Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 661: 1000-1010, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38335785

RESUMEN

The present study, for the first time, reports the fabrication of core-shell poly(ionic liquids)@ZIF-8 nanocomposites through a facile in-situ polymerization strategy. These composites exhibited exceptional structural characteristics including high specific surface areas and the integration of high-density Lewis acid/base and nucleophilic active sites. The structure-activity relationship, reusability, and versatility of the poly(ionic liquids)@ZIF-8 composites were investigated for the cycloaddition reaction between CO2 and epoxide. By optimizing the composites structures and their catalytic performance, PIL-Br@ZIF-8(2:1) was identified as an exciting catalyst that exhibits high activity and selectivity in the synthesis of various cyclic carbonates under mild or even atmospheric pressure or simulated flue gas conditions. Moreover, the catalyst demonstrated excellent structural stability while maintaining its catalytic activity throughout multiple usage cycles. By combining DFT calculations, we investigated the transition states and intermediate geometries of the cycloaddition reaction in different coordination microenvironments, thereby proposing a synergistic catalytic mechanism involving multiple active sites.

2.
J Colloid Interface Sci ; 652(Pt A): 737-748, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37500314

RESUMEN

The chemical conversion of carbon dioxide (CO2) into highly value-added products not only alleviates the environmental issues caused by global warming but also makes an impact on economic benefits in the world. The synthesis of cyclic carbonates by the cycloaddition of CO2 with epoxides is one of the most attractive methods for CO2 conversion. However, the development of green and highly efficient heterogeneous catalysts is considered to be a great challenge in catalysis. In this work, alkenyl-modified melamine-based porous organic polymer (MPOP-4A) was firstly synthesized by a one-pot polycondensation method, and it was again modified with imidazolium-based ionic liquids to obtain final modified catalyst (MPOP-4A-IL). Various analytical techniques were used to confirm structure and chemical composition of the prepared materials. The MPOP-4A-IL catalyst synthesized by the post-modification strategy with imidazolium-based ionic liquids exhibited enhanced catalytic activity for CO2 cycloaddition reaction. The enhanced catalytic performance could be attributed to the presence of abundant active sites in their structure such as hydrogen bond donors (HBD), nitrogen (N) sites, and nucleophilic groups for an effective chemical reaction. The MPOP-4A-IL catalyst was found to be metal-free, easy to recycle and reuse, and has good versatility for a series of different epoxides. The interaction of MPOP-4A-IL catalyst with epoxide and CO2 was further verified by density functional theory (DFT) calculations, and the possible mechanism of the CO2 cycloaddition reaction was proposed.

3.
ACS Appl Mater Interfaces ; 15(15): 19695-19704, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37018478

RESUMEN

Strategies for harmonizing the construction of an active site and the building of electron transport for a hybrid MoS2 catalyst are crucial for its application in electrochemical reactions. In this work, an accurate and facile hydrothermal strategy was proposed to fabricate the active center of Co-O-Mo on a supported MoS2 catalyst by forming a CoMoSO phase on the edge of MoS2, yielding (Co-O)x-MoSy (x = 0, 0.3, 0.6, 1, 1.5, or 2.1). The results show that the electrochemical performances (hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and electrochemical degradation) of the yielded MoS2-based catalysts were positively correlated with the Co-O bonds, verifying the significant role of Co-O-Mo as the active center. The fabricated (Co-O)-MoS0.9 presented an extremely low overpotential and Tafel slope in both HER and OER, and it also demonstrated excellent BPA removal in the electrochemical degradation reaction. As compared with the Co-Mo-S configuration, the configuration of Co-O-Mo not only serves as the active center but also provides a conducting channel to facilitate electron conductivity with more accessible charge transfer at the electrode/electrolyte interface, which is favorable for electrocatalytic reaction. This work offers a new perspective for the active mechanism of metallic-heteroatom-dopant electrocatalysts and further boosts research on the development of noble/non-noble hybrid electrocatalysts in the future.

4.
Nanomaterials (Basel) ; 13(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36770519

RESUMEN

A porphyrin-based covalent organic framework (COF), namely Porph-UOZ-COF (UOZ stands for the University of Zabol), has been designed and prepared via the condensation reaction of 5,10,15,20-tetrakis-(3,4-dihydroxyphenyl)porphyrin (DHPP) with 1,4-benzenediboronic acid (DBBA), under the solvothermal condition. The solid was characterized by spectroscopic, microscopic, and powder X-ray diffraction techniques. The resultant multifunctional COF revealed an outstanding performance in catalyzing a one-pot tandem selective benzylic C-H photooxygenation/Knoevenagel condensation reaction in the absence of additives or metals under visible-LED-light irradiation. Notably, the catalytic activity of the COF was superior to individual organic counterparts and the COF was both stable and reusable for four consecutive runs. The present approach illustrates the potential of COFs as promising metal-free (photo) catalysts for the development of tandem reactions.

5.
Nanomicro Lett ; 15(1): 26, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36586003

RESUMEN

Developing high-performance and low-cost electrocatalysts is key to achieve the clean-energy target. Herein, a dual regulation method is proposed to prepare a 3D honeycomb-like carbon-based catalyst with stable Fe/Co co-dopants. Fe atoms are highly dispersed and fixed to the polymer microsphere, followed by a high-temperature decomposition, for the generation of carbon-based catalyst with a honeycomb-like structure. The as-prepared catalyst contains a large number of Fe/Co nanoparticles (Fe/Co NPs), providing the excellent catalytic activity and durability in oxygen reduction reaction, oxygen evolution reaction and hydrogen evolution reaction. The Zn-air battery assembled by the as-prepared catalyst as air cathode shows a good charge and discharge capacity, and it exhibits an ultra-long service life by maintaining a stable charge and discharge platform for a 311-h cycle. Further X-ray absorption fine structure characterization and density functional theory calculation confirms that the Fe doping optimizes the intermediate adsorption process and electron transfer of Co.

6.
ACS Appl Mater Interfaces ; 14(32): 36515-36526, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35939817

RESUMEN

Metal-organic frameworks (MOFs) and metal halide perovskites are currently under much investigation due to their unique properties and applications. Herein, an innovative strategy has been developed combining an iron-porphyrin MOF, PCN-222(Fe), and an in situ-grown CsCu2I3 nontoxic lead-free halide perovskite based on an earth-abundant metal that becomes incorporated within the MOF channels [CsCu2I3@PCN-222(Fe)]. Encapsulation was designed to decrease and control the particle size and increase the stability of CsCu2I3. The hybrid materials were characterized by various techniques including FE-SEM, elemental mapping and line scanning EDX, TEM, PXRD, UV-Vis DRS, BET surface area, XPS, and photoemission measurements. Hybrid CsCu2I3@PCN-222(Fe) materials were examined as heterogeneous multifunctional (photo)catalysts for copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) and one-pot selective photo-oxidation/Knoevenagel condensation cascade reaction. Interestingly, CsCu2I3@PCN-222(Fe) outperforms not only its individual components CsCu2I3 and PCN-222(Fe) but also other reported (photo)catalysts for these transformations. This is attributed to cooperation and synergistic effects of the PCN-222(Fe) host and CsCu2I3 nanocrystals. To understand the catalytic and photocatalytic mechanisms, control and inhibition experiments, electron paramagnetic resonance (EPR) measurements, and time-resolved phosphorescence were performed, revealing the main role of active species of Cu(I) in the click reaction and the superoxide ion (O2•-) and singlet oxygen (1O2) in the photocatalytic reaction.

7.
Nanotechnology ; 33(13)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34915456

RESUMEN

Developing highly efficient and non-precious materials for Zn-air batteries (ZABs) and supercapacitors (SCs) are still crucial and challenging. Herein, electronic reconfiguration and introducing conductive carbon-based materials are simultaneously conducted to enhance the ZABs and SCs performance of Co2P. We develop a simple and efficient electrospinning technology followed by carbonization process to synthesize embedding Co2P nanoparticles in Cu doping carbon nanofibers (Cu-Co2P/CNFs). As a result, the 7% Cu-Co2P/CNFs presents high oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity (half-wave potential of 0.792 V for ORR, an overpotential of 360 mV for OER). The ZABs exhibit a power density of 230 mW cm-2and excellent discharge-charge stability of 80 h. In addition, the 7% Cu-Co2P/CNFs show the specific capacitance of 558 F g-1at 1 A g-1. Moreover, the 7% Cu-Co2P/CNFs//CNFs asymmetric supercapacitor was assembled applying 7% Cu-Co2P/CNFs electrode and pure CNFs, which exhibits a high energy density (25.9 Wh kg-1), exceptional power density (217.5 kW kg-1) and excellent cycle stability (96.6% retention after 10 000 cycles). This work may provide an effective way to prepared Co2P based materials for ZABs and SCs applications.

8.
Angew Chem Int Ed Engl ; 60(51): 26639-26646, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34617376

RESUMEN

Copper chromite is decorated with iron carbide nanoparticles, producing a magnetically activatable multifunctional catalytic system. This system (ICNPs@Cu2 Cr2 O5 ) can reduce aromatic ketones to aromatic alcohols when exposed to magnetic induction. Under magnetic excitation, the ICNPs generate locally confined hot spots, selectively activating the Cu2 Cr2 O5 surface while the global temperature remains low (≈80 °C). The catalyst selectively hydrogenates a scope of benzylic and non-benzylic ketones under mild conditions (3 bar H2 , heptane), while ICNPs@Cu2 Cr2 O5 or Cu2 Cr2 O5 are inactive when the same global temperature is adjusted by conventional heating. A flow reactor is presented that allows the use of magnetic induction for continuous-flow hydrogenation at elevated pressure. The excellent catalytic properties of ICNPs@Cu2 Cr2 O5 for the hydrogenation of biomass-derived furfuralacetone are conserved for at least 17 h on stream, demonstrating for the first time the application of a magnetically heated catalyst to a continuously operated hydrogenation reaction in the liquid phase.

9.
Nanomaterials (Basel) ; 11(6)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200722

RESUMEN

Au nanoparticles bound to crystalline CeO2 nanograins that were dispersed on the nanoplate-like Mg(OH)2, denoted as Au/CeO2-Mg(OH)2, were developed as the highly active and selective multifunctional heterogeneous catalyst for direct oxidative esterification of aldehydes with alcohols to produce alkyl esters under base-free aerobic conditions using oxygen or air as the green oxidants. Au/CeO2-Mg(OH)2 converted 93.3% of methacrylaldehyde (MACR) to methyl methacrylate (MMA, monomer of poly(methyl methacrylate)) with 98.2% selectivity within 1 h, and was repeatedly used over eight recycle runs without regeneration. The catalyst was extensively applied to other aldehydes and alcohols to produce desirable alkyl esters. Comprehensive characterization analyses revealed that the strong metal-support interaction (SMSI) among the three catalytic components (Au, CeO2, and Mg(OH)2), and the proximity and strong contact between Au/CeO2 and the Mg(OH)2 surface were prominent factors that accelerated the reaction toward a desirable oxidative esterification pathway. During the reaction, MACR was adsorbed on the surface of CeO2-Mg(OH)2, upon which methanol was simultaneously activated for esterifying the adsorbed MACR. Hemiacetal-form intermediate species were subsequently produced and oxidized to MMA on the surface of the electron-rich Au nanoparticles bound to partially reduced CeO2-x with electron-donating properties. The present study provides new insights into the design of SMSI-induced supported-metal-nanoparticles for the development of novel, multifunctional, and heterogeneous catalysts.

10.
ChemSusChem ; 9(17): 2451-9, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27530651

RESUMEN

A multifunctional copolymer (PyPPh2 -SO3 H@porous organic polymers, POPs) was prepared by combining acidic groups and heterogeneous P,N ligands through the copolymerization of vinyl-functionalized 2-pyridyldiphenylphosphine (2-PyPPh2 ) and p-styrene sulfonic acid under solvothermal conditions. The morphology and chemical structure of the copolymer were evaluated using a series of characterization techniques. Compared with traditional homogeneous Pd(OAc)2 /2-PyPPh2 / p-toluenesulfonic acid catalyst, the copolymer supported palladium catalyst (Pd-PyPPh2 -SO3 H@POPs) exhibited higher activity for alkoxycarbonylation of terminal alkynes under the same conditions. This phenomenon could be attributed to the synergistic effect between the single-site Pd centers, 2-PyPPh2 ligands, and SO3 H groups, the outstanding swelling properties as well as the high enrichment of the reactant concentration by the porous catalyst. In addition, the catalyst could be reused at least 4 times without any apparent loss of activity. The excellent catalytic reactivity and good recycling properties make it an attractive catalyst for industrial applications. This work paves the way for advanced multifunctional porous organic polymers as a new type of platform for heterogeneous catalysis in the future.


Asunto(s)
Alquinos/química , Fosfinas/química , Catálisis , Polimerizacion , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA