Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Matrix Biol ; 110: 91-105, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35504439

RESUMEN

Epidermolysis bullosa (EB), a phenotypically and genetically heterogeneous disorder, has been linked to mutations in the genes encoding structural proteins that reinforce skin integrity via dermal-epidermal adhesion. Breakdowns in these adhesion mechanisms result in four different subtypes of EB classified on the basis of the level of tissue separation within the cutaneous basement membrane zone (BMZ). Mutations in as many as 17 distinct genes that encode structural proteins in the BMZ have been linked to EB. Despite the clinical and histopathological confirmation of EB, many cases remain genetically unsolved. Technical advancements in next-generation sequencing have paved the way for the identification of genes involved in the pathophysiology of EB. Structural proteins have long been identified as the candidate molecules altered in EB, however, recently non-structural proteins, encoded for example by PLOD3, USB1, EXPH5, and KLHL24, involved in enzymatic modification or migration of structural proteins have been implicated. In this overview, we discuss recent work regarding these proteins vis-à-vis their function, associated clinical manifestations, and involvement in the pathogenesis of EB.


Asunto(s)
Epidermólisis Ampollosa , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Membrana Basal/metabolismo , Epidermis/patología , Epidermólisis Ampollosa/metabolismo , Humanos , Mutación , Hidrolasas Diéster Fosfóricas/genética , Piel/metabolismo
2.
Front Plant Sci ; 10: 1326, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781133

RESUMEN

The high selection pressure applied in rice breeding since its domestication thousands of years ago has caused a narrowing in its genetic variability. Obtaining new rice cultivars therefore becomes a major challenge for breeders and developing strategies to increase the genetic variability has demanded the attention of several research groups. Understanding mutations and their applications have paved the way for advances in the elucidation of a genetic, physiological, and biochemical basis of rice traits. Creating variability through mutations has therefore grown to be among the most important tools to improve rice. The small genome size of rice has enabled a faster release of higher quality sequence drafts as compared to other crops. The move from structural to functional genomics is possible due to an array of mutant databases, highlighting mutagenesis as an important player in this progress. Furthermore, due to the synteny among the Poaceae, other grasses can also benefit from these findings. Successful gene modifications have been obtained by random and targeted mutations. Furthermore, following mutation induction pathways, techniques have been applied to identify mutations and the molecular control of DNA damage repair mechanisms in the rice genome. This review highlights findings in generating rice genome resources showing strategies applied for variability increasing, detection and genetic mechanisms of DNA damage repair.

3.
Appl. cancer res ; 39: 1-6, 2019. ilus, tab
Artículo en Inglés | LILACS, Inca | ID: biblio-1006568

RESUMEN

Background: Detection of somatic mutations is a mandatory practice for therapeutic definition in precision oncology. However, somatic mutation detection protocols use DNA from formalin-fixed and paraffin-embedded (FFPE) tumor tissues, which can result in detection of nonreproducible sequence artifacts, especially C:G > T:A transitions, in DNA. In recent studies, DNA pretreatment with uracil DNA glycosylase (UDG), an enzyme involved in base excision repair, significantly reduced the number of DNA artifacts after mutation detection by next-generation sequencing (NGS) and other methods, without affecting the capacity to detect real mutations. This study aimed to evaluate the effects of UDG enzymatic pretreatment in reducing the number of DNA sequencing artifacts from FFPE tumor samples, to improve the accuracy of genetic testing in the molecular diagnostic routine. Methods: We selected 12 FFPE tumor samples (10 melanoma, 1 lung, and 1 colorectal tumor sample) with different storage times. We compared sequencing results of a 16-hotspot gene panel of NGS libraries prepared with UDG-treated and untreated samples. Results: All UDG-treated samples showed large reductions in the total number of transitions (medium reduction of 80%) and the transition/transversion ratio (medium reduction of 75%). In addition, most sequence artifacts presented a low variant allele frequency (VAF < 10%) which are eliminated with UDG treatment. Conclusion: Including UDG enzymatic treatment before multiplex amplification in the NGS workflow significantly decreased the number of artifactual variants detected in FFPE samples. Thus, including this additional step in the current methodology should improve the rate of true mutation detection in the molecular diagnostic routine.


Asunto(s)
Humanos , Dimensión del Dolor , Adhesión en Parafina , Pruebas Diagnósticas de Rutina , Uracil-ADN Glicosidasa , Secuenciación Completa del Genoma
4.
Genet. mol. biol ; Genet. mol. biol;30(3): 524-528, 2007. ilus, tab
Artículo en Inglés | LILACS | ID: lil-460065

RESUMEN

Morquio A Syndrome (mucopolysaccharidosis IVA - MPS IVA, OMIM# 253000) is an autosomal recessive inborn error of metabolism caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS). We investigated five unrelated Brazilian MPS IVA families for mutations in exons 4, 5, 9 and 10 of the GALNS gene. Six out of the 10 mutant alleles were identified. Taken together with a previous study, which included six unrelated families, common mutations among Brazilian patients were p.N164T, p.G116S and p.G301C. Among one hundred control subjects three novel silent mutations were found (p.A107A; GCC -> GCT, p.Y108Y; TAC -> TAT, p.P357P; CCG -> CCA). Screening starting with exons 4, 5, 9, 10 and 11 may be a good strategy for genotyping of Brazilian patients since these exons include 73 percent of all mutations identified in the current and previous studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA