene Ontology annotations; new anatomical drawings of the Normal Table of Xenopus development; and integration of the latest Xenopus laevis v10.1 genome annotations. Finally, we highlight areas for future development at Xenbase as we continue to support the Xenopus research community.


Asunto(s)
Bases de Datos Genéticas , Genómica , Animales , Humanos , Xenopus laevis/genética , Xenopus/genética , Biología Computacional
6.
Genetics ; 224(1)2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36607068

RESUMEN

As one of the first model organism knowledgebases, Saccharomyces Genome Database (SGD) has been supporting the scientific research community since 1993. As technologies and research evolve, so does SGD: from updates in software architecture, to curation of novel data types, to incorporation of data from, and collaboration with, other knowledgebases. We are continuing to make steps toward providing the community with an S. cerevisiae pan-genome. Here, we describe software upgrades, a new nomenclature system for genes not found in the reference strain, and additions to gene pages. With these improvements, we aim to remain a leading resource for students, researchers, and the broader scientific community.


Asunto(s)
Saccharomyces , Humanos , Saccharomyces/genética , Saccharomyces cerevisiae/genética , Genoma Fúngico , Bases de Datos Genéticas , Programas Informáticos
7.
Genetics ; 220(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35380656

RESUMEN

The fission yeast Schizosaccharomyces japonicus has recently emerged as a powerful system for studying the evolution of essential cellular processes, drawing on similarities as well as key differences between S. japonicus and the related, well-established model Schizosaccharomyces pombe. We have deployed the open-source, modular code and tools originally developed for PomBase, the S. pombe model organism database (MOD), to create JaponicusDB (www.japonicusdb.org), a new MOD dedicated to S. japonicus. By providing a central resource with ready access to a growing body of experimental data, ontology-based curation, seamless browsing and querying, and the ability to integrate new data with existing knowledge, JaponicusDB supports fission yeast biologists to a far greater extent than any other source of S. japonicus data. JaponicusDB thus enables S. japonicus researchers to realize the full potential of studying a newly emerging model species and illustrates the widely applicable power and utility of harnessing reusable PomBase code to build a comprehensive, community-maintainable repository of species-relevant knowledge.


Asunto(s)
Schizosaccharomyces , Bases de Datos Factuales , Schizosaccharomyces/genética
8.
Genetics ; 220(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35380657

RESUMEN

Biological interpretation of a large amount of gene or protein data is complex. Ontology analysis tools are imperative in finding functional similarities through overrepresentation or enrichment of terms associated with the input gene or protein lists. However, most tools are limited by their ability to do ontology-specific and species-limited analyses. Furthermore, some enrichment tools are not updated frequently with recent information from databases, thus giving users inaccurate, outdated or uninformative data. Here, we present MOET or the Multi-Ontology Enrichment Tool (v.1 released in April 2019 and v.2 released in May 2021), an ontology analysis tool leveraging data that the Rat Genome Database (RGD) integrated from in-house expert curation and external databases including the National Center for Biotechnology Information (NCBI), Mouse Genome Informatics (MGI), The Kyoto Encyclopedia of Genes and Genomes (KEGG), The Gene Ontology Resource, UniProt-GOA, and others. Given a gene or protein list, MOET analysis identifies significantly overrepresented ontology terms using a hypergeometric test and provides nominal and Bonferroni corrected P-values and odds ratios for the overrepresented terms. The results are shown as a downloadable list of terms with and without Bonferroni correction, and a graph of the P-values and number of annotated genes for each term in the list. MOET can be accessed freely from https://rgd.mcw.edu/rgdweb/enrichment/start.html.


Asunto(s)
Bases de Datos Genéticas , Genoma , Animales , Ontología de Genes , Genoma/genética , Internet , Ratones , Ratas , Programas Informáticos
9.
Genetics ; 220(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35266522

RESUMEN

FlyBase provides a centralized resource for the genetic and genomic data of Drosophila melanogaster. As FlyBase enters our fourth decade of service to the research community, we reflect on our unique aspects and look forward to our continued collaboration with the larger research and model organism communities. In this study, we emphasize the dedicated reports and tools we have constructed to meet the specialized needs of fly researchers but also to facilitate use by other research communities. We also highlight ways that we support the fly community, including an external resources page, help resources, and multiple avenues by which researchers can interact with FlyBase.


Asunto(s)
Bases de Datos Genéticas , Drosophila melanogaster , Animales , Drosophila melanogaster/genética , Genoma , Genómica
10.
Genetics ; 220(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35100366

RESUMEN

PomBase (www.pombase.org), the model organism database (MOD) for the fission yeast Schizosaccharomyces pombe, supports research within and beyond the S. pombe community by integrating and presenting genetic, molecular, and cell biological knowledge into intuitive displays and comprehensive data collections. With new content, novel query capabilities, and biologist-friendly data summaries and visualization, PomBase also drives innovation in the MOD community.


Asunto(s)
Schizosaccharomyces , Biología , Bases de Datos Factuales , Schizosaccharomyces/genética
11.
Front Microbiol ; 12: 711077, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34394059

RESUMEN

The EcoCyc model-organism database collects and summarizes experimental data for Escherichia coli K-12. EcoCyc is regularly updated by the manual curation of individual database entries, such as genes, proteins, and metabolic pathways, and by the programmatic addition of results from select high-throughput analyses. Updates to the Pathway Tools software that supports EcoCyc and to the web interface that enables user access have continuously improved its usability and expanded its functionality. This article highlights recent improvements to the curated data in the areas of metabolism, transport, DNA repair, and regulation of gene expression. New and revised data analysis and visualization tools include an interactive metabolic network explorer, a circular genome viewer, and various improvements to the speed and usability of existing tools.

12.
Front Physiol ; 10: 387, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31073289

RESUMEN

Two species of the clawed frog family, Xenopus laevis and X. tropicalis, are widely used as tools to investigate both normal and disease-state biochemistry, genetics, cell biology, and developmental biology. To support both frog specialist and non-specialist scientists needing access to these models for their research, a number of centralized resources exist around the world. These include centers that hold live and frozen stocks of transgenic, inbred and mutant animals and centers that hold molecular resources. This infrastructure is supported by a model organism database. Here, we describe much of this infrastructure and encourage the community to make the best use of it and to guide the resource centers in developing new lines and libraries.

13.
Front Physiol ; 10: 154, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30863320

RESUMEN

At a fundamental level most genes, signaling pathways, biological functions and organ systems are highly conserved between man and all vertebrate species. Leveraging this conservation, researchers are increasingly using the experimental advantages of the amphibian Xenopus to model human disease. The online Xenopus resource, Xenbase, enables human disease modeling by curating the Xenopus literature published in PubMed and integrating these Xenopus data with orthologous human genes, anatomy, and more recently with links to the Online Mendelian Inheritance in Man resource (OMIM) and the Human Disease Ontology (DO). Here we review how Xenbase supports disease modeling and report on a meta-analysis of the published Xenopus research providing an overview of the different types of diseases being modeled in Xenopus and the variety of experimental approaches being used. Text mining of over 50,000 Xenopus research articles imported into Xenbase from PubMed identified approximately 1,000 putative disease- modeling articles. These articles were manually assessed and annotated with disease ontologies, which were then used to classify papers based on disease type. We found that Xenopus is being used to study a diverse array of disease with three main experimental approaches: cell-free egg extracts to study fundamental aspects of cellular and molecular biology, oocytes to study ion transport and channel physiology and embryo experiments focused on congenital diseases. We integrated these data into Xenbase Disease Pages to allow easy navigation to disease information on external databases. Results of this analysis will equip Xenopus researchers with a suite of experimental approaches available to model or dissect a pathological process. Ideally clinicians and basic researchers will use this information to foster collaborations necessary to interrogate the development and treatment of human diseases.

14.
Methods Mol Biol ; 1757: 399-470, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29761466

RESUMEN

WormBase ( www.wormbase.org ) provides the nematode research community with a centralized database for information pertaining to nematode genes and genomes. As more nematode genome sequences are becoming available and as richer data sets are published, WormBase strives to maintain updated information, displays, and services to facilitate efficient access to and understanding of the knowledge generated by the published nematode genetics literature. This chapter aims to provide an explanation of how to use basic features of WormBase, new features, and some commonly used tools and data queries. Explanations of the curated data and step-by-step instructions of how to access the data via the WormBase website and available data mining tools are provided.


Asunto(s)
Caenorhabditis elegans/genética , Bases de Datos Genéticas , Genoma de los Helmintos , Genómica , Animales , Biología Computacional/métodos , Minería de Datos/métodos , Epistasis Genética , Ontología de Genes , Genes de Helminto , Genómica/métodos , Humanos , Fenotipo , Proteoma , Motor de Búsqueda , Programas Informáticos , Transcriptoma , Interfaz Usuario-Computador , Navegador Web
15.
Methods Cell Biol ; 135: 451-81, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27443940

RESUMEN

The Zebrafish Model Organism Database (ZFIN; zfin.org) serves as the central repository for genetic and genomic data produced using zebrafish (Danio rerio). Data in ZFIN are either manually curated from peer-reviewed publications or submitted directly to ZFIN from various data repositories. Data types currently supported include mutants, transgenic lines, DNA constructs, gene expression, phenotypes, antibodies, morpholinos, TALENs, CRISPRs, disease models, movies, and images. The rapidly changing methods of genomic science have increased the production of data that cannot readily be represented in standard journal publications. These large data sets require web-based presentation. As the central repository for zebrafish research data, it has become increasingly important for ZFIN to provide the zebrafish research community with support for their data sets and guidance on what is required to submit these data to ZFIN. Regardless of their volume, all data that are submitted for inclusion in ZFIN must include a minimum set of information that describes the data. The aim of this chapter is to identify data types that fit into the current ZFIN database and explain how to provide those data in the optimal format for integration. We identify the required and optional data elements, define jargon, and present tools and templates that can help with the acquisition and organization of data as they are being prepared for submission to ZFIN. This information will also appear in the ZFIN wiki, where it will be updated as our services evolve over time.


Asunto(s)
Bases de Datos Genéticas , Genómica/métodos , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Genoma/genética , Morfolinos/genética , Mutación
16.
Physiol Genomics ; 48(8): 589-600, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27287925

RESUMEN

Cardiovascular diseases are complex diseases caused by a combination of genetic and environmental factors. To facilitate progress in complex disease research, the Rat Genome Database (RGD) provides the community with a disease portal where genome objects and biological data related to cardiovascular diseases are systematically organized. The purpose of this study is to present biocuration at RGD, including disease, genetic, and pathway data. The RGD curation team uses controlled vocabularies/ontologies to organize data curated from the published literature or imported from disease and pathway databases. These organized annotations are associated with genes, strains, and quantitative trait loci (QTLs), thus linking functional annotations to genome objects. Screen shots from the web pages are used to demonstrate the organization of annotations at RGD. The human cardiovascular disease genes identified by annotations were grouped according to data sources and their annotation profiles were compared by in-house tools and other enrichment tools available to the public. The analysis results show that the imported cardiovascular disease genes from ClinVar and OMIM are functionally different from the RGD manually curated genes in terms of pathway and Gene Ontology annotations. The inclusion of disease genes from other databases enriches the collection of disease genes not only in quantity but also in quality.


Asunto(s)
Enfermedades Cardiovasculares/genética , Genoma/genética , Animales , Bases de Datos Genéticas , Ontología de Genes , Genómica/métodos , Humanos , Anotación de Secuencia Molecular/métodos , Sitios de Carácter Cuantitativo/genética , Ratas
17.
Methods Mol Biol ; 1374: 187-202, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26519406

RESUMEN

MaizeGDB is the community database for biological information about the crop plant Zea mays. Genomic, genetic, sequence, gene product, functional characterization, literature reference, and person/organization contact information are among the datatypes stored at MaizeGDB. At the project's website ( http://www.maizegdb.org ) are custom interfaces enabling researchers to browse data and to seek out specific information matching explicit search criteria. In addition, pre-compiled reports are made available for particular types of data and bulletin boards are provided to facilitate communication and coordination among members of the community of maize geneticists.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Genómica/métodos , Zea mays/genética , Navegador Web
18.
Genetics ; 201(2): 403-23, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26447128

RESUMEN

The fission yeast Schizosaccharomyces pombe is an important model organism for the study of eukaryotic molecular and cellular biology. Studies of S. pombe, together with studies of its distant cousin, Saccharomyces cerevisiae, have led to the discovery of genes involved in fundamental mechanisms of transcription, translation, DNA replication, cell cycle control, and signal transduction, to name but a few processes. However, since the divergence of the two species approximately 350 million years ago, S. pombe appears to have evolved less rapidly than S. cerevisiae so that it retains more characteristics of the common ancient yeast ancestor, causing it to share more features with metazoan cells. This Primer introduces S. pombe by describing the yeast itself, providing a brief description of the origins of fission yeast research, and illustrating some genetic and bioinformatics tools used to study protein function in fission yeast. In addition, a section on some key differences between S. pombe and S. cerevisiae is included for readers with some familiarity with budding yeast research but who may have an interest in developing research projects using S. pombe.


Asunto(s)
Cromosomas Fúngicos/genética , Replicación del ADN/genética , Recombinación Homóloga/genética , Schizosaccharomyces/genética , Daño del ADN/genética , Genoma Fúngico , Estadios del Ciclo de Vida/genética , Modelos Genéticos , Investigación
19.
Genesis ; 53(8): 486-97, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26150211

RESUMEN

Xenbase, the Xenopus model organism database (www.xenbase.org), is a cloud-based, web-accessible resource that integrates the diverse genomic and biological data from Xenopus research. Xenopus frogs are one of the major vertebrate animal models used for biomedical research, and Xenbase is the central repository for the enormous amount of data generated using this model tetrapod. The goal of Xenbase is to accelerate discovery by enabling investigators to make novel connections between molecular pathways in Xenopus and human disease. Our relational database and user-friendly interface make these data easy to query and allows investigators to quickly interrogate and link different data types in ways that would otherwise be difficult, time consuming, or impossible. Xenbase also enhances the value of these data through high-quality gene expression curation and data integration, by providing bioinformatics tools optimized for Xenopus experiments, and by linking Xenopus data to other model organisms and to human data. Xenbase draws in data via pipelines that download data, parse the content, and save them into appropriate files and database tables. Furthermore, Xenbase makes these data accessible to the broader biomedical community by continually providing annotated data updates to organizations such as NCBI, UniProtKB, and Ensembl. Here, we describe our bioinformatics, genome-browsing tools, data acquisition and sharing, our community submitted and literature curation pipelines, text-mining support, gene page features, and the curation of gene nomenclature and gene models.


Asunto(s)
Bases de Datos Genéticas , Xenopus/genética , Animales , Biología Computacional/métodos , Recolección de Datos , Curaduría de Datos , Modelos Animales , Programas Informáticos
20.
Genetics ; 195(1): 7-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24018766

RESUMEN

In this commentary, Rob Kulathinal describes two articles from the Perrimon lab, each describing a new online resource that can assist geneticists with the design of their RNA interference (RNAi) experiments. Hu et al.'s "UP-TORR: online tool for accurate and up-to-date annotation of RNAi reagents" and "FlyPrimerBank: An online database for Drosophila melanogaster gene expression analysis and knockdown evaluation of RNAi reagents" are published, respectively, in this month's issues of GENETICS and G3.


Asunto(s)
Anotación de Secuencia Molecular/métodos , Interferencia de ARN , ARN Interferente Pequeño/genética , Programas Informáticos , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...