Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(8): e18742, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37636470

RESUMEN

The primary objective of this research work was to study the antibacterial effects of Cupressus funebris essential oil (EO) against various drug resistant bacterial pathogens along with studying the molecular docking interactions of the major components of the EO with the key bacterial proteins/enzymes. Gas chromatography-mass spectrometry was used to analyse the chemical composition of the Cupressus funebris EO. The initial antibacterial screening was performed by using disc diffusion and microdilution methods. Scanning electron microscopy was also performed in order to study effects of the EO on bacterial cell morphology. Further, molecular docking studies were performed using Autodock Vina and results were visualised by BIOVIA Discovery Studio. The chemical composition of the EO showed the presence of 15 components with citronellal, terpinene-4-ol, α-phellandrene and 1,8-cineole as the major components of the EO. Results indicated that the EO of Cupressus funebris exhibited dose-dependent as well as time dependent antibacterial effects. The scanning electron microscopy indicated that the Cupressus funebris EO led to membrane rupture and permeabilization of the bacterial cells. Molecular docking studies indicated that the major compounds of the EO (citronellal and terpinene-4ol) showed strong interactions with the active site of the bacterial DNA gyrase enzyme explaining the antibacterial mode of action of the EO. Ciprofloxacin was also used for docking which showed stronger interactions with the target protein than citronellal or terpinene-4-ol. In conclusion, the major findings of the current study were that the EO of Cupressus funebris causes bacterial membrane rupture and permeabilization, shows time-dependent and dose-dependent antibacterial action, along with interacting with crucial bacterial enzyme viz., DNA gyrase as indicated by molecular docking studies.

2.
BMC Infect Dis ; 23(1): 11, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609225

RESUMEN

BACKGROUND: The prevalence of resistant hospital infections in the intensive care unit (ICU) increases mortality and antibiotic resistance. COVID-19 pandemic may have unintended impact on nosocomial infections (NI) and the prevalence of resistant microorganism. METHODOLOGY: The present non-interventional study was performed by a pre and a post survey each lasting 8 months before (March-October 2019) and after (March-October 2020) the onset of COVID-19 pandemic in three ICU's, not allocated to COVID-19 patients, in Nemazee Hospital, Shiraz, Iran. The rates of the following nosocomial infections were compared at pre- and post-pandemic period: ventilator associated pneumonia (VAP), central line associated blood stream infection (CLABSI), catheter-associated urinary tract infections (CAUTI) and incidence of multiple drug resistance (MDR) pathogens. RESULTS: Pre-pandemic and pandemic incidence of VAP was 23.5 and 17.2 cases per 1000 device-days, respectively; an absolute decrease of 27%. The main reason for the decrease in the rate of VAP during the pandemic was a significant decrease in the rate of VAP caused by Acinetobacter baumannii; from 39 to 17% in total VAP episodes. The rate of VAP associated with other microorganisms remained relatively unchanged from 14.2 cases in pre-pandemic period to 14.3 cases per 1000 MV-days during the pandemic (P = 0.801). Pre-pandemic incidence of CLABSI was 7.3 cases and, in pandemic period, was 6.5 cases per 1000 device-days (IRR = 0.88, 95% CI 0.43-1.73, P = 0.703). Pre-pandemic incidence of CAUTI was 2 and in pandemic period, was 1.4 cases per 1000 device-days (IRR = 0.70, 95% CI 0.22-1.98, P = 0.469). CONCLUSION: The results of the present study showed a decrease in the incidence of VAP in critically ill non-COVID-19 patients during the pandemic compared to before the pandemic, especially regarding Acinetobacter baumannii.


Asunto(s)
Acinetobacter baumannii , COVID-19 , Infecciones Relacionadas con Catéteres , Infección Hospitalaria , Neumonía Asociada al Ventilador , Infecciones Urinarias , Humanos , Infección Hospitalaria/epidemiología , Pandemias , Incidencia , Estudios Prospectivos , COVID-19/epidemiología , Infecciones Relacionadas con Catéteres/epidemiología , Unidades de Cuidados Intensivos , Neumonía Asociada al Ventilador/epidemiología , Hospitales de Enseñanza , Infecciones Urinarias/epidemiología , Resistencia a Múltiples Medicamentos , Catéteres
3.
Lett Appl Microbiol ; 74(5): 695-706, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35034356

RESUMEN

Antibacterial activities of as-synthesized nanoparticles have gained attention in past few years due to rapid phylogenesis of pathogens developing multi-drug resistance (MDR). Antibacterial activity of copper nanoparticles (CuNPs) on surrogate pathogenic Gram-negative bacteria Escherichia coli (MTCC no. 739) and Proteus vulgaris (MTCC no. 426) was evaluated under culture conditions. Three sets of colloidal CuNPs were synthesized by chemical reduction method with per batch yield of 0·2, 0·3 and 0·4 g. As-synthesized CuNPs possess identical plasmonic properties and have similar hydrodynamic particle sizes (11-14 nm). Antibacterial activities of CuNPs were evaluated by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests, cytoplasmic leakage and reactive oxygen species (ROS) assays. MIC and MBC tests revealed dose dependence bactericidal action. Growth curves of E. coli show faster growth inhibition along with higher cytoplasmic leakage than that of P. vulgaris. This might be because of increased membrane permeability of E. coli. CuNP-microorganism interaction induces oxidative stress generated by ROS. Leakage of cytoplasmic components, loss of membrane permeability and ROS generation are the primary causes of CuNP-induced bacterial cell death. As-synthesized CuNPs exhibiting promising antibacterial activities and could be a promising candidate for novel antibacterial agents.


Asunto(s)
Infecciones por Escherichia coli , Nanopartículas del Metal , Antibacterianos/química , Antibacterianos/farmacología , Bacterias , Cobre/química , Cobre/farmacología , Escherichia coli , Bacterias Gramnegativas , Humanos , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Proteus vulgaris , Especies Reactivas de Oxígeno
4.
Int J Parasitol Drugs Drug Resist ; 17: 107-117, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34492564

RESUMEN

Ancylostoma caninum is the most prevalent nematode parasite of dogs. We confirmed multiple-drug resistance (MDR) in several A. caninum isolates to all anthelmintic drug classes approved for the treatment of hookworms in dogs in the USA. Cases of MDR hookworms appear to be highly overrepresented in greyhounds. The aims of this study were to evaluate the drug-resistant phenotypes and genotypes of the A. caninum infecting greyhounds. Fecal samples from greyhounds of the USA were acquired from two greyhound adoption kennels, one active greyhound racing kennel, and three veterinary practices. Fecal egg counts (FECs) were performed on fecal samples from 219 greyhounds, and despite treatment with anthelmintics, the mean FEC was 822.4 eggs per gram (EPG). Resistance to benzimidazoles and macrocyclic lactones were measured using the egg hatch assay (EHA) and the larval development assay (LDA), respectively. We performed 23 EHA and 22 LDA on either individual or pooled feces, representing 54 animals. Mean and median IC50 and IC95 values for the EHA were 5.3 µM, 3.6 µM, and 24.5 µM, 23.4 µM, respectively. For the LDA, the median IC50 value was >1000 nM. These values ranged 62-81 times higher than our susceptible laboratory isolate. Only post-treatment samples were available. For samples collected <10 days post-treatment with albendazole, moxidectin, or a combination of febantel-pyrantel-moxidectin, the mean FEC were 349, 333, and 835 EPG, respectively. We obtained DNA from hookworm eggs isolated from 70 fecal samples, comprised of 60 individual dogs and 10 pools. Deep sequencing of the isotype 1 ß-tubulin gene only revealed the presence of the F167Y (TTC>TAC) resistance polymorphism in 99% of these samples. These clinical, in vitro, and genetic data provide strong evidence that greyhound dogs in the USA are infected with MDR A. caninum at very high levels in prevalence and infection intensity.


Asunto(s)
Antihelmínticos , Enfermedades de los Perros , Ancylostoma/genética , Ancylostomatoidea , Animales , Antihelmínticos/farmacología , Antihelmínticos/uso terapéutico , Enfermedades de los Perros/tratamiento farmacológico , Enfermedades de los Perros/epidemiología , Perros , Resistencia a Medicamentos , Resistencia a Múltiples Medicamentos , Heces , Recuento de Huevos de Parásitos , Pirantel/uso terapéutico
5.
Asian J Pharm Sci ; 15(5): 646-660, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33193866

RESUMEN

Multiple drug resistance (MDR) is a tough problem in developing hepatocellular carcinoma (HCC) therapy. Here, we developed TPGS-coated cationic liposomes with Bcl-2 siRNA corona to load doxorubicin (Dox) i.e., Bcl-2 siRNA/Dox-TPGS-LPs, to enhance anticancer effect of Dox in HCC-MDR. TPGS i.e., d-α-tocopheryl polyethylene glycol 1000 succinate, inhibited P-glycoprotein (P-gp) efflux pump and Bcl-2 siRNA suppressed anti-apoptotic Bcl-2 protein. The Bcl-2 siRNA loaded in the liposomal corona was observed under transmission electron microscopy. The stability and hemolysis evaluation demonstrated Bcl-2 siRNA/Dox-TPGS-LPs had good biocompatibility and siRNA-corona could protect the liposomal core to avoid the attachment of fetal bovine serum. In drug-resistant cells, TPGS effectively prolonged intracellular Dox retention time and siRNA-corona did improve the internalization of Dox from liposomes. In vitro and in vivo anticancer effect of this dual-functional nanostructure was examined in HCC-MDR Bel7402/5-FU tumor model. MTT assay confirmed the IC50 value of Dox was 20-50 fold higher in Bel7402/5-FU MDR cells than that in sensitive Bel7402 cells. Bcl-2 siRNA corona successfully entered the cytosol of Bel7402/5-FU MDR cells to downregulate Bcl-2 protein levels in vitro and in vivo. Bcl-2 siRNA/Dox-TPGS-LPs showed superior to TPGS- (or siRNA-) linked Dox liposomes in cell apoptosis and cytotoxicity assay in Bel7402/5-FU MDR cells, and 7-fold greater effect than free Dox in tumor growth inhibition of Bel7402/5-FU xenograft nude mice. In conclusion, TPGS-coated cationic liposomes with Bcl-2 siRNA corona had the capacity to inhibit MDR dual-pathways and subsequently improved the anti-tumor activity of the chemotherapeutic agent co-delivered to a level that cannot be achieved by inhibiting a MDR single way.

6.
Artículo en Inglés | MEDLINE | ID: mdl-32403053

RESUMEN

Ancylostoma caninum is the most prevalent intestinal nematode of dogs, and has a zoonotic potential. Multiple-drug resistance (MDR) has been confirmed in a number of A. caninum isolates, including isolate Worthy 4.1F3P, against all anthelmintic drug classes approved for hookworm treatment in dogs in the United States (US). The cyclooctadepsipeptide emodepside is not registered to use in dogs in the US, but in a number of other countries/regions. The objective of this study was to evaluate the efficacy of emodepside + praziquantel, as well as three commercial products that are commonly used in the US for treatment of hookworms, against a suspected (subsequently confirmed) MDR A. caninum isolate Worthy 4.1F3P. 40 dogs infected on study day (SD) 0 with 300 third-stage larvae, were randomly allocated to one of five treatment groups with eight dogs each: pyrantel pamoate (Nemex®-2), fenbendazole (Panacur® C), milbemycin oxime (Interceptor®), emodepside + praziquantel tablets and non-treated control. Fecal egg counts (FEC) were performed on SDs 19, 20, 22, 27, 31 and 34. All treatments were administered as per label requirements on SD 24 to dogs in Groups 1 through 4. Two additional treatments were administered on SDs 25 and 26 to dogs in Group 2 as per label requirements. Dogs were necropsied on SD 34 and the digestive tract was removed/processed for worm recovery and enumeration. The geometric mean (GM) worm counts for the control group was 97.4, and for the pyrantel pamoate, fenbendazole, milbemycin oxime, and emodepside + praziquantel groups were 74.8, 72.0, 88.9, and 0.4, respectively. These yielded efficacies of 23.2%, 26.1%, and 8.8%, and 99.6%, respectively. These data support previous findings of the MDR status of Worthy 4.1F3P as treatments with pyrantel pamoate, fenbendazole and milbemycin oxime lacked efficacy. In sharp contrast, Worthy 4.1F3P was highly susceptible to treatment with emodepside + praziquantel.


Asunto(s)
Ancylostomatoidea , Anquilostomiasis/veterinaria , Antihelmínticos/uso terapéutico , Enfermedades de los Perros/parasitología , Ancylostomatoidea/aislamiento & purificación , Ancylostomatoidea/patogenicidad , Anquilostomiasis/tratamiento farmacológico , Animales , Antihelmínticos/administración & dosificación , Depsipéptidos/administración & dosificación , Depsipéptidos/uso terapéutico , Enfermedades de los Perros/tratamiento farmacológico , Perros , Combinación de Medicamentos , Resistencia a Múltiples Medicamentos , Infecciones por Uncinaria/tratamiento farmacológico , Infecciones por Uncinaria/veterinaria , Intestinos/parasitología , Macrólidos/administración & dosificación , Macrólidos/uso terapéutico , Praziquantel/administración & dosificación , Praziquantel/uso terapéutico , Pirantel/administración & dosificación , Pirantel/uso terapéutico , Resultado del Tratamiento
7.
Int J Mol Sci ; 21(3)2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32046158

RESUMEN

Despite all efforts, the treatment of breast cancer (BC) cannot be considered to be a success story. The advances in surgery, chemotherapy and radiotherapy have not been sufficient at all. Indeed, the accumulated experience clearly indicates that new perspectives and non-main stream approaches are needed to better characterize the etiopathogenesis and treatment of this disease. This contribution deals with how the new pH-centric anticancer paradigm plays a fundamental role in reaching a more integral understanding of the etiology, pathogenesis, and treatment of this multifactorial disease. For the first time, the armamentarium available for the treatment of the different types and phases of BC is approached here from a Unitarian perspective-based upon the hydrogen ion dynamics of cancer. The wide-ranged pH-related molecular, biochemical and metabolic model is able to embrace most of the fields and subfields of breast cancer etiopathogenesis and treatment. This single and integrated approach allows advancing towards a unidirectional, concerted and synergistic program of treatment. Further efforts in this line are likely to first improve the therapeutics of each subtype of this tumor and every individual patient in every phase of the disease.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/metabolismo , Inhibidores de la Bomba de Protones/uso terapéutico , Protones , Animales , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos , Femenino , Humanos , Bombas de Protones/metabolismo , Microambiente Tumoral
8.
FEMS Microbiol Lett ; 366(8)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31077309

RESUMEN

Baseline studies are needed to identify environmental reservoirs of non-pathogenic but associating microbiota or pathogenic bacteria that are resistant to antibiotics and to inform safe use of freshwater ecosystems in urban and agricultural settings. Mesophilic bacteria and Escherichia coli were quantified and isolated from water and sediments of two rivers, one in an urban and one in an agricultural area near Christchurch, New Zealand. Resistance of E. coli to one or more of nine different antibiotics was determined. Additionally, selected strains were tested for conjugative transfer of resistances. Despite having similar concentrations of mesophilic bacteria and E. coli, the rivers differed in numbers of antibiotic-resistant E. coli isolates. Fully antibiotic-susceptible and -resistant strains coexist in the two freshwater ecosystems. This study was the first phase of antibiotic resistance profiling in an urban setting and an intensifying dairy agroecosystem. Antibiotic-resistant E. coli may pose different ingestion and contact risks than do susceptible E. coli. This difference cannot be seen in population counts alone. This is an important finding for human health assessments of freshwater systems, particularly where recreational uses occur downstream.


Asunto(s)
Agricultura , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Ríos/microbiología , Remodelación Urbana , Reservorios de Enfermedades/microbiología , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Nueva Zelanda , Prevalencia , Microbiología del Agua
9.
Recent Pat Antiinfect Drug Discov ; 13(2): 164-179, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29984669

RESUMEN

BACKGROUND: Hospital wastewater has a high amount of both organic and inorganic matter, as well as high densities of living organisms, including pathogenic, and environmental bacteria. It has been suggested that genes encoding resistance to an antibiotic can be located together with heavy metals resistance genes on either the same genetic structure (plasmid) or different genetic structures within the same bacterial strain. Resistance transfer is mainly attributed to conjugation since many antimicrobial resistance genes are situated on mobile elements, such as plasmids and conjugative transposons, whereas renovation and transduction are usually more limited. Our study confirmed the flow of resistance genes between indigenous and foreign organisms and indicated the possibility of resistance transfer from environmental reservoirs to pathogenic strains, which should be underlined in the future. The recent patents on drug resistance (US20030130169, WO/2001/060387, WO/2016/151092) and gene transfer (JP2003189855, JP2010094090), helped in this study. METHODS: Water samples were collected from three different sites of hospital wastewater. Isolation of Gram-negative bacteria from hospital wastewater samples was done using the standard microbial procedure. The heavy metal resistance was determined by the minimum inhibitory concentration (MIC) against the test bacterial strain by spot plate method. The antibiotic resistance was determined by a standard disc diffusion technique. The bacterial resistance transfer studies were determined between donor and recipient strain in nutrient as well as wastewater. The antibiogram and MIC of the donors and transconjugants were studied by above-described methods. RESULTS: A high number of Gram-Negative Bacterial Isolates (GNB) exhibited antibiotic and metal resistance transfer into E. coli K-12 and similar GNB isolates in nutrient broth as compared to wastewater. The microbial conjugation experiments showed that a high percentage of multi-resistant GNB (75% and 66%) was able to transfer their single or multidrug resistance patterns to E. coli K-12 among antibiotic while 58%, 66% of the multiresistant isolates were able to transfer their single or multi-metal resistance patterns to E. coli K-12 among metal in nutrient medium and wastewater, respectively. In the present conjugation study, 97.5% and 70% of the total tested GNB isolates were able to transfer an antibiotic-resistant marker to recipient GNB in both the medium (nutrient medium and wastewater), whereas 92.5% and72.5% of the isolates were able to transfer metal resistant marker to recipient GNB in nutrient medium and wastewater from all the site tested. The higher (6.8x10-1 and 5.9x10-1) frequency of transfer was observed among antibiotic and metal while the lower frequency of transfer was (7.0x10-3 and 2.0x10-3) exhibited against antibiotic and metal in both the medium from the entire site tested, respectively. CONCLUSION: We can recommend that the hospital water is heavily polluted with several types of antibiotics, toxic metals as well as the potentially hazardous bacterial flora because of their capacity to resist one or the other well known antibiotic and chemotherapeutic agents. These studies provide evidence that a wide variety of clinically important antibiotic and metal resistance genes is mobile within aquatic bacterial communities one step ahead of the above, we can envisage the alarming situation prevailing in our system and surrounding in the light of transmissible nature of R-plasmids.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Bacterias Gramnegativas/fisiología , Metales Pesados/farmacología , Aguas Residuales/microbiología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Flujo Génico , Transferencia de Gen Horizontal , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/aislamiento & purificación , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/microbiología , Hospitales , Humanos , India , Eliminación de Residuos Sanitarios , Metales Pesados/uso terapéutico , Pruebas de Sensibilidad Microbiana , Patentes como Asunto , Plásmidos/genética
10.
Cancers (Basel) ; 7(4): 2063-82, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26501324

RESUMEN

Early detection and improved therapies for many cancers are enhancing survival rates. Although many cytotoxic therapies are approved for aggressive or metastatic cancer; response rates are low and acquisition of de novo resistance is virtually universal. For decades; chemotherapeutic treatments for cancer have included anthracyclines such as Doxorubicin (DOX); and its use in aggressive tumors appears to remain a viable option; but drug resistance arises against DOX; as for all other classes of compounds. Our recent work suggests the anticoagulant protein Tissue Factor Pathway Inhibitor 1α (TFPI1α) plays a role in driving the development of multiple drug resistance (MDR); but not maintenance; of the MDR state. Other factors; such as the ABC transporter drug efflux pumps MDR-1/P-gp (ABCB1) and BCRP (ABCG2); are required for MDR maintenance; as well as development. The patient population struggling with therapeutic resistance specifically requires novel treatment options to resensitize these tumor cells to therapy. In this review we discuss the development, maintenance, and reversal of MDR as three distinct phases of cancer biology. Possible means to exploit these stages to reverse MDR will be explored. Early molecular detection of MDRcancers before clinical failure has the potential to offer new approaches to fightingMDRcancer.

11.
Transl Cancer Res ; 2(4): 309-319, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24634853

RESUMEN

Recent studies delineate a predominant role for the tumor microenvironment in tumor growth and progression. Improved knowledge of cancer biology and investigation of the complex functional interrelation between the cellular and noncellular compartments of the tumor microenvironment have provided an ideal platform for the evolution of novel cancer nanotherapies. In addition, multifunctional "smart" nanoparticles carrying imaging agents and delivering multiple drugs targeted preferentially to the tumor/tumor microenvironment will lead to early diagnosis and better treatment for patients with cancer. The emerging knowledge of the tumor microenvironment has enabled rational designing of nanoparticles for combinatorial treatment strategies that include radiotherapy, antiangiogenesis and chemotherapy. This multimodality approach is thus expected to achieve therapeutic efficacy and enhance the quality of life of cancer patients. This review highlights the unique characteristics of the tumor microenvironment that are exploited by nanotechnology to develop novel drug delivery systems aimed to target the tumor/tumor microenvironment.

12.
Bioinformation ; 6(3): 107-10, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21584185

RESUMEN

Visceral Leishmaniasis is a macrophage associated disorder for the treatment of which antimony based drugs like SAG and SSG were the first choice in the recent past. The clinical value of antimony therapy is now declined against VL because increasing cases of Sodium Antimony Gluconate (SAG) resistance have reached outstanding proportion in Bihar, India. Within this context we looked into the protein sequences of ABC transporters of Leishmania spp associated with Visceral Leishmaniasis that are known to play a crucial role in the development of multidrug resistance (MDR). Our studies consisting of ClustalW, Phylogeny and TCOFFEE have pinpointed that ABC transporters have enormously diverged during the process of evolution even within the identical species strains resulting in insignificant homology and subdued conservation amongst the aminoacid residues. Moreover these amino acid residues remain susceptible to mutations in evolutionary era as indicated by high frequency of variations by the variability studies. Hence we predict that during the process of evolution a series of frequent mutations might have led to changes in the ABC transporters favorable to effluxing the drug thereby making the Leishmania species prone to resistance against the efficient first line drug SAG, used for combating VL. This selection has made them to survive efficiently in the adverse circumstances of antimony based antileishmanial therapy regime.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA