Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Ter Arkh ; 96(3): 266-272, 2024 Apr 16.
Artículo en Ruso | MEDLINE | ID: mdl-38713042

RESUMEN

AIM: To investigate the antitumor effects of human placenta hydrolysate (HPH) peptides on three hormone-dependent human cell lines: prostate adenocarcinoma, breast carcinoma, and ovarian cancer by metabolic analysis of cell cultures. MATERIALS AND METHODS: The effect of HPH on tumor and control tumor cell lines was evaluated. Study stages: (A) de novo peptide sequencing by collision-induced dissociation mass spectrometry; (B) detection of peptides with anti-tumor properties; (C) expert analysis of the obtained lists of peptides. RESULTS: Dose-dependent cytotoxic effects of HPH on three tumor cell lines are shown: PC-3 (human prostate adenocarcinomas), OAW-42 (human ovarian cancer), BT-474 (human breast carcinomas), and IC50 constants (1.3-2.8 mg/ml) were obtained. The analysis of the HPH peptide fraction showed more than 70 peptides with antitumor properties in the composition of this HPH, including kinase inhibitors: mitogen-activated protein kinases, kappa-bi nuclear factor inhibitor kinase, AKT serine/threonine kinase 1, protein kinase C zeta, interleukin-1 receptor-associated kinase 4 and cyclin-dependent kinase 1. CONCLUSION: The results of the study indicate not only the oncological safety of the HPH used in therapy but also the mild antitumor effects of this HPH at high concentrations.


Asunto(s)
Neoplasias de la Mama , Placenta , Neoplasias de la Próstata , Humanos , Femenino , Placenta/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Embarazo , Neoplasias de la Próstata/tratamiento farmacológico , Masculino , Línea Celular Tumoral , Antineoplásicos/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Células PC-3 , Hidrolisados de Proteína/farmacología , Relación Dosis-Respuesta a Droga
2.
Med Res Rev ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634664

RESUMEN

Chemokine receptors are relevant targets for a multitude of immunological diseases, but drug attrition for these receptors is remarkably high. While many drug discovery programs have been pursued, most prospective drugs failed in the follow-up studies due to clinical inefficacy, and hence there is a clear need for alternative approaches. Allosteric modulators of receptor function represent an excellent opportunity for novel drugs, as they modulate receptor activation in a controlled manner and display increased selectivity, and their pharmacological profile can be insurmountable. Here, we discuss allosteric ligands and their pharmacological characterization for modulation of chemokine receptors. Ligands are included if (1) they show clear signs of allosteric modulation in vitro and (2) display evidence of binding in a topologically distinct manner compared to endogenous chemokines. We discuss how allosteric ligands affect binding of orthosteric (endogenous) ligands in terms of affinity as well as binding kinetics in radioligand binding assays. Moreover, their effects on signaling events in functional assays and how their binding site can be elucidated are specified. We substantiate this with examples of published allosteric ligands targeting chemokine receptors and hypothetical graphs of pharmacological behavior. This review should serve as an effective starting point for setting up assays for characterizing allosteric ligands to develop safer and more efficacious drugs for chemokine receptors and, ultimately, other G protein-coupled receptors.

4.
Cancer Med ; 13(3): e6924, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38230908

RESUMEN

BACKGROUND: Calycosin may be a potential candidate regarding chemotherapeutic agent, because already some studies against multivarious cancer have been made with this natural compound. AIM: This review elucidated a brief overview of previous studies on calycosin potential effects on various cancers and its potential mechanism of action. METHODOLOGY: Data retrieved by systematic searches of Google Scholar, PubMed, Science Direct, Web of Science, and Scopus by using keywords including calycosin, cancer types, anti-cancer mechanism, synergistic, and pharmacokinetic and commonly used tools are BioRender, ChemDraw Professional 16.0, and ADMETlab 2.0. RESULTS: Based on our review, calycosin is available in nature and effective against around 15 different types of cancer. Generally, the anti-cancer mechanism of this compound is mediated through a variety of processes, including regulation of apoptotic pathways, cell cycle, angiogenesis and metastasis, oncogenes, enzymatic pathways, and signal transduction process. These study conducted in various study models, including in silico, in vitro, preclinical and clinical models. The molecular framework behind the anti-cancer effect is targeting some oncogenic and therapeutic proteins and multiple signaling cascades. Therapies based on nano-formulated calycosin may make excellent nanocarriers for the delivery of this compound to targeted tissue as well as particular organ. This natural compound becomes very effective when combined with other natural compounds and some standard drugs. Moreover, proper use of this compound can reverse resistance to existing anti-cancer drugs through a variety of strategies. Calycosin showed better pharmacokinetic properties with less toxicity in human bodies. CONCLUSION: Calycosin exhibits excellent potential as a therapeutic drug against several cancer types and should be consumed until standard chemotherapeutics are available in pharma markets.


Asunto(s)
Isoflavonas , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Oncogenes , Investigación , Isoflavonas/farmacología , Isoflavonas/uso terapéutico
5.
Biophys Rep ; 9(3): 159-175, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38028152

RESUMEN

83 Structures of human nNOS, 55 structures of human eNOS, 13 structures of iNOS, and about 126 reported NOS-bound compounds are summarized and analyzed. Structural and statistical analysis show that, at least one copy of each analyzed compound binds to the active site (the substrate arginine binding site) of human NOS. And binding features of the three isoforms show differences, but the binding preference of compounds is not in the way helpful for inhibitor design targeting nNOS and iNOS, or for activator design targeting eNOS. This research shows that there is a strong structural and functional similarity between oxygenase domains of human NOS isoforms, especially the architecture, residue composition, size, shape, and distribution profile of hydrophobicity, polarity and charge of the active site. The selectivity and efficacy of inhibitors over the rest of isoforms rely a lot on chance and randomness. Further increase of selectivity via rational improvement is uncertain, unpredictable and unreliable, therefore, to achieve high selectivity through targeting this site is complicated and requires combinative investigation. After analysis on the current two targeting sites in NOS, the highly conserved arginine binding pocket and H4B binding pocket, new potential drug-targeting sites are proposed based on structure and sequence profiling. This comprehensive analysis on the structure and interaction profiles of human NOS and bound compounds provides fresh insights for drug discovery and pharmacological research, and the new discovery here is practically applied to guide protein-structure based drug discovery.

6.
Biomedicines ; 11(11)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001878

RESUMEN

Hypertension is the leading remediable risk factor for cardiovascular morbidity and mortality in the United States. Excess dietary salt consumption, which is a catalyst of hypertension, initiates an inflammatory cascade via activation of antigen-presenting cells (APCs). This pro-inflammatory response is driven primarily by sodium ions (Na+) transporting into APCs by the epithelial sodium channel (ENaC) and subsequent NADPH oxidase activation, leading to high levels of oxidative stress. Oxidative stress, a well-known catalyst for hypertension-related illness development, disturbs redox homeostasis, which ultimately promotes lipid peroxidation, isolevuglandin production and an inflammatory response. Natural medicinal compounds derived from organic materials that are characterized by their anti-inflammatory, anti-oxidative, and anti-mutagenic properties have recently gained traction amongst the pharmacology community due to their therapeutic effects. Flavonoids, a natural phenolic compound, have these therapeutic benefits and can potentially serve as anti-hypertensives. Flavones are a type of flavonoid that have increased anti-inflammatory effects that may allow them to act as therapeutic agents for hypertension, including diosmetin, which is able to induce significant arterial vasodilation in several different animal models. This review will focus on the activity of flavones to illuminate potential preventative and potential therapeutic mechanisms against hypertension.

7.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38003453

RESUMEN

Modulation of the human Ether-à-go-go-Related Gene (hERG) channel, a crucial voltage-gated potassium channel in the repolarization of action potentials in ventricular myocytes of the heart, has significant implications on cardiac electrophysiology and can be either antiarrhythmic or proarrhythmic. For example, hERG channel blockade is a leading cause of long QT syndrome and potentially life-threatening arrhythmias, such as torsades de pointes. Conversely, hERG channel blockade is the mechanism of action of Class III antiarrhythmic agents in terminating ventricular tachycardia and fibrillation. In recent years, it has been recognized that less proarrhythmic hERG blockers with clinical potential or Class III antiarrhythmic agents exhibit, in addition to their hERG-blocking activity, a second action that facilitates the voltage-dependent activation of the hERG channel. This facilitation is believed to reduce the proarrhythmic potential by supporting the final repolarizing of action potentials. This review covers the pharmacological characteristics of hERG blockers/facilitators, the molecular mechanisms underlying facilitation, and their clinical significance, as well as unresolved issues and requirements for research in the fields of ion channel pharmacology and drug-induced arrhythmias.


Asunto(s)
Canales de Potasio Éter-A-Go-Go , Bloqueadores de los Canales de Potasio , Humanos , Canal de Potasio ERG1 , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Potasio/uso terapéutico , Antiarrítmicos/efectos adversos , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/tratamiento farmacológico , Miocitos Cardíacos , Potenciales de Acción
8.
Cureus ; 15(10): e47526, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38021751

RESUMEN

An inherited neurodegenerative ailment called Huntington's disease (HD) of gradual physical impairment, cognitive decline, and psychiatric symptoms. It is brought on by a mutation of the HTT gene, which causes aberrant huntingtin protein buildup in neurons. This predominantly affects the striatum and cerebral cortex, where neuronal malfunction and eventual cell death follow. The quality index of life for both patients and their families is significantly impacted when symptoms first appear in mid-adulthood. An overview of the available therapies for HD is given in this article. Although HD has no known treatment options, there are several that try to lessen symptoms and reduce the disease's development. By lowering involuntary movements, pharmaceutical treatments like tetrabenazine and deutetrabenazine focus on motor symptoms. Antidepressants and antipsychotic medicines are also used to manage the mental and cognitive symptoms of HD. The investigation of prospective gene-based medicines is a result of research into disease-modifying medications. Reduced synthesis of mutant huntingtin protein is the goal of RNA interference (RNAi) strategies, which may halt the course of illness. Additionally, continuing research into Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated protein 9 (CRISPR-Cas9) and other gene editing methods shows promise for reversing the genetic mutation that causes HD. Individuals with HD can benefit from non-pharmacological therapies such as physical therapy, speech therapy, and occupational therapy to increase their functional abilities and general well-being. Supportive treatment, psychiatric therapy, and caregiver support groups are also essential in addressing the difficult problems the illness presents. In conclusion, tremendous progress is being made in the domain of HD treatment, with an emphasis on symptom control, disease modification, and prospective gene-based therapeutics. Even though there has been significant improvement, more study is still required to provide better therapies and ultimately discover a solution for this debilitating condition.

9.
J Biol Chem ; 299(12): 105368, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37866634

RESUMEN

Positive heterotropic cooperativity, or "activation," results in an instantaneous increase in enzyme activity in the absence of an increase in protein expression. Thus, cytochrome P450 (CYP) enzyme activation presents as a potential drug-drug interaction mechanism. It has been demonstrated previously that dapsone activates the CYP2C9-catalyzed oxidation of a number of nonsteroidal anti-inflammatory drugs in vitro. Here, we conducted molecular dynamics simulations (MDS) together with enzyme kinetic investigations and site-directed mutagenesis to elucidate the molecular basis of the activation of CYP2C9-catalyzed S-flurbiprofen 4'-hydroxylation and S-naproxen O-demethylation by dapsone. Supplementation of incubations of recombinant CYP2C9 with dapsone increased the catalytic efficiency of flurbiprofen and naproxen oxidation by 2.3- and 16.5-fold, respectively. MDS demonstrated that activation arises predominantly from aromatic interactions between the substrate, dapsone, and the phenyl rings of Phe114 and Phe476 within a common binding domain of the CYP2C9 active site, rather than involvement of a distinct effector site. Mutagenesis of Phe114 and Phe476 abrogated flurbiprofen and naproxen oxidation, and MDS and kinetic studies with the CYP2C9 mutants further identified a pivotal role of Phe476 in dapsone activation. MDS additionally showed that aromatic stacking interactions between two molecules of naproxen are necessary for binding in a catalytically favorable orientation. In contrast to flurbiprofen and naproxen, dapsone did not activate the 4'-hydroxylation of diclofenac, suggesting that the CYP2C9 active site favors cooperative binding of nonsteroidal anti-inflammatory drugs with a planar or near-planar geometry. More generally, the work confirms the utility of MDS for investigating ligand binding in CYP enzymes.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas , Citocromo P-450 CYP2C9 , Dapsona , Flurbiprofeno , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/metabolismo , Hidrocarburo de Aril Hidroxilasas/metabolismo , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Dapsona/metabolismo , Flurbiprofeno/metabolismo , Cinética , Naproxeno/metabolismo , Humanos
10.
Pharmacol Res Perspect ; 11(4): e01118, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37548279

RESUMEN

INTRODUCTION: Drug development has been challenged by the dual drawbacks involving unpredictable disease outcomes and drug resistance, which has placed greater demands on pharmacology education. Molecular pharmacology, as a frontier crossover field of pharmacology, focuses on the research of new drugs and targets. However, due to the lack of a systematic experimental training system, molecular pharmacology has not made a corresponding contribution in promoting the training of innovative talent in pharmacology. We aim to establish an experimental training program suitable for molecular pharmacology to improve students' ability to engage in drug development in future. METHODS: Based on the feasibility of drug-target projects, a comprehensive training program containing molecular docking, target stability experiment, and fluorescent probe detection of protein expression in living cells and mice was conducted among 20 pharmacy graduate students. The experimental training was assessed by the experimental training report and the student recognition questionnaires. RESULTS: All 20 students mastered the experimental principles and operations required for the training program. The experimental reports proved that the students were in good command of the experimental principles, operations and applications. The results of the Likert questionnaire indicated that the training program promoted the understanding of the drug research process and increased motivation to learn. CONCLUSION: The designed experimental training program has a positive effect on the training of pharmacology talents, and can be implemented as a part of molecular pharmacology education.


Asunto(s)
Aprendizaje , Motivación , Animales , Ratones , Simulación del Acoplamiento Molecular
11.
Elife ; 122023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37265322

RESUMEN

A complex interplay between structure, conformational dynamics and pharmacology defines distant regulation of G protein-coupled receptors.


Asunto(s)
Simulación de Dinámica Molecular , Receptores Acoplados a Proteínas G , Conformación Molecular , Regulación Alostérica
12.
Elife ; 122023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37248726

RESUMEN

Allosteric modulation of G protein-coupled receptors (GPCRs) is a major paradigm in drug discovery. Despite decades of research, a molecular-level understanding of the general principles that govern the myriad pharmacological effects exerted by GPCR allosteric modulators remains limited. The M4 muscarinic acetylcholine receptor (M4 mAChR) is a validated and clinically relevant allosteric drug target for several major psychiatric and cognitive disorders. In this study, we rigorously quantified the affinity, efficacy, and magnitude of modulation of two different positive allosteric modulators, LY2033298 (LY298) and VU0467154 (VU154), combined with the endogenous agonist acetylcholine (ACh) or the high-affinity agonist iperoxo (Ipx), at the human M4 mAChR. By determining the cryo-electron microscopy structures of the M4 mAChR, bound to a cognate Gi1 protein and in complex with ACh, Ipx, LY298-Ipx, and VU154-Ipx, and applying molecular dynamics simulations, we determine key molecular mechanisms underlying allosteric pharmacology. In addition to delineating the contribution of spatially distinct binding sites on observed pharmacology, our findings also revealed a vital role for orthosteric and allosteric ligand-receptor-transducer complex stability, mediated by conformational dynamics between these sites, in the ultimate determination of affinity, efficacy, cooperativity, probe dependence, and species variability. There results provide a holistic framework for further GPCR mechanistic studies and can aid in the discovery and design of future allosteric drugs.


Asunto(s)
Receptor Muscarínico M4 , Receptores Muscarínicos , Humanos , Acetilcolina/metabolismo , Regulación Alostérica , Sitio Alostérico , Microscopía por Crioelectrón , Ligandos , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/metabolismo
13.
J Biol Chem ; 299(6): 104785, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37146967

RESUMEN

Adrenomedullin 2/intermedin (AM2/IMD), adrenomedullin (AM), and calcitonin gene-related peptide (CGRP) have functions in the cardiovascular, lymphatic, and nervous systems by activating three heterodimeric receptors comprising the class B GPCR CLR and a RAMP1, -2, or -3 modulatory subunit. CGRP and AM prefer the RAMP1 and RAMP2/3 complexes, respectively, whereas AM2/IMD is thought to be relatively nonselective. Accordingly, AM2/IMD exhibits overlapping actions with CGRP and AM, so the rationale for this third agonist for the CLR-RAMP complexes is unclear. Here, we report that AM2/IMD is kinetically selective for CLR-RAMP3, known as the AM2R, and we define the structural basis for its distinct kinetics. In live cell biosensor assays, AM2/IMD-AM2R elicited longer-duration cAMP signaling than the other peptide-receptor combinations. AM2/IMD and AM bound the AM2R with similar equilibrium affinities, but AM2/IMD had a slower off-rate and longer receptor residence time, thus explaining its prolonged signaling capacity. Peptide and receptor chimeras and mutagenesis were used to map the regions responsible for the distinct binding and signaling kinetics to the AM2/IMD mid-region and the RAMP3 extracellular domain (ECD). Molecular dynamics simulations revealed how the former forms stable interactions at the CLR ECD-transmembrane domain interface and how the latter augments the CLR ECD binding pocket to anchor the AM2/IMD C terminus. These strong binding components only combine in the AM2R. Our findings uncover AM2/IMD-AM2R as a cognate pair with unique temporal features, reveal how AM2/IMD and RAMP3 collaborate to shape CLR signaling, and have significant implications for AM2/IMD biology.


Asunto(s)
Adrenomedulina , Péptido Relacionado con Gen de Calcitonina , Proteínas Modificadoras de la Actividad de Receptores , Receptores de Adrenomedulina , Receptores Acoplados a Proteínas G , Animales , Humanos , Adrenomedulina/química , Adrenomedulina/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Proteína Similar al Receptor de Calcitonina/genética , Proteína Similar al Receptor de Calcitonina/metabolismo , Chlorocebus aethiops , Células COS , AMP Cíclico/metabolismo , Células HEK293 , Modelos Moleculares , Simulación de Dinámica Molecular , Estabilidad Proteica , Proteínas Modificadoras de la Actividad de Receptores/química , Proteínas Modificadoras de la Actividad de Receptores/genética , Proteínas Modificadoras de la Actividad de Receptores/metabolismo , Receptores de Adrenomedulina/genética , Receptores de Adrenomedulina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
14.
Pharmacol Res ; 193: 106806, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37244387

RESUMEN

The estrogen receptor-α (ER-α) is a key driver of breast cancer (BC) and the ER-antagonist, tamoxifen, is a central pillar of BC treatment. However, cross-talk between ER-α, other hormone and growth factor receptors enables development of de novo resistance to tamoxifen. Herein, we mechanistically dissect the activity of a new class of anti-cancer agents that inhibit multiple growth factor receptors and down-stream signaling for the treatment of ER-positive BC. Using RNA sequencing and comprehensive protein expression analysis, we examined the activity of di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), on the expression and activation of hormone and growth factor receptors, co-factors, and key resistance pathways in ER-α-positive BC. DpC differentially regulated 106 estrogen-response genes, and this was linked to decreased mRNA levels of 4 central hormone receptors involved in BC pathogenesis, namely ER, progesterone receptor (PR), androgen receptor (AR), and prolactin receptor (PRL-R). Mechanistic investigation demonstrated that due to DpC and Dp44mT binding metal ions, these agents caused a pronounced decrease in ER-α, AR, PR, and PRL-R protein expression. DpC and Dp44mT also inhibited activation and down-stream signaling of the epidermal growth factor (EGF) family receptors, and expression of co-factors that promote ER-α transcriptional activity, including SRC3, NF-κB p65, and SP1. In vivo, DpC was highly tolerable and effectively inhibited ER-α-positive BC growth. Through bespoke, non-hormonal, multi-modal mechanisms, Dp44mT and DpC decrease the expression of PR, AR, PRL-R, and tyrosine kinases that act with ER-α to promote BC, constituting an innovative therapeutic approach.


Asunto(s)
Neoplasias de la Mama , Tiosemicarbazonas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Progesterona/uso terapéutico , Andrógenos/uso terapéutico , Receptores de Prolactina , Prolactina/uso terapéutico , Tamoxifeno/farmacología , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/uso terapéutico , Receptores ErbB , Estrógenos/uso terapéutico
15.
J Biol Chem ; 299(5): 104681, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37030504

RESUMEN

We report a novel small-molecule screening approach that combines data augmentation and machine learning to identify Food and Drug Administration (FDA)-approved drugs interacting with the calcium pump (Sarcoplasmic reticulum Ca2+-ATPase, SERCA) from skeletal (SERCA1a) and cardiac (SERCA2a) muscle. This approach uses information about small-molecule effectors to map and probe the chemical space of pharmacological targets, thus allowing to screen with high precision large databases of small molecules, including approved and investigational drugs. We chose SERCA because it plays a major role in the excitation-contraction-relaxation cycle in muscle and it represents a major target in both skeletal and cardiac muscle. The machine learning model predicted that SERCA1a and SERCA2a are pharmacological targets for seven statins, a group of FDA-approved 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors used in the clinic as lipid-lowering medications. We validated the machine learning predictions by using in vitro ATPase assays to show that several FDA-approved statins are partial inhibitors of SERCA1a and SERCA2a. Complementary atomistic simulations predict that these drugs bind to two different allosteric sites of the pump. Our findings suggest that SERCA-mediated Ca2+ transport may be targeted by some statins (e.g., atorvastatin), thus providing a molecular pathway to explain statin-associated toxicity reported in the literature. These studies show the applicability of data augmentation and machine learning-based screening as a general platform for the identification of off-target interactions and the applicability of this approach extends to drug discovery.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Miocardio/enzimología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , Aprendizaje Automático
16.
J Biol Chem ; 299(1): 102729, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410439

RESUMEN

Fibroblast growth factor receptor 1 (FGFR1) is a receptor tyrosine kinase that plays a major role in developmental processes and metabolism. The dysregulation of FGFR1 through genetic aberrations leads to skeletal and metabolic diseases as well as cancer. For this reason, FGFR1 is a promising therapeutic target, yet a very challenging one due to potential on-target toxicity. More puzzling is that both agonistic and antagonistic FGFR1 antibodies are reported to exhibit similar toxicity profiles in vivo, namely weight loss. In this study, we aimed to assess and compare the mechanism of action of these molecules to better understand this apparent contradiction. By systematically comparing the binding of these antibodies and the activation or the inhibition of the major FGFR1 signaling events, we demonstrated that the molecules displayed similar properties and can behave either as an agonist or antagonist depending on the presence or the absence of the endogenous ligand. We further demonstrated that these findings translated in xenografts mice models. In addition, using time-resolved FRET and mass spectrometry analysis, we showed a functionally distinct FGFR1 active conformation in the presence of an antibody that preferentially activates the FGFR substrate 2 (FRS2)-dependent signaling pathway, demonstrating that modulating the geometry of a FGFR1 dimer can effectively change the signaling outputs and ultimately the activity of the molecule in preclinical studies. Altogether, our results highlighted how bivalent antibodies can exhibit both agonistic and antagonistic activities and have implications for targeting other receptor tyrosine kinases with antibodies.


Asunto(s)
Anticuerpos Monoclonales , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Transducción de Señal , Animales , Humanos , Ratones , Neoplasias , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/agonistas , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Anticuerpos Monoclonales/farmacología
17.
J Biomol Struct Dyn ; 41(13): 6219-6235, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35881145

RESUMEN

Serotonin (5-HT) antagonists and reuptake inhibitors (SARIs) are atypical antidepressants for managing major depressive disorder. They are oftentimes applied as adjuvants for ameliorating aftereffects of SSRI antidepressants including insomnia and sexual dysfunction. The few available candidates of this class including lorpiprazole and trazodone also display some daunting side effects, making a continuous search for improved alternatives essential. Natural ß-carboline alkaloids (NßCs) are interestingly renowned with broad pharmacological spectrum against several neuropsychiatric disorders including depression. However, their potentials as SARIs remain underexplored. In this study, 982 NßCs retrieved from the Ambinter-Greenpharma (Amb) database were virtually screened for potent SARI alternatives using computational and biocheminformatics approaches: homology modelling of 5-HT1A receptor, Glide HTVS, SP and XP molecular docking, molecular dynamics (MD) simulation, ADMET and mutagenicity predictions. The homology receptor was validated as a good representative of human 5HT1A receptor using the RCSB structure validation and quality protocols. From the virtual screening against the 5-HT1A receptor, Amb ligands, Amb18709727 and Amb37857532 showed higher binding affinities by XP scores of -8.725 and -7.976 kcal/mol, and MMGBSA of -87.972 and -107.585 kcal/mol respectively compared to lorpiprazole, a reference SARI with XP score and MMGBSA of -6.512 and -62.788 kcal/mol respectively. They maintained ideal contacts with pharmacologically essential amino acid residues implicated in SARI mechanisms and expressed higher stability and compactness than lorpiprazole throughout the trajectories of 100 ns MD simulation. They also displayed interesting ADME, druggability, low toxicity and mutagenicity profiles, ideal for CNS drug prospects, thus, recommended as putative SARI candidates for further study.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Simulación del Acoplamiento Molecular , Receptor de Serotonina 5-HT1A , Antidepresivos , Simulación de Dinámica Molecular , Carbolinas/farmacología
18.
Cells ; 11(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36497070

RESUMEN

The dopamine transporter (DAT) is a member of the neurotransmitter:sodium symporter (NSS) family, mediating the sodium-driven reuptake of dopamine from the extracellular space thereby terminating dopaminergic neurotransmission. Our current structural understanding of DAT is derived from the resolutions of DAT from Drosophila melanogaster (dDAT). Despite extensive structural studies of purified dDAT in complex with a variety of antidepressants, psychostimulants and its endogenous substrate, dopamine, the molecular pharmacology of purified, full length dDAT is yet to be elucidated. In this study, we functionally characterized purified, full length dDAT in detergent micelles using radioligand binding with the scintillation proximity assay. We elucidate the consequences of Na+ and Cl- binding on [3H]nisoxetine affinity and use this to evaluate the binding profiles of substrates and inhibitors to the transporter. Additionally, the technique allowed us to directly determine a equilibrium binding affinity (Kd) for [3H]dopamine to dDAT. To compare with a more native system, the affinities of specified monoamines and inhibitors was determined on dDAT, human DAT and human norepinephrine transporter expressed in COS-7 cells. With our gathered data, we established a pharmacological profile for purified, full length dDAT that will be useful for subsequent biophysical studies using dDAT as model protein for the mammalian NSS family of proteins.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Proteínas de Drosophila , Drosophila melanogaster , Animales , Humanos , Dopamina/metabolismo , Drosophila melanogaster/metabolismo
20.
Proc Natl Acad Sci U S A ; 119(46): e2205207119, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343259

RESUMEN

Whether ion channels experience ligand-dependent dynamic ion selectivity remains of critical importance since this could support ion channel functional bias. Tracking selective ion permeability through ion channels, however, remains challenging even with patch-clamp electrophysiology. In this study, we have developed highly sensitive bioluminescence resonance energy transfer (BRET) probes providing dynamic measurements of Ca2+ and K+ concentrations and ionic strength in the nanoenvironment of Transient Receptor Potential Vanilloid-1 Channel (TRPV1) and P2X channel pores in real time and in live cells during drug challenges. Our results indicate that AMG517, BCTC, and AMG21629, three well-known TRPV1 inhibitors, more potently inhibit the capsaicin (CAPS)-induced Ca2+ influx than the CAPS-induced K+ efflux through TRPV1. Even more strikingly, we found that AMG517, when injected alone, is a partial agonist of the K+ efflux through TRPV1 and triggers TRPV1-dependent cell membrane hyperpolarization. In a further effort to exemplify ligand bias in other families of cationic channels, using the same BRET-based strategy, we also detected concentration- and time-dependent ligand biases in P2X7 and P2X5 cationic selectivity when activated by benzoyl-adenosine triphosphate (Bz-ATP). These custom-engineered BRET-based probes now open up avenues for adding value to ion-channel drug discovery platforms by taking ligand bias into account.


Asunto(s)
Canales de Potencial de Receptor Transitorio , Canales de Potencial de Receptor Transitorio/metabolismo , Canales Catiónicos TRPV/metabolismo , Ligandos , Capsaicina/farmacología , Transferencia de Energía , Sesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...