Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.637
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 214, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39090759

RESUMEN

BACKGROUND: Melanoma progression is based on a close interaction between cancer cells and immune cells in the tumor microenvironment (TME). Thus, a better understanding of the mechanisms controlling TME dynamics and composition will help improve the management of this dismal disease. Work from our and other groups has reported the requirement of an active Hedgehog-GLI (HH-GLI) signaling for melanoma growth and stemness. However, the role of the downstream GLI1 transcription factor in melanoma TME remains largely unexplored. METHODS: The immune-modulatory activity of GLI1 was evaluated in a syngeneic B16F10 melanoma mouse model assessing immune populations by flow cytometry. Murine polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) were differentiated from bone marrow cells and their immunosuppressive ability was assessed by inhibition of T cells. Conditioned media (CM) from GLI1-overexpressing mouse melanoma cells was used to culture PMN-MDSCs, and the effects of CM were evaluated by Transwell invasion assay and T cell inhibition. Cytokine array analysis, qPCR and chromatin immunoprecipitation were performed to explore the regulation of CX3CL1 expression by GLI1. Human monocyte-derived dendritic cells (moDCs) were cultured in CM from GLI1-silenced patient-derived melanoma cells to assess their activation and recruitment. Blocking antibodies anti-CX3CL1, anti-CCL7 and anti-CXCL8 were used for in vitro functional assays. RESULTS: Melanoma cell-intrinsic activation of GLI1 promotes changes in the infiltration of immune cells, leading to accumulation of immunosuppressive PMN-MDSCs and regulatory T cells, and to decreased infiltration of dendric cells (DCs), CD8 + and CD4 + T cells in the TME. In addition, we show that ectopic expression of GLI1 in melanoma cells enables PMN-MDSC expansion and recruitment, and increases their ability to inhibit T cells. The chemokine CX3CL1, a direct transcriptional target of GLI1, contributes to PMN-MDSC expansion and recruitment. Finally, silencing of GLI1 in patient-derived melanoma cells promotes the activation of human monocyte-derived dendritic cells (moDCs), increasing cytoskeleton remodeling and invasion ability. This phenotype is partially prevented by blocking the chemokine CCL7, but not CXCL8. CONCLUSION: Our findings highlight the relevance of tumor-derived GLI1 in promoting an immune-suppressive TME, which allows melanoma cells to evade the immune system, and pave the way for the design of new combination treatments targeting GLI1.


Asunto(s)
Melanoma , Células Supresoras de Origen Mieloide , Microambiente Tumoral , Proteína con Dedos de Zinc GLI1 , Animales , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Ratones , Humanos , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Melanoma/patología , Melanoma/metabolismo , Melanoma/inmunología , Melanoma/genética , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Melanoma Experimental/metabolismo , Línea Celular Tumoral , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Ratones Endogámicos C57BL
2.
Biomed Pharmacother ; 178: 117222, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39088968

RESUMEN

BACKGROUND: Ocular neovascular diseases, which contribute significantly to vision loss, lack effective preventive treatments. Recent studies have highlighted the significant involvement of immune cells in neovascular retinopathy. Myeloid-derived suppressor cells (MDSCs) promote the development of neovascularization, but it is unknown whether they participate in pathological neovascularization and whether they are expected to be a therapeutic target. METHOD: We investigated the role of MDSCs in promoting pathological angiogenesis using an oxygen-induced retinopathy (OIR) model, employing flow cytometry, immunofluorescence, and smart-seq analysis. Then, we evaluated the proportion of MDSCs in patient blood samples using flow cytometry. Additionally, we assessed the effect of MDSC depletion using an anti-Gr-1 monoclonal antibody on retinal vasculopathy and alterations in retinal microglia. RESULTS: In the OIR model, an elevated ratio of MDSCs was observed in both blood and retinal tissue during phase II (Neovascularization). The depletion of MDSCs resulted in reduced retinal neovascularization and vaso-obliteration, along with a decrease in microglia within the neovascularization area. Furthermore, analysis of gene transcripts associated with MDSCs indicated activation of vascular endothelial growth factor (VEGF) regulation and inflammation. Importantly, infants with ROP exhibited a higher proportion of MDSCs in their blood samples. CONCLUSION: Our results suggested that excessive MDSCs represent an unrecognized feature of ocular neovascular diseases and be responsible for the retinal vascular inflammation and angiogenesis, providing opportunities for new therapeutic approaches to ocular neovascular disease.

3.
Curr Neuropharmacol ; 2024 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-38988152

RESUMEN

Myeloid-Derived Suppressor Cells (MDSCs) are a heterogeneous population of immature myeloid cells that play important roles in maintaining immune homeostasis and regulating immune responses. MDSCs can be divided into two main subsets based on their surface markers and functional properties: granulocytic MDSCs (G-MDSCs) and monocytic MDSCs (M-MDSCs). Recently greatest attention has been paid to innate immunity in Multiple Sclerosis (MS), so the aim of our review is to provide an overview of the main characteristics of MDSCs in MS and its preclinical model by discussing the most recent data available. The immunosuppressive functions of MDSCs can be dysregulated in MS, leading to an exacerbation of the autoimmune response and disease progression. Antigen-specific peptide immunotherapy, which aims to restore tolerance while avoiding the use of non-specific immunosuppressive drugs, is a promising approach for autoimmune diseases, but the cellular mechanisms behind successful therapy remain poorly understood. Therefore, targeting MDSCs could be a promising therapeutic approach for MS. Various strategies for modulating MDSCs have been investigated, including the use of pharmacological agents, biological agents, and adoptive transfer of exogenous MDSCs. However, it remained unclear whether MDSCs display any therapeutic potential in MS and how this therapy could modulate different aspects of the disease. Collectively, all the described studies revealed a pivotal role for MDSCs in the regulation of MS.

.

4.
Br J Haematol ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044285

RESUMEN

Cells of the innate and adaptive immune systems are the progeny of haematopoietic stem and progenitor cells (HSPCs). During steady-state myelopoiesis, HSPC undergo differentiation and proliferation but are called to respond directly and acutely to various signals that lead to emergency myelopoiesis, including bone marrow ablation, infections, and sterile inflammation. There is extensive evidence that many solid tumours have the potential to secrete classical myelopoiesis-promoting growth factors and other products able to mimic emergency haematopoiesis, and to aberrantly re-direct myeloid cell development into immunosuppressive cells with tumour promoting properties. Here, we summarize the current literature regarding the effects of solid cancers on HSPCs function and discuss how these effects might shape antitumour responses via a mechanism initiated at a site distal from the tumour microenvironment.

5.
Int Immunopharmacol ; 139: 112696, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39018692

RESUMEN

BACKGROUND: Anti-PD-1-based immunotherapy has limited benefits in patients with pancreatic cancer. Accumulating data indicate that natural products exert antitumor activity by remodeling the tumor immune microenvironment. It has been reported that neogambogic acid (NGA), an active natural monomer extracted from Garcinia, has anti-inflammatory and antitumor effects. Nevertheless, there are few systematic studies on the antitumor efficacy and immunomodulatory effects of NGA in pancreatic cancer. METHODS: An orthotopic mouse model of pancreatic cancer was established and were treated with different doses of NGA. Tumor growth and ascites were observed. Flow cytometry and immunohistochemistry (IHC) were used to investigate the tumor immune microenvironment. CD11b+ MDSCs were infused back into mice with pancreatic cancer to observe tumor progression after NGA treatment. Bone marrow cells were induced to differentiate into MDSCs, and the effects of NGA on MDSCs were analyzed and the underlying mechanism was explored. The effects of NGA combined with an anti-PD-1 antibody on pancreatic cancer were further tested. RESULTS: NGA significantly inhibited the tumor growth and improve ascites character in pancreatic cancer model mice. Flow cytometry and IHC analysis revealed that NGA decreased the MDSCs proportion and infiltration in the tumor microenvironment. Moreover, adoptive MDSCs largely attenuated the inhibitory effect of NGA on the progression of pancreatic cancer. In addition, we showed that NGA significantly promoted apoptosis and inhibited the differentiation, migration and immunosuppressive function of MDSCs and decreased level of STAT3 and p-STAT3. Furthermore, we demonstrated that NGA synergistically enhanced the efficacy of anti-PD-1 antibodies against pancreatic cancer. CONCLUSION: NGA inhibited the progression of pancreatic cancer by inhibiting MDSCs in the tumor microenvironment, and enhanced the efficacy of anti-PD-1 therapy in the treatment of pancreatic cancer.

6.
Acta Histochem ; 126(5-7): 152183, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39029317

RESUMEN

Myeloid malignancies stem from a modified hematopoietic stem cell and predominantly include acute myeloid leukemia, myelodysplastic neoplasms, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid-derived suppressor cells (MDSCs) exhibit immunoregulatory properties by governing the innate and adaptive immune systems, creating a permissive and supportive environment for neoplasm growth. This review examines the key characteristics of MDSCs in myeloid malignancies, highlighting that an increased MDSC count corresponds to heightened immunosuppressive capabilities, fostering an immune-tolerant neoplasm microenvironment. Also, this review analyzes and describes the potential of combined cancer therapies, focusing on targeting MDSC generation, expansion, and their inherent immunosuppressive activities to enhance the efficacy of current cancer immunotherapies. A comprehensive understanding of the implications of myeloid malignancies may enhance the exploration of immunotherapeutic strategies for their potential application.

7.
Thorac Cancer ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38952044

RESUMEN

BACKGROUND: Phosphoribosyl pyrophosphate synthetase 2 (PRPS2) is known as an oncogene in many types of cancers, including lung cancer. However, its role in regulating tumor-associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC) remains unclear. Our study aimed to explore the involvement of PRPS2 in TAM and MDSC regulation. METHODS: Stable Lewis lung cancer (LLC) cell lines were established using a lentivirus system. These LLC lines were then used to establish tumor model in mice. The levels of target genes were determined using qPCR, western blotting, and ELISA assays. The percentage of different immune cell types was analyzed using fluorescence-activated cell sorting. The chemotaxis ability of TAM and MDSC was evaluated using an in vitro transwell chemotaxis assay. RESULTS: Notably, PRPS2 was found to regulate the chemotaxis of TAM and MDSC in tumor cells, as evidenced by the positive correlation of PRPS2 expression levels and abundance of TAM and MDSC populations. In addition, the expression of CCL2, mediated by PRPS2, was identified as a key factor in the chemotaxis of TAM and MDSC, as evidenced by a significant reduction in macrophages and MDSC numbers in the presence of the CCL2 antibody. Furthermore, in vivo experiments confirmed the involvement of PRPS2 in mediating CCL2 expression. PRPS2 was also found to regulate immune cell infiltration into tumors, whereas knockdown of CCL2 reversed the phenotype induced by PRPS2 overexpression. In tumor tissues from mice implanted with LLC-PRPS2-shCCL2 cells, a notable increase in CD4+ and CD8+ T cell percentages, alongside a marked decrease in TAMs, M-MDSC, and PMN-MDSC, was observed. CONCLUSION: Taken together, PRPS2 plays a crucial role in modulating the antitumor immune response by reprogramming CCL2-mediated TAM and MDSC.

8.
J Nanobiotechnology ; 22(1): 409, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992688

RESUMEN

OBJECTIVE: This study aimed to investigate the critical role of MDSCs in CRC immune suppression, focusing on the CSF1R and JAK/STAT3 signaling axis. Additionally, it assessed the therapeutic efficacy of LNCs@CSF1R siRNA and anti-PD-1 in combination. METHODS: Single-cell transcriptome sequencing data from CRC and adjacent normal tissues identified MDSC-related differentially expressed genes. RNA-seq analysis comprehensively profiled MDSC gene expression in murine CRC tumors. LNCs@CSF1R siRNA nanocarriers effectively targeted and inhibited CSF1R. Flow cytometry quantified changes in MDSC surface markers post-CSF1R inhibition. RNA-seq and pathway enrichment analyses revealed the impact of CSF1R on MDSC metabolism and signaling. The effect of CSF1R inhibition on the JAK/STAT3 signaling axis was validated using Colivelin and metabolic assessments. Glucose and fatty acid uptake were measured via fluorescence-based flow cytometry. The efficacy of LNCs@CSF1R siRNA and anti-PD-1, alone and in combination, was evaluated in a murine CRC model with extensive tumor section analyses. RESULTS: CSF1R played a significant role in MDSC-mediated immune suppression. LNCs@CSF1R siRNA nanocarriers effectively targeted MDSCs and inhibited CSF1R. CSF1R regulated MDSC fatty acid metabolism and immune suppression through the JAK/STAT3 signaling axis. Inhibition of CSF1R reduced STAT3 activation and target gene expression, which was rescued by Colivelin. Combined treatment with LNCs@CSF1R siRNA and anti-PD-1 significantly slowed tumor growth and reduced MDSC abundance within CRC tumors. CONCLUSION: CSF1R via the JAK/STAT3 axis critically regulates MDSCs, particularly in fatty acid metabolism and immune suppression. Combined therapy with LNCs@CSF1R siRNA and anti-PD-1 enhances therapeutic efficacy in a murine CRC model, providing a strong foundation for future clinical applications.


Asunto(s)
Neoplasias Colorrectales , Células Supresoras de Origen Mieloide , ARN Interferente Pequeño , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Factor de Transcripción STAT3 , Animales , Células Supresoras de Origen Mieloide/metabolismo , Ratones , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/inmunología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor de Transcripción STAT3/metabolismo , Línea Celular Tumoral , Humanos , Transducción de Señal/efectos de los fármacos , Receptor de Muerte Celular Programada 1/metabolismo , Femenino , Ratones Endogámicos BALB C , Quinasas Janus/metabolismo , Inmunomodulación/efectos de los fármacos , Receptor de Factor Estimulante de Colonias de Macrófagos
9.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39000381

RESUMEN

The RNA world is wide, and besides mRNA, there is a variety of other RNA types, such as non-coding (nc)RNAs, which harbor various intracellular regulatory functions. This review focuses on small interfering (si)RNA and micro (mi)RNA, which form a complex network regulating mRNA translation and, consequently, gene expression. In fact, these RNAs are critically involved in the function and phenotype of all cells in the human body, including malignant cells. In cancer, the two main targets for therapy are dysregulated cancer cells and dysfunctional immune cells. To exploit the potential of mi- or siRNA therapeutics in cancer therapy, a profound understanding of the regulatory mechanisms of RNAs and following targeted intervention is needed to re-program cancer cells and immune cell functions in vivo. The first part focuses on the function of less well-known RNAs, including siRNA and miRNA, and presents RNA-based technologies. In the second part, the therapeutic potential of these technologies in treating cancer is discussed, with particular attention on manipulating tumor-associated immune cells, especially tumor-associated myeloid cells.


Asunto(s)
Células Mieloides , Neoplasias , ARN no Traducido , Humanos , Neoplasias/terapia , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Células Mieloides/metabolismo , ARN no Traducido/genética , MicroARNs/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Animales , Regulación Neoplásica de la Expresión Génica
10.
Am J Cancer Res ; 14(6): 3171-3185, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005677

RESUMEN

Early detection of cancer recurrence using specific biomarkers remains a clinically unmet need, although methodologies for monitoring tumor markers, cell-free DNA, and circulating tumor cells have been established for decades. Tumor recurrence develops in metastatic or dormant cancer cells under continuous immune surveillance. Alterations in the population and function of immune cells may contribute to cancer recurrence. Here, we utilized an animal model to imitate breast tumor recurrence after surgical resection and investigated the abundance and gene expression profiles of immune cells using NanoString analysis. Bioinformatic analysis of a published single-cell RNA sequencing database of myeloid-derived suppressor cells (MDSCs) was performed to identify common targets between the two studies. Identified biomarkers were validated using human peripheral blood mononuclear cell (PBMC) datasets. The inhibitory effect of MDSCs on T-cell proliferation was assessed in vitro. Our data demonstrated that the number of MDSCs significantly increased during recurrence. Comparison of our NanoString data with a single-cell RNA sequencing dataset of MDSCs in another spontaneous breast cancer model identified colony-stimulating factor 3 receptor (Csf3r)-positive MDSCs as a potential marker for predicting tumor relapse. We validated our findings using two previously published PBMC databases of patients with breast cancer with or without recurrence and confirmed the elevated MDSC gene signature and CSF3R expression in patients with tumor recurrence. 35 patients with breast cancer were also included in our study, that patients with higher levels of CSF3R had worse survival. In vitro experiments demonstrated that Csf3r + MDSCs exhibited enhanced reactive oxygen species (ROS) levels and robust T-cell suppression ability. We conclude that an increase in CSF3R + MDSCs is a potential biomarker for early detection of tumor recurrence in patients with breast cancer.

11.
Med Int (Lond) ; 4(5): 46, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983795

RESUMEN

Breast cancer (BC) is the leading cause of cancer-related mortality among women worldwide. Immunotherapies are a promising approach in cancer treatment, particularly for aggressive forms of BC with high mortality rates. However, the current eligibility for immunotherapy remains limited to a limited fraction of patients with BC. Myeloid-derived suppressor cells (MDSCs), originating from myeloid cells, are known for their dual role in immunosuppression and tumor promotion, significantly affecting patient outcomes by fostering the formation of premetastatic niches. Consequently, targeting MDSCs has emerged as a promising avenue for further exploration in therapeutic interventions. Leveraging nanotechnology-based drug delivery systems, which excel in accumulating drugs within tumors via passive or active targeting mechanisms, are a promising strategy for the use of MDSCs in the treatment of BC. The present review discusses the immunosuppressive functions of MDSCs, their role in BC, and the diverse strategies for targeting them in cancer therapy. Additionally, the present review discusses future advancements in BC treatments focusing on MDSCs. Furthermore, it elucidates the mechanisms underlying MDSC activation, recruitment and differentiation in BC progression, highlighting the clinical characteristics that render MDSCs suitable candidates for the therapy and targeted nanotherapy of BC.

12.
Artículo en Inglés | MEDLINE | ID: mdl-39009323

RESUMEN

Radiotherapy (RT) initiates a local and systemic immune response which can induce anti-tumor immunity and improve immunotherapy efficacy. Neutrophils are among the first immune cells that infiltrate tumors after RT and are suggested to be essential for the initial anti-tumor immune response. However, neutrophils in tumors are associated with poor outcomes and RT induced neutrophil infiltration could also change the composition of the tumor microenvironment (TME) in favor of tumor progression. To improve RT efficacy for cancer patients it is important to understand the interplay between RT and neutrophils. Here, we review the literature on how RT affects the infiltration and function of neutrophils in the TME of solid tumors, using both patients studies and preclinical murine in vivo models. In general, it was found that neutrophil levels increase and reach maximal levels in the first days after RT and can remain elevated up to three weeks. Most studies report an immunosuppressive role of neutrophils in the TME after RT, caused by upregulated expression of neutrophil indoleamine 2,3-dioxygenase 1 (IDO1) and arginase 1 (ARG1), as well as neutrophil extracellular trap (NET) formation. RT was also associated with increased reactive oxygen species (ROS) production by neutrophils, which can both improve and inhibit anti-tumor immunity. In addition, multiple murine models showed improved RT efficacy when depleting neutrophils, suggesting that neutrophils have a pro-tumor phenotype after RT. We conclude that the role of neutrophils should not be overlooked when developing RT strategies and requires further investigation in specific tumor types. In addition, neutrophils can possibly be exploited to enhance RT efficacy by combining RT with neutrophil-targeting therapies.

13.
Artículo en Inglés | MEDLINE | ID: mdl-39005010

RESUMEN

BACKGROUND AND AIM: Primary liver cancer, particularly hepatocellular carcinoma (HCC), represents a substantial global health challenge. Although immune checkpoint inhibitors are effective in HCC treatment, several patients still experience disease progression. Interleukin-1 (IL-1) regulates immunity and inflammation. We investigate the role of IL-1 in HCC development and progression and determine the potential therapeutic impact of gemcitabine in treating HCC. METHODS: Hydrodynamics-based transfection, employing the sleeping beauty transposase system, delivered surrogate tumor antigens, NRAS (NRAS proto-oncogene, GTPase), ShP53, and SB100 to C57BL/6 mice. A basic HCC mouse model was established. Pathogen-free animals were tested for serum and hepatotoxicity. The HCC prognosis was monitored using alanine aminotransferase and aspartate aminotransferase levels. Liver histology immunohistochemistry and mouse splenocyte/intra-hepatic immune cell flow cytometry were conducted. IL-1ß levels in human and mouse serum were assessed. RESULTS: Interleukin-1ß levels were elevated in patients with HCC compared with those in non-HCC controls. Hepatic IL-1ß levels were higher in HCC mouse models than those in non-HCC mice, suggesting localized hepatic inflammation. IL-1 receptor type 1 (IL-1R1) knockout (IL-1R1-/-) mice exhibited less severe HCC progression than that in wild-type mice, despite the high intra-hepatic IL-1ß concentration. IL-1R1-/- mice exhibited increased hepatic levels of myeloid-derived suppressor cells and regulatory T cells, which may exacerbate HCC. Gemcitabine significantly reduced the HCC tumor burden, improved liver conditions, and increased survival rates in HCC mouse models. Gemcitabine reduced the hepatic levels of myeloid-derived suppressor cells and regulatory T cells, potentially alleviating immune suppression in the liver. CONCLUSIONS: Targeting IL-1 or combining gemcitabine with immunotherapy is a promising approach for treating advanced-stage HCC.

14.
Arch Pharm Res ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008186

RESUMEN

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that originate from bone marrow stem cells. In pathological conditions, such as autoimmune disorders, allergies, infections, and cancer, normal myelopoiesis is altered to facilitate the formation of MDSCs. MDSCs were first shown to promote cancer initiation and progression by immunosuppression with the assistance of various chemokines and cytokines. Recently, various studies have demonstrated that MDSCs play two distinct roles depending on the physiological and pathological conditions. MDSCs have protective roles in autoimmune disorders (such as uveoretinitis, multiple sclerosis, rheumatoid arthritis, ankylosing spondylitis, type 1 diabetes, autoimmune hepatitis, inflammatory bowel disease, alopecia areata, and systemic lupus erythematosus), allergies, and organ transplantation. However, they play negative roles in infections and various cancers. Several immunosuppressive functions and mechanisms of MDSCs have been determined in different disease conditions. This review comprehensively discusses the associations between MDSCs and various pathological conditions and briefly describes therapeutic approaches.

15.
Cancers (Basel) ; 16(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39061196

RESUMEN

Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by a chronic inflammatory state that plays a relevant role in the disease pathogenesis (as proven by high levels of inflammatory cytokines with prognostic significance and by a persistent oxidative stress) and by extensive neoangiogenesis in bone marrow (BM) and spleen. Myeloid-derived suppressor cells (MDSCs) are immature cells that expand in patients with cancer, sepsis or chronic inflammation, favoring tumor onset and progression mainly through the decrease in immune surveillance and the promotion of neoangiogenesis. In this paper, we evaluated the presence of circulating MDSCs in PMF patients, the plasmatic factors involved in their mobilization/expansion and the correlations with laboratory, genetic and clinical parameters. The data indicated that MDSCs could have a relevant role in PMF as a new pathogenic mechanism contributing to explaining the phenotypic diversity observed during the clinical course of the disease, or a potential new target for personalized treatment.

16.
Int J Oncol ; 65(3)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39054950

RESUMEN

Globally, colorectal cancer (CRC) is the third most common type of cancer. CRC has no apparent symptoms in the early stages of disease, and most patients receive a confirmed diagnosis in the middle or late disease stages. The incidence of CRC continues to increase, and the affected population tends to be younger. Therefore, determining how to achieve an early CRC diagnosis and treatment has become a top priority for prolonging patient survival. Myeloid­derived suppressor cells (MDSCs) are a group of bone marrow­derived immuno­negative regulatory cells that are divided into two subpopulations, polymorphonuclear­MDSCs and monocytic­MDSCs, based on their phenotypic similarities to neutrophils and monocytes, respectively. These cells can inhibit the immune response and promote cancer cell metastasis in the tumour microenvironment (TME). A large aggregation of MDSCs in the TME is often a marker of cancer and a poor prognosis in inflammatory diseases of the intestine (such as colonic adenoma and ulcerative colitis). In the present review, the phenotypic classification of MDSCs in the CRC microenvironment are first discussed. Then, the amplification, role and metastatic mechanism of MDSCs in the CRC TME are described, focusing on genes, gene modifications, proteins and the intestinal microenvironment. Finally, the progress in CRC­targeted therapies that aim to modulate the quantity, function and structure of MDSCs are summarized in the hope of identifying potential screening markers for CRC and improving CRC prognosis and therapeutic options.


Asunto(s)
Neoplasias Colorrectales , Células Supresoras de Origen Mieloide , Microambiente Tumoral , Humanos , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Microambiente Tumoral/inmunología
17.
Phytomedicine ; 133: 155913, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39084183

RESUMEN

BACKGROUND: Human hepatocellular carcinoma (HCC) acquired resistance to anti-cancer agents due to the presence of immunosuppressive tumour microenvironment (TME) established by the interaction between tumour cells and immune populations. New treatment targeting the interaction is urgently needed and clinically beneficial to patients with HCC. This study aims to explore the anti-tumour effect of a Traditional Chinese Medicine formula Siwu Decoction (SWD) and its potential mechanism. MATERIALS AND METHODS: The chemical profile of SWD was determined by high-performance liquid chromatography coupled with mass spectrometry. In vitro and in vivo effects of SWD in regressing HCC were assessed. The role of myeloid-derived suppressor cells (MDSCs) in mediating SWD-induced HCC inhibition was determined by adoptive transfer assay. The regulation of SWD-induced interaction between HCC cells and MDSCs was also confirmed both in vitro and in vivo. RESULTS: SWD dose-dependent inhibited the HCC growth and lung metastasis in an orthotopic growth tumour in mice, without significant toxicity and adverse side effect. SWD induced necroptosis in HCC cells, but did not directly inhibit in vitro culture of MDSCs, instead, SWD-treated HCC cell culture supernatant suppressed MDSCs by inducing its cell apoptosis. The necroptotic response of HCC cells can also suppress the MDSCs population in the TME without reducing circulating MDSCs infiltration into the tumours. Adoptive transfer of MDSCs recovered tumour growth and lung metastasis of HCC in SWD-treated mice. In HCC cells, SWD induced a necroptotic response, and blockade of necroptotic response in HCC cells recovered the MDSCs population in vitro and in vivo, and restored tumour growth and lung metastasis in SWD-treated mice. A combination of SWD improves the anti-HCC efficacy of sorafenib without inducing adverse side effects. Albiflorin, the effective compound of SWD, its anti-HCC manner has been verified to be consistent with that of SWD. CONCLUSION: Our study observed for the first time that SWD can suppress HCC by regulating MDSCs through necroptosis of tumour cells in the TME. The main effective compound of SWD, albiflorin can be a potential adjuvant therapy in the clinical management of human HCC.

18.
Oncoimmunology ; 13(1): 2381803, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39071160

RESUMEN

Tumor-derived exosomes bind to organ resident cells, activating S100 molecules during the remodeling of the local immune microenvironment. However, little is known regarding how organ resident cell S100A10 mediates cancer metastatic progression. Here, we provided evidence that S100A10 plays an important role in regulating the lung immune microenvironment and cancer metastasis. S100A10-deficient mice reduced cancer metastasis in the lung. Furthermore, the activation of S100A10 within lung fibroblasts via tumor-derived exosomes increased the expression of CXCL1 and CXCL8 chemokines, accompanied by the myeloid-derived suppressor cells (MDSCs) recruitment. S100A10 inhibitors such as 1-Substituted-4-Aroyl-3-hydroxy-5-Phenyl-1 H-5-pyrrol-2(5 H)-ones inhibit lung metastasis in vivo. Our findings highlight the crucial role of S100A10 in driving MDSC recruitment in order to remodel the lung immune microenvironment and provide potential therapeutic targets to block cancer metastasis to the lung.


Asunto(s)
Neoplasias Pulmonares , Células Supresoras de Origen Mieloide , Proteínas S100 , Microambiente Tumoral , Animales , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Ratones , Microambiente Tumoral/inmunología , Proteínas S100/metabolismo , Proteínas S100/genética , Ratones Endogámicos C57BL , Línea Celular Tumoral , Humanos , Ratones Noqueados , Exosomas/metabolismo
19.
J Cancer Res Clin Oncol ; 150(7): 341, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976030

RESUMEN

PURPOSE: To investigate whether prognosis of patients with hepatocellular carcinoma (HCC) is affected by the abundance and subgroups of myeloid-derived suppressor cells (MDSCs) as well as subtypes and expression of apolipoprotein E (apoE). METHODS: 31 HCC patients were divided into three groups according to blood total apoE level for detecting the abundance of immunoregulatory cells by flow cytometry. Tumour tissue microarrays from 360 HCC patients were evaluated about the abundance and subgroups of MDSCs and the expression of apoE2, apoE3, apoE4 by immunofluorescence staining and immunohistochemistry staining. Survival analysis by means of univariate, multivariate COX regression and Kaplan-Meier methods of the 360 patients was performed based on clinical and pathological examinations along with 10 years' follow-up data. RESULTS: The lower apoE group presented higher abundance of MDSCs in the peripheral blood of HCC patients than higher apoE group. The abundance of monocyte-like MDSCs (M-MDSCs) was higher in the apoE low level group than high level group (p = 0.0399). Lower H-score of apoE2 (HR = 6.140, p = 0.00005) and higher H-score of apoE4 (HR = 7.001, p = 0.009) in tumour tissue were significantly associated with shorter overall survival (OS). The higher infiltration of polymorphonuclear granulocyte-like MDSCs (PMN-MDSCs, HR = 3.762, p = 0.000009) and smaller proportion of M-MDSCs of total cells (HR = 0.454, p = 0.006) in tumour tissue were independent risk factors for shorter recurrence-free survival (RFS). CONCLUSION: The abundance of MDSCs in HCC patients' plasma negatively correlates with the level of apoE. The expression of apoE4 in HCC tissue indicated a poor prognosis while apoE2 might be a potential protective factor.


Asunto(s)
Apolipoproteínas E , Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Supresoras de Origen Mieloide , Humanos , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/metabolismo , Masculino , Pronóstico , Femenino , Persona de Mediana Edad , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Apolipoproteínas E/genética , Anciano , Adulto
20.
bioRxiv ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38948812

RESUMEN

Solid carcinomas are often highly heterogenous cancers, arising from multiple epithelial cells of origin. Yet, how the cell of origin influences the response of the tumor microenvironment is poorly understood. Lung adenocarcinoma (LUAD) arises in the distal alveolar epithelium which is populated primarily by alveolar epithelial type I (AT1) and type II (AT2) cells. It has been previously reported that Gramd2 + AT1 cells can give rise to a histologically-defined LUAD that is distinct in pathology and transcriptomic identity from that arising from Sftpc + AT2 cells1,2. To determine how cells of origin influence the tumor immune microenvironment (TIME) landscape, we comprehensively characterized transcriptomic, molecular, and cellular states within the TIME of Gramd2 + AT1 and Sftpc + AT2-derived LUAD using KRASG12D oncogenic driver mouse models. Myeloid cells within the Gramd2 + AT1-derived LUAD TIME were increased, specifically, immunoreactive monocytes and tumor associated macrophages (TAMs). In contrast, the Sftpc + AT2 LUAD TIME was enriched for Arginase-1+ myeloid derived suppressor cells (MDSC) and TAMs expressing profiles suggestive of immunosuppressive function. Validation of immune infiltration was performed using flow cytometry, and intercellular interaction analysis between the cells of origin and major myeloid cell populations indicated that cell-type specific markers SFTPD in AT2 cells and CAV1 in AT1 cells mediated unique interactions with myeloid cells of the differential immunosuppressive states within each cell of origin mouse model. Taken together, Gramd2 + AT1-derived LUAD presents with an anti-tumor, immunoreactive TIME, while the TIME of Sftpc + AT2-derived LUAD has hallmarks of immunosuppression. This study suggests that LUAD cell of origin influences the composition and suppression status of the TIME landscape and may hold critical implications for patient response to immunotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA