Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Redox Biol ; 72: 103082, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38527399

RESUMEN

The explosive compound 2,4,6-trinitrotoluene (TNT) is well known as a major component of munitions. In addition to its potential carcinogenicity and mutagenicity in humans, recent reports have highlighted TNT toxicities in diverse organisms due to its occurrence in the environment. These toxic effects have been linked to the intracellular metabolism of TNT, which is generally characterised by redox cycling and the generation of noxious reactive molecules. The reactive intermediates formed, such as nitroso and hydroxylamine compounds, also interact with oxygen molecules and cellular components to cause macromolecular damage and oxidative stress. The current review aims to highlight the crucial role of TNT metabolism in mediating TNT toxicity, via increased generation of reactive oxygen species. Cellular proliferation of reactive species results in depletion of cellular antioxidant enzymes, DNA and protein adduct formation, and oxidative stress. While TNT toxicity is well known, its ability to induce oxidative stress, resulting from its reductive activation, suggests that some of its toxic effects may be caused by its reactive metabolites. Hence, further research on TNT metabolism is imperative to elucidate TNT-induced toxicities.


Asunto(s)
Estrés Oxidativo , Especies Reactivas de Oxígeno , Trinitrotolueno , Trinitrotolueno/metabolismo , Trinitrotolueno/toxicidad , Humanos , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Activación Metabólica , Animales , Sustancias Explosivas/metabolismo , Sustancias Explosivas/toxicidad , Oxidación-Reducción
2.
Sci Total Environ ; 912: 169184, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38092196

RESUMEN

Nitroguanidine (NQ) is a component of newly developed insensitive munition (IM) formulations which are more resistant to impact, friction, heat, or sparks than conventional explosives. NQ is also used to synthesize various organic compounds and herbicides, and has both human and environmental health impacts. Despite the wide application and associated health concerns, limited information is known regarding NQ biodegradation, and only one NQ-degrading pure culture identified as Variovorax strain VC1 has been characterized. Here, we present results for three new NQ-degrading bacterial strains isolated from soil, sediment, and a lab-scale aerobic membrane bioreactor (MBR), respectively. Each of these strains -utilizes NQ as a nitrogen (N) source rather than as a source of carbon or energy. The MBR strain, identified as Pseudomonas extremaustralis strain NQ5, is capable of degrading NQ at a rate of approximately 150 µmole L-1 h-1 under aerobic conditions with glucose as a sole carbon source - and NQ as a sole N source. The addition of NH4+ to strain NQ5 during active growth with NQ as a sole N source slowed the growth rate for several hours, and the strain released NH4+, presumably from NQ. When NO3- was added as an alternate N source under similar conditions, the NO3- was not consumed, but NH4+ release into the culture medium was again observed. Strain NQ5 was also able to utilize guanylurea, guanidine, and ethyl allophanate as N sources, and - tolerate salt concentrations as high as 4 % (as NaCl). The other two stains, NQ4 and NQ7, both identified as Arthrobacter spp., grew significantly slower than strain NQ5 under similar culture conditions and tolerated only ∼1 % NaCl. In addition, neither strain NQ4 nor strain NQ7 was able to degrade guanlyurea or ethyl allophanate, but each degraded guanidine. These strains, particularly strain NQ5, may have practical applications for in-situ and ex-situ NQ bioremediation.


Asunto(s)
Guanidinas , Cloruro de Sodio , Urea/análogos & derivados , Humanos , Guanidinas/metabolismo , Biodegradación Ambiental , Carbono
3.
Environ Sci Technol ; 57(48): 20169-20181, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37933956

RESUMEN

Submerged munitions from World War I and II are threatening human activities in the oceans, including fisheries and shipping or the construction of pipelines and offshore facilities. To avoid unforeseen explosions, remotely controlled "blast-in-place" (BiP) operations are a common practice worldwide. However, after underwater BiP detonations, the toxic and carcinogenic energetic compounds (ECs) will not completely combust but rather distribute within the marine ecosphere. To shed light on this question, two comparable World War II mines in Denmark's Sejerø Bay (Baltic Sea) were blown up by either low-order or high-order BiP operations by the Royal Danish Navy. Water and sediment samples were taken before and immediately after the respective BiP operation and analyzed for the presence of ECs with sensitive GC-MS/MS and LC-MS/MS technology. EC concentrations increased after high-order BiP detonations up to 353 ng/L and 175 µg/kg in water and sediment, respectively, while low-order BiP detonations resulted in EC water and sediment concentrations up to 1,000,000 ng/L (1 mg/L) and >10,000,000 µg/kg (>10 g/kg), respectively. Our studies provide unequivocal evidence that BiP operations in general lead to a significant increase of contamination of the marine environment and ecotoxicological risk with toxic ECs. Moreover, as compared to high-order BiP detonations, low-order BiP detonations resulted in a several 1000-fold higher burden on the marine environment.


Asunto(s)
Explosiones , Contaminantes Químicos del Agua , Humanos , Espectrometría de Masas en Tándem , Cromatografía Liquida , Océanos y Mares , Agua , Contaminantes Químicos del Agua/toxicidad
4.
Chemosphere ; 340: 139887, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37604336

RESUMEN

New energetic formulations containing insensitive high explosives (IHE), such as 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazole-5-one (NTO), and nitroguanidine (NQ) are being developed to provide safer munitions. The addition of IHE to munitions formulations results in complex wastewaters from explosives manufacturing, load and pour operations and demilitarization activities. New technologies are required to treat those wastewaters. The core objective of this research effort was to develop and optimize a dual anaerobic-aerobic membrane bioreactor (MBR) system for treatment of wastewater containing variable mixtures of traditional energetics, IHE, and anions. The combined system proved highly effective for treatment of traditional explosives (TNT, RDX, HMX), IHE (DNAN, NTO, NQ) and anions commonly used as military oxidants (ClO4-, NO3-). The anaerobic MBR, which was operated for more than 500 d, was observed to completely degrade mg L-1 concentrations of TNT, DNAN, ClO4- and NO3- under all operational conditions, including at the lowest hydraulic residence time (HRT) tested (2.2 d). The combined system generally resulted in complete treatment of mg L-1 concentrations of RDX and HMX to <20 µg L-1, with most of the degradation occurring in the anaerobic MBR and polishing in the aerobic system. No common daughter products of DNAN, TNT, RDX, or HMX were detected in the effluent. NTO was completely transformed in the anaerobic MBR, but residual 3-amino-1,2,4-triazole-5-one (ATO) was detected in system effluent. The ATO rapidly decomposed when bleach solution was added to the final effluent. NQ was initially recalcitrant in the system, but microbial populations eventually developed that could degrade >90% of the ∼10 mg L-1 NQ entering the anaerobic MBR, with the remainder degraded to <50 µg L-1 in the aerobic system. The dual MBR system proved to be capable of complete degradation of a wide mixture of munitions constituents and was resilient to changing influent composition.


Asunto(s)
Sustancias Explosivas , Anaerobiosis , Aguas Residuales , Membranas , Reactores Biológicos
5.
Microbiol Resour Announc ; 12(9): e0046723, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37477431

RESUMEN

We report the draft genome sequences of Pseudomonas extremaustralis NQ5, Arthrobacter strain NQ4, and Arthrobacter strain NQ7 isolated from a laboratory-scale membrane bioreactor, soils from San Antonio, TX, USA and sediments from Galveston Bay, TX, USA, respectively. These bacteria degrade the explosive compound nitroguanidine, which is present in some insensitive munitions.

6.
Chemosphere ; 335: 139121, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37271465

RESUMEN

3-Nitro-1,2,4-triazol-5-one (NTO) is an ingredient of new safer-to-handle military insensitive munitions formulations. NTO can be microbially reduced to 3-amino-1,2,4-triazol-5-one (ATO) under anaerobic conditions if an electron donor is available. Conversely, ATO can undergo aerobic biodegradation. Previously, our research group developed an anaerobic enrichment culture that reduces NTO to ATO. A second culture could aerobically mineralize ATO. This study aimed to combine anaerobic/aerobic conditions within a down-flow perlite/soil column for simultaneous NTO reduction and ATO oxidation. Acetate biostimulation was investigated to promote oxygen depletion and create anaerobic micro-niches for NTO reduction, whereas perlite increased soil porosity and oxygen convection, allowing ATO oxidation. Two columns packed with a perlite/soil mixture (70:30, wet wt.%) or 100% perlite were operated aerobically and inoculated with the NTO- and ATO-degrading cultures. Initially, the influent consisted of ∼280 µM ATO, and after 30 days, the feeding was switched to ∼260 µM NTO and ∼250 µM acetate. By progressively increasing acetate from 250 to 4000 µM, the NTO removal gradually improved in both columns. The perlite/soil column reached a 100% NTO removal after 4000 µM acetate was supplemented. Additionally, there was no ATO accumulation, and inorganic nitrogen was produced, indicating ATO mineralization. Although NH4+ was produced following ATO oxidation, most nitrogen was recovered as NO3- likely via nitrification reactions. Microbial community analysis revealed that phylotypes hosted in the enrichment cultures specialized in NTO reduction (e.g., Geobacter) and ATO oxidation (e.g., Hydrogenophaga, Ramlibacter, Terrimonas, and Pseudomonas) were established in the columns. Besides, the predominant genera (Azohydromonas, Zoogloea, and Azospirillum) are linked to nitrogen cycling by performing nitrogen fixation, NO3- reduction, and nitroaromatics degradation. This study applied a bulking agent (perlite) and acetate biostimulation to achieve simultaneous NTO reduction and ATO oxidation in a single column. Such a strategy can assist with real-world applications of NTO and ATO biodegradation mechanisms.


Asunto(s)
Nitrocompuestos , Suelo , Biodegradación Ambiental , Nitrocompuestos/metabolismo , Nitrógeno/metabolismo
7.
Ecotoxicol Environ Saf ; 262: 115116, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37315364

RESUMEN

During the 20th century, thousands of tons of munitions containing organoarsenic chemical warfare agents (CWAs) were dumped into oceans, seas and inland waters around the world. As a result, organoarsenic CWAs continue to leak from corroding munitions into sediments and their environmental concentrations are expected to peak over the next few decades. There remains, however, a lack of knowledge about their potential toxicity to aquatic vertebrates, such as fish. The aim of this study was to fill in this gap in research, by investigating the acute toxicity of organoarsenic CWAs on fish embryos, using the model species, Danio rerio. To estimate the acute toxicity thresholds of organoarsenic CWAs (Clark I, Adamsite, PDCA), a CWA-related compound (TPA), as well as four organoarsenic CWA degradation products (Clark I[ox], Adamsite[ox], PDCA[ox], TPA[ox]), standardized tests were performed following the OECD no. 236 Fish Embryo Acute Toxicity Test guidelines. Additionally, the detoxification response in D. rerio embryos was investigated by analysing the mRNA expression of five genes encoding antioxidant enzymes (CAT, SOD, GPx, GR and GST). During the 96 h of exposure, organoarsenic CWAs induced lethal effects in D. rerio embryos at very low concentrations (classified as 1st category pollutants according to GHS categorization), and were therefore deemed to be serious environmental hazards. Although TPA and the four CWA degradation products caused no acute toxicity even at their maximum solubility, the transcription of antioxidant-related genes was altered upon exposure to these compounds, indicating the need for further testing for chronic toxicity. Incorporating the results of this study into ecological risk assessments will provide a more accurate prediction of the environmental hazards posed by CWA-related organoarsenicals.

8.
Hist Sci ; 61(4): 546-560, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37264632

RESUMEN

In the early twentieth century, scientific innovations permanently changed international warfare. As chemicals traveled out of laboratories into factories and military locations, war became waged at home as well as overseas. Large numbers of women were employed in munitions factories during the First World War, but their public memories have been overshadowed by men who died on battlefields abroad; they have also been ignored in traditional histories of chemistry that focus on laboratory-based research. Mostly young and poorly educated, but crucial for Britain's military success, these female workers were subjected to procedures of social regulation and consigned to carrying out dangerous chemical procedures causing chronic illness or death; in particular, when TNT died their skin yellow, they were colloquially known as 'canaries.'


Asunto(s)
Personal Militar , Primera Guerra Mundial , Animales , Masculino , Femenino , Humanos , Canarios , Personal Militar/historia
9.
Toxics ; 11(4)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37112574

RESUMEN

Submerged munitions are present in marine waters across the globe. They contain energetic compounds (ECs), such as TNT and metabolites thereof, which are considered carcinogenic, exhibit toxic effects in marine organisms, and may affect human health. The aim of this study was to investigate the occurrence of ECs and their trends in blue mussels from the annual collections of the German Environmental Specimen Bank sampled over the last 30 years at three different locations along the coastline of the Baltic and North Sea. Samples were analyzed by GC-MS/MS for 1,3-dinitrobenzene (1,3-DNB), 2,4-dinitrotoluene (2,4-DNT), 2,4,6-trinitrotoluene (TNT), 2-amino-4,6-dinitrotoluene (2-ADNT), and 4-amino-2,6-dinitrotoluene (4-ADNT). The first signals indicating trace levels of 1,3-DNB were observed in samples from 1999 and 2000. ECs were also found below the limit of detection (LoD) in subsequent years. From 2012 onwards, signals just above the LoD were detected. The highest signal intensities of 2-ADNT and 4-ADNT, just below the LoQ (0.14 ng/g d.w. and 0.17 ng/g d.w., respectively), were measured in 2019 and 2020. This study clearly shows that corroding submerged munitions are gradually releasing ECs into the waters that can be detected in randomly sampled blue mussels, even though the concentrations measured are still in the non-quantifiable trace range.

10.
Toxics ; 11(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36977003

RESUMEN

After World War II, large amounts of ammunition were dumped in surface waters worldwide, potentially releasing harmful and toxic compounds to the environment. To study their degradation, ammunition items dumped in the Eastern Scheldt in The Netherlands were surfaced. Severe damage due to corrosion and leak paths through the casings were observed, making the explosives in the ammunition accessible to sea water. Using novel techniques, the concentrations of ammunition-related compounds in the surrounding seabed and in the seawater were analyzed at 15 different locations. In the direct vicinity of ammunition, elevated concentrations of ammunition-related compounds (both metals and organic substances) were found. Concentrations of energetic compounds ranged from below the limit of detection (LoD) up to the low two-digit ng/L range in water samples, and from below the LoD up to the one-digit ng/g dry weight range in sediment samples. Concentrations of metals were found up to the low microgram/L range in water and up the low ng/g dry weight in sediment. However, even though the water and sediment samples were collected as close to the ammunition items as possible, the concentrations of these compounds were low and, as far as available, no quality standards or limits were exceeded. The presence of fouling, the low solubility of the energetic compounds, and dilution by the high local water current were concluded to be the main causes for the absence of high concentrations of ammunition-related compounds. As a conclusion, these new analytical methods should be applied to continuously monitor the Eastern Scheldt munitions dump site.

11.
Sci Total Environ ; 866: 161434, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36623648

RESUMEN

Insensitive munition constituents derived from residues of low order detonations and deposited on military training grounds present environmental risks. A series of rainfall simulation experiments on small soil plots examined the effect of precipitation, soil properties, and particle size on transport of IMX-104 munition components: NTO (3-nitro-1,2,4-triazol-5-one), DNAN (2,4-dinitroanisole), RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), and HMX (octahydro-1,3,5,7- tertranitro-1,3,5,7-tetrazocine). The primary pathways for rainfall driven transport were subsurface infiltration, off-site transport in solution, and transport in solid form including re-adsorption onto soil particles. The transport was solubility dependent with NTO moving mostly in solution, which was dominated by either runoff or infiltration depending on soil. DNAN, RDX, and HMX, were transported primarily in particulate form. The fine energetic fraction (<2 mm) showed the highest mobility, while the coarsest fraction (>4.75 mm) remained in-situ after rainfall. A simple linear model relating energetics transport with sediment yield and energetics particle size and was proposed. These findings provide the first comprehensive mass balance of munition constituents as affected by overland flow under rainfall. They improve our understanding of environmental fate of munitions, can further be used for predictive modelling, developing mitigation strategies, and regulatory compliance.

12.
Water Res ; 229: 119496, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36535085

RESUMEN

Nitroguanidine (NQ) is a constituent of gas generators for automobile airbags, smokeless pyrotechnics, insecticides, propellants, and new insensitive munitions formulations applied by the military. During its manufacture and use, NQ can easily spread in soils, ground, and surface waters due to its high aqueous solubility. Very little is known about the microbial biotransformation of NQ. This study aimed to elucidate important mechanisms operating during NQ anaerobic biotransformation. To achieve this goal, we developed an anaerobic enrichment culture able to reduce NQ to nitrosoguanidine (NsoQ), which was further abiotically transformed to cyanamide. Effective electron donors for NQ biotransformation were lactate and, to a lesser extent, pyruvate. The results demonstrate that the enrichment process selected a sulfate-reducing culture that utilized lactate as its electron donor and sulfate as its electron acceptor while competing with NQ as an electron sink. A unique property of the culture was its requirement for exogenous nitrogen (e.g., from yeast extract or NH4Cl) for NQ biotransformation since NQ itself did not serve as a nitrogen source. The main phylogenetic groups associated with the NQ-reducing culture were sulfate-reducing and fermentative bacteria, namely Cupidesulfovibrio oxamicus (63.1% relative abundance), Dendrosporobacter spp. (12.0%), and Raoultibacter massiliens (10.9%). The molecular ecology results corresponded to measurable physiological properties of the most abundant members. The results establish the conditions for NQ anaerobic biotransformation and the microbial community associated with the process, improving our present comprehension of NQ environmental fate and assisting the development of NQ remediation strategies.


Asunto(s)
Nitrógeno , Triazoles , Anaerobiosis , Filogenia , Biotransformación
13.
Sci Total Environ ; 857(Pt 1): 159324, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36216058

RESUMEN

In addition to endangering sea traffic, cable routes, and wind farms, sunken warship wrecks with dangerous cargo, fuel, or munitions on board may emerge as point sources for environmental damage. Energetic compounds such as TNT (which could leak from these munitions) are known for their toxicity, mutagenicity, and carcinogenicity. These compounds may cause potential adverse effects on marine life via contamination of the marine ecosystem, and their entry into the marine and human food chain could directly affect human health. To ascertain the impending danger of an environmental catastrophe posed by sunken warships, the North Sea Wrecks (NSW) project (funded by the Interreg North Sea Region Program) was launched in 2018. Based on historical data (derived from military archives) including the calculated amount of munitions still on board, its known location and accessibility, the German World War II ship "Vorpostenboot 1302" (former civilian name - "JOHN MAHN") was selected as a case study to investigate the leakage and distribution of toxic explosives in the marine environment. The wreck site and surrounding areas were mapped in great detail by scientific divers and a multibeam echosounder. Water and sediment samples were taken in a cross-shaped pattern around the wreck. To assess a possible entry into the marine food chain, caged mussels were exposed at the wreck, and wild fish (pouting), a sedentary species that stays locally at the wreck, were caught. All samples were analyzed for the presence of TNT and derivatives thereof by GC-MS/MS analysis. As a result, we could provide evidence that sunken warship wrecks emerge as a point source of contamination with nitroaromatic energetic compounds leaking from corroding munitions cargo still on board. Not only did we find these explosive substances in bottom water and sediment samples around the wreck, but also in the caged mussels as well as in wild fish living at the wreck. Fortunately so far, the concentrations found in mussel meat and fish filet were only in the one-digit ng per gram range thus indicating no current concern for the human seafood consumer. However, in the future the situation may worsen as the corrosion continues. From our study, it is proposed that wrecks should not only be ranked according to critical infrastructure and human activities at sea, but also to the threats they pose to the environment and the human seafood consumer.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Animales , Humanos , Ecosistema , Segunda Guerra Mundial , Fuentes Generadoras de Energía , Espectrometría de Masas en Tándem , Viento , Peces , Agua/análisis , Contaminantes Químicos del Agua/análisis
14.
Integr Environ Assess Manag ; 19(2): 376-381, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35983736

RESUMEN

Considered contaminants of emerging concern, per- and polyfluoroalkyl substances (PFAS) are a class of toxic, manufactured chemicals found in commercial and consumer products such as nonstick cookware, food packaging, and firefighting foams. Human exposure to PFAS through inhalation and ingestion can cause a variety of harmful effects and negative health outcomes. Per- and polyfluoroalkyl substances possess high polarity and chemical stability, enabling them to resist degradation in most environmental conditions. These characteristics allow PFAS to be mobile in soil, air, and water, and bioaccumulate in living organisms. Due to their thermally resistant chemical properties, PFAS are used as binders in polymer-bonded explosives (PBX) and in various components of munitions. Thus, when munitions are detonated, PFAS are released into the environment as aerosols and can deposit in the soil, surface water, or biota. Air emission modeling suggests that ground-level and airborne detonation of munitions can increase PFAS deposition both locally and long range. Further, if industrial facilities with PFAS are damaged or destroyed, there is greater potential for environmental degradation from increased release of PFAS into the environment. As a consequence of their persistent nature, PFAS can remain in an environment long after armed conflict, indirectly affecting ecosystems, food sources, and human health. The toxic contamination from munitions could present a greater hazard to a larger population over time than acute detonation events. This article discusses methods for estimating war-related damage from PFAS by exploring predictive modeling approaches and postwar ground validation techniques. Integr Environ Assess Manag 2023;19:376-381. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Agua Potable , Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Fluorocarburos/análisis , Ecosistema , Ucrania , Contaminantes Químicos del Agua/análisis , Agua Potable/análisis , Suelo
15.
Mar Pollut Bull ; 185(Pt A): 114311, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36343545

RESUMEN

Mercury fulminate (HgFu) was used as an initial detonator for World War I and II munitions. Its presence in previously discarded and dumped munitions could potentially supply mercury pollution into coastal ecosystems where bygone weaponries reside. There is evidence that historical munitions have already contributed mercury pollution in coastal environments, and millions remain embedded in sediments and subjected to further weakening via corrosion under environmental conditions. Experiments were undertaken assessing HgFu dissolution under varying temperature and salinity conditions to constrain controls on mercury release into marine environments. Our results show that HgFu discharge is strongly temperature dependent, with dissolution rate constants increasing from ∼0.4 mg cm-2 d-1 at 5 °C to ∼2.7 mg cm-2 d-1 at 30 °C. No significant differences were observed between freshwater and seawaters up to 36 psu, except at 5 °C. These experiments provide a basis for modeling HgFu release from underwater munitions and its dynamics in coastal environments.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Salinidad , Temperatura , Ecosistema , Solubilidad , Contaminantes Químicos del Agua/análisis , Mercurio/análisis , Agua de Mar
16.
Trauma Case Rep ; 42: 100733, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36386427

RESUMEN

Over the past twenty years, "less-lethal" munitions have caused a variety of significant, life-threatening injuries. However, evidence of blunt cardiac injury due to these weapons is sparse. A healthy 44-year old man presented with hemodynamic instability due to cardiac tamponade after he was shot with a beanbag, ultimately requiring operative intervention. This case report describes a unique clinical presentation of blunt cardiac injury and the diagnostic and therapeutic steps that the trauma surgery team took to appropriately manage this rare injury.

17.
Toxics ; 10(11)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36422895

RESUMEN

The Baltic and North Seas still contain large amounts of dumped munitions from both World Wars. The exposure of the munition shells to the seawater causes corrosion, which leads to the disintegration of shells and a leakage of energetic compounds, including the highly toxic 2,4,6-trinitrotoluene (TNT), and consequently threatening the marine environment. To evaluate the risk of accumulation of energetic compounds from conventional munitions in the marine food chain, we analyzed the presence of TNT and its metabolites 2-amino-4,6-dinitrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT) as well as their byproducts 1,3-dinitrobenzene (1,3-DNB) and 2,4-dinitrotoluene (2,4-DNT) in different tissues (including muscle, liver, kidney, brain, and bile) from 25 Common Eiders (Somateria mollissima) from the Danish Baltic Sea. Tissues were prepared according to approved protocols, followed by GC-MS/MS analysis. None of the aforementioned energetic compounds were detected in any of the samples. This pilot study is one of the first analyzing the presence of explosive chemicals in tissues from a free-ranging predatory species. This study highlights the need for continuous monitoring at different levels of the trophic chain to increase our knowledge on the distribution and possible accumulation of energetic compounds in the marine environment in order to provide reliable data for decision-making tools and risk assessments.

18.
J Hazard Mater ; 436: 129215, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739737

RESUMEN

The explosive 3-nitro-1,2,4-triazol-5-one (NTO) presents a physiochemical challenge for treatment of munitions wastewater. Leveraging NTO's ionic character in neutral pH wastewater allows for expanded treatment options. Four commercial drinking water anion exchange resins specific for NO3- and ClO4- were evaluated for NTO adsorption extent, adsorption kinetics, and regeneration potential. Batch studies demonstrated NTO adsorption to all resins tested (max 690 mg NTO/g resin) and that resins were regenerable with 6% NaCl. Adsorption capacities (88-99%) and desorption efficiencies (80-85%) of NTO from the resins remained stable over three loading cycles. Perchlorate selective resins adsorbed more NTO, with larger desorption efficiencies, than nitrate selective resins. Kinetic experiments demonstrated that equilibrium adsorption between NTO and resins occurs within 120 min of exposure, following the pseudo second-order model (K2 range 9.8 × 10-5 to 15 × 10-5 g resin/mg NTO/min). Intraparticle diffusion modeling suggested that boundary-layer diffusion was the predominant sorption mechanism in NTO adsorption to the resins compared to intraparticle diffusion. In synthetic wastewater mixtures of NTO, 2-4-dinitroanisole (DNAN), nitroguanidine (NQ), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), only NTO was exchanged to any great extent. This work suggests that perchlorate anion exchange resins may be a viable segregation technology for NTO from munitions wastewater as compared to activated carbon.


Asunto(s)
Percloratos , Aguas Residuales , Adsorción , Resinas de Intercambio Aniónico , Anisoles , Intercambio Iónico , Nitrocompuestos , Triazoles
19.
Environ Sci Technol ; 56(13): 9387-9397, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35704431

RESUMEN

Insensitive munitions compounds (IMCs) are emerging nitroaromatic contaminants developed by the military as safer-to-handle alternatives to conventional explosives. Biotransformation of nitroaromatics via microbial respiration has only been reported for a limited number of substrates. Important soil microorganisms can respire natural organic matter (NOM) by reducing its quinone moieties to hydroquinones. Thus, we investigated the NOM respiration combined with the abiotic reduction of nitroaromatics by the hydroquinones formed. First, we established nitroaromatic concentration ranges that were nontoxic to the quinone respiration. Then, an enrichment culture dominated by Geobacter anodireducens could indirectly reduce a broad array of nitroaromatics by first respiring NOM components or the NOM surrogate anthraquinone-2,6-disulfonate (AQDS). Without quinones, no nitroaromatic tested was reduced except for the IMC 3-nitro-1,2,4-triazol-5-one (NTO). Thus, the quinone respiration expanded the spectrum of nitroaromatics susceptible to transformation. The system functioned with very low quinone concentrations because NOM was recycled by the nitroaromatic reduction. A metatranscriptomic analysis demonstrated that the microorganisms obtained energy from quinone or NTO reduction since respiratory genes were upregulated when AQDS or NTO was the electron acceptor. The results indicated microbial NOM respiration sustained by the nitroaromatic-dependent cycling of quinones. This process can be applied as a nitroaromatic remediation strategy, provided that a quinone pool is available for microorganisms.


Asunto(s)
Hidroquinonas , Microbiología del Suelo , Benzoquinonas , Oxidación-Reducción , Quinonas , Respiración
20.
Prehosp Disaster Med ; 37(3): 417-420, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35481817

RESUMEN

INTRODUCTION: In March 2021, a series of explosions shook a military base in Bata, Equatorial Guinea. As a response to government officials' request, the Israel Defense Forces Medical Corps (IDF-MC) deployed an emergency aid team that faced two major challenges: (1) understanding the scenario, the injury patterns, and the needs of the local medical system; and (2) minimizing the coronavirus disease 2019 (COVID-19) outbreak threats. This report describes the team design, the activities performed before and during the deployment, analyzes the pathology encountered, and shares lessons learned from the mission. SOURCES: Data were collected from the delegation protocols and IDF medical records. All activities of the Israeli delegation were coordinated with the local government. OBSERVATIONS: The local authorities reported that a total of 107 people were killed and more than 700 people were wounded. The team was the first international team to arrive at the scene and assisted the local medical teams to treat 231 patients in the three local hospitals and 213 patients in field clinics in the villages surrounding Bata. The COVID-19 pandemic influenced the operation of this mission, and caution measures were activated. ANALYSIS: Unplanned explosions at munitions sites (UEMS) are a growing problem causing the medical teams to face unique challenges. By understanding the expected challenges, the team was reinforced with a plastic surgeon, portable ultrasound devices, a large amount and a variety of antibiotics, whole blood units, and freeze-dried plasma. Rehabilitation experts were needed in some cases in the week following the injury. An important key for the success of this kind of medical aid delegation is the collaboration with the local medical teams, which enhances patient care.


Asunto(s)
COVID-19 , Misiones Médicas , Sistemas de Socorro , COVID-19/epidemiología , Guinea Ecuatorial/epidemiología , Humanos , Israel , Pandemias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...