Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
1.
ACS Nano ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39159194

RESUMEN

The advent of metasurfaces has revolutionized the design of optical instruments, and recent advancements in fabrication techniques are further accelerating their practical applications. However, conventional top-down fabrication of intricate nanostructures proves to be expensive and time-consuming, posing challenges for large-scale production. Here, we propose a cost-effective bottom-up approach to create nanostructure arrays with arbitrarily complex meta-atoms displaying single nanoparticle lateral resolution over submillimeter areas, minimizing the need for advanced and high-cost nanofabrication equipment. By utilizing air/water interface assembly, we transfer nanoparticles onto templated polydimethylsiloxane (PDMS) irrespective of nanopattern density, shape, or size. We demonstrate the robust assembly of nanocubes into meta-atoms with diverse configurations generally unachievable by conventional methods, including U, L, cross, S, T, gammadion, split-ring resonators, and Pancharatnam-Berry metasurfaces with designer optical functionalities. We also show nanocube epitaxy at near ambient temperature to transform the meta-atoms into complex continuous nanostructures that can be swiftly transferred from PDMS to various substrates via contact printing. Our approach potentially offers a large-scale manufacturing alternative to top-down fabrication for metal nanostructuring, unlocking possibilities in the realm of nanophotonics.

2.
Small ; : e2404194, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136198

RESUMEN

Conversion and alloying-type transitional metal sulfides have attracted significant interests as anodes for Potassium-ion batteries (PIBs) and Sodium-ion batteries (SIBs) due to their high theoretical capacities and low cost. However, the poor conductivity, structural pulverization, and high-volume expansions greatly limit the performance. Herein, Co1-xS/ZnS hollow nanocube-like heterostructure decorated on reduced graphene oxide (Co1-xS/ZnS@rGO) composite is fabricated through convenient hydrothermal and post-heat vulcanization techniques. This unique composite can provide a more stable conductive network and shorten the diffusion length of ions, which exhibits a remarkable initial charge capacity of 638.5 mA h g-1 at 0.1 A g-1 for SIBs and 606 mA h g-1 at 0.1 A g-1 for PIBs, respectively; It is worth noting that the composite presents remarkable long stable cycle performance in PIBs, which initially delivered 274 mA h g-1 and sustained the charge capacity up to 245 mA h g-1 at high current density of 1 A g-1 after 2000 cycles. A series of in situ/ex situ detections and first principle calculations further validate the high potassium ions adsorption ability of Co1-xS/ZnS anode materials with high diffusion kinetics. This work will accelerate the fundamental construction of bimetallic sulfide hollow nanocubes heterostructure electrodes for energy storage applications.

3.
Angew Chem Int Ed Engl ; : e202413774, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136239

RESUMEN

Developing sustainable energy solutions is critical for addressing the dual challenges of energy demand and environmental impact. In this study, a zinc-nitrate (Zn-NO3-) battery system was designed for the simultaneous production of ammonia (NH3) via the electrocatalytic NO3- reduction reaction (NO3RR) and electricity generation. Continuous wave CO2 laser irradiation yielded precisely controlled CoFe2O4@nitrogen-doped carbon (CoFe2O4@NC) hollow nanocubes from CoFe Prussian blue analogs (CoFe-PBA) as the integral electrocatalyst for NO3RR in 1.0-M KOH, achieving a remarkable NH3 production rate of 10.9 mgh-1cm-2 at -0.47 V versus RHE with exceptional stability. In-situ and ex-situ methods revealed that the CoFe2O4@NC surface transformed into high-valent Fe/CoOOH active-species, optimizing the adsorption energy of NO3RR (*NO2 and *NO species) intermediates. Furthermore, DFT calculations validated the possible NO3RR pathway on CoFe2O4@NC starting with NO3- conversion to *NO2 intermediates, followed by reduction to *NO. Subsequent protonation forms the *NH and *NH2 species, leading to NH3 formation via final protonation. The Zn-NO3- battery utilizing the CoFe2O4@NC cathode exhibits dual functionality by generating electricity with a stable open-circuit voltage of 1.38-V versus Zn/Zn2+ and producing NH3. This study inspires the simple design of low-cost catalysts for NO3RR-to-NH3 conversion and positions the Zn-NO3- battery as a promising technology for industrial applications.

4.
Small ; : e2403319, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082204

RESUMEN

Transition metal centers dispersed over nitrogen-doped carbon (M-NC) supports have been widely explored for electrocatalytic reactions; however, sparsely reported for electrochemical nitrogen reduction reaction (ENRR). Particularly, the single-atom catalysts (SACs) have shown reasonable ammonia yield rate and faradaic efficiency (FE), but their complex synthesis and low durability for long-term electrocatalysis runs restrict their use on a larger scale. Importantly, the catalytic active sites in metal nanostructured-based M-NC catalysts toward enhanced N2 adsorption and activation are still not clear as they are highly challenging to reveal. A few studies have predicted that the surface oxygen vacancies (Ovac) favor an enhanced ENRR performance. Herein, a strategy using tailored M-NC content and Ovac in a single catalyst for enhanced ammonia electrosynthesis is devised. A mesoporous bimetallic spinel oxide (CuFe2O4) supported over N-doped carbon (CuFe2O4@NC) derived from Prussian blue analog (PBA) via controlled pyrolysis possess is found to show boosted ENRR activity. Moreover, operando NH3 formation over the catalyst is observed using four electrode set up. This approach enables rapid evaluation ofelectrocatalytic efficacy and avoids false positive results. The rotating disc electrode results reveal that mass transport in acidic media and surface absorption in alkline media primarily regulate ENRR over CuFe2O4@NC electrocatalyst.

5.
Small ; : e2402940, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004867

RESUMEN

Iron oxide nanoparticles (IONPs) are widely used for biomedical applications due to their unique magnetic properties and biocompatibility. However, the controlled synthesis of IONPs with tunable particle sizes and crystallite/grain sizes to achieve desired magnetic functionalities across single-domain and multi-domain size ranges remains an important challenge. Here, a facile synthetic method is used to produce iron oxide nanospheres (IONSs) with controllable size and crystallinity for magnetic tunability. First, highly crystalline Fe3O4 IONSs (crystallite sizes above 24 nm) having an average diameter of 50 to 400 nm are synthesized with enhanced ferrimagnetic properties. The magnetic properties of these highly crystalline IONSs are comparable to those of their nanocube counterparts, which typically possess superior magnetic properties. Second, the crystallite size can be widely tuned from 37 to 10 nm while maintaining the overall particle diameter, thereby allowing precise manipulation from the ferrimagnetic to the superparamagnetic state. In addition, demonstrations of reaction scale-up and the proposed growth mechanism of the IONSs are presented. This study highlights the pivotal role of crystal size in controlling the magnetic properties of IONSs and offers a viable means to produce IONSs with magnetic properties desirable for wider applications in sensors, electronics, energy, environmental remediation, and biomedicine.

6.
Nanotechnology ; 35(44)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39025084

RESUMEN

Hydrothermally derived nanocubes of CeO2(10 nm) were explored as an efficient heterogeneous catalyst in the partial oxidation of aromatic alcohols to the corresponding aldehydes and aerobic oxidation ofp-nitrotoluene top-nitrobenzoic acid. The CeO2nanocatalyst was characterized by x-ray diffraction, transmission electron microscopy (TEM), energy dispersive spectroscopy, x-ray photoelectron spectroscopy, Brunauer-Emmett-Teller (BET) surface area analysis, Fourier transform infrared spectroscopy, thermal gravimetric analysis and ultraviolet-visible spectroscopy. TEM/high-resolution TEM micrographs reveal a morphology of mostly cubic nanostructures with exposed highly active {100} and {110} facets. The surface area of nanoceria was determined by BET analysis and found to be 33.8 m2g-1. To demonstrate the universality of the catalytic system, the selective oxidation of different substrates of benzylic alcohol and complete oxidation ofp-nitrotoluene was investigated under mild conditions. Absolute selectivity towards their respective aldehydes was found to be 99.50% (benzaldehyde), 90.18% (p-chlorobenzaldehyde), 99.71% (p-nitrobenzaldehyde), 98.10% (p-fluorobenzaldehyde), 94.66% (p-anisaldehyde) and 86.14% (cinnamaldehyde). Moreover, the catalytic oxidative transformation of nitrotoluene results in 100% conversion with 99.29% selectivity towards nitrobenzoic acid.

7.
J Hazard Mater ; 477: 135281, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39067292

RESUMEN

Diclofenac (DCF) is a non-steroidal anti-inflammatory drug (NSAID), and its overuse poses a potential threat to human health and the aquatic environment, designing high-efficiency electrocatalysts for DCF detection is urgent. Herein, cobalt-copper bimetallic selenides embedded in nitrogen-doped porous carbon nanocubes (CoCuSe@NC) were elaborately designed via one-step in situ selenization of bimetallic CoCu-MOF. The chemical constituents and micromorphology of CoCuSe@NC composites can be further optimized by precisely regulating the selenization process and the doping ratio of bimetal in MOF precursor. As an electrocatalyst, CoCuSe@NC was proved to be highly efficient in electrochemical sensing of DCF with a broad linear range of 0.1-400 µmol/L and a detection limit of 0.024 µmol/L. This was attributed to the synergistic advantages between the heterogeneous structures, which produced more electrochemically active sites, effectively shortened the electron transport path, and improved electrocatalytic performance. Consequently, the constructed sensor exhibits high sensitivity, remarkable stability and applicability, and in particular can selectively detect DCF from other structurally similar coexisting analogs, resulting from the unique metal chelation ability. This work paves the way for designing effective bimetallic selenide electrocatalysts and exploring their applications in DCF electrochemical sensing.

8.
Nanotechnology ; 35(38)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38906118

RESUMEN

Herein, we demonstrate an optimization of dye-sensitized solar cells (DSSCs) through the development of single-layer and double-layer configurations. Focusing on the incorporation of brookite and anatase phases in varying ratios, the study aims to determine the optimal composition for enhanced photovoltaic performance. The active layer, composed of anatase- and brookite-TiO2nanoparticles, is further modified with a scattering layer comprising a mixture of anatase nanoparticles and brookite-TiO2in the form of nanocube or rice-like particles. The synthesis of TiO2nanostructures with various morphologies and phase compositions and their subsequent application in single-layer and double-layer DSSCs are presented. The results highlight the superior light-harvesting capabilities achieved through the strategic incorporation of brookite phase into the anatase phase, emphasizing the importance of optimizing the anatase: brookite ratio. The single-layer DSSCs exhibit a peak efficiency of 8.73%, achieved with a composition of 30 wt.% brookite and 70 wt.% anatase at a thickness of 15µms. In the context of double-layer DSSCs, the combined optimization of the active layer composition, scattering layer morphology, and utilization of anatase nanoparticles leads to a remarkable efficiency of 9.18%. These findings underscore the critical role of composition and morphology in enhancing the performance of DSSCs, showcasing the potential for brookite-based DSSCs in solar energy conversion.

9.
Environ Res ; 258: 119395, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38909944

RESUMEN

In this study, we report the development of a novel CuOx(3 wt%)/CoFe2O4 nanocubes (NCs) photocatalyst through simple co-precipitation and wet impregnation methods for the efficient photocatalytic degradation of triclosan (TCS) pollutants. Initially, rod-shaped bare CoFe2O4 was synthesized using a simple co-precipitation technique. Subsequently, CuOx was loaded in various percentages (1, 2, and 3 wt%) onto the surface of bare CoFe2O4 nanorods (NRs) via the wet impregnation method. The synthesized materials were systematically characterized to evaluate their composition, structural and electrical characteristics. The CuOx(3 wt%)/CoFe2O4 NCs photocatalyst exhibited superior photocatalytic degradation efficiency of TCS (89.9%) compared to bare CoFe2O4 NRs (62.1 %), CuOx(1 wt%)/CoFe2O4 (80.1 %), CuOx(2 wt%)/CoFe2O4 (87.0 %) under visible light (VL) irradiation (λ ≥ 420 nm), respectively. This enhanced performance was attributed to the improved separation effectiveness of photogenerated electron (e-) and hole (h+) in CuOx(3 wt%)/CoFe2O4 NCs. Furthermore, the optimized CuOx(3 wt%)/CoFe2O4 NCs exhibited strong stability and reusability in TCS degradation, as demonstrated by three successive cycles. Genetic screening on Caenorhabditis elegans showed that CuOx(3 wt%)/CoFe2O4 NCs reduced ROS-induced oxidative stress during TCS photocatalytic degradation. ROS levels decreased at 30, 60, and 120-min intervals during TCS degradation, accompanied by improved egg hatching rates. Additionally, expression levels of stress-responsible antioxidant proteins like SOD-3GFP and HSP-16.2GFP were significantly normalized. This study demonstrates the efficiency of CuOx(3 wt%)/CoFe2O4 NCs in degrading TCS pollutants, offers insights into toxicity dynamics, and recommends its use for future environmental remediation.


Asunto(s)
Cobalto , Cobre , Triclosán , Triclosán/química , Triclosán/toxicidad , Animales , Cobre/química , Catálisis , Cobalto/química , Compuestos Férricos/química , Compuestos Férricos/toxicidad , Luz , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/efectos de la radiación , Fotólisis , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad
10.
Chemistry ; 30(41): e202400833, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38781011

RESUMEN

It remains a challenge to accomplish colloidal synthesis of noble-metal nanocrystals marked by high quality, large quantity, and batch-to-batch consistency. Here we report a self-airtight setup for achieving robust, reproducible, and scalable production of Ag nanocubes with uniform and controlled sizes from 18 to 60 nm. Different from the conventional open-to-air setup, the self-airtight system makes it practical to stabilize the reaction condition by minimizing the loss of volatile reagents. The new setup also allows us to easily optimize the amount of O2 (from air) trapped in the system, ensuring burst nucleation of single-crystal seeds, followed by their slow growth into nanocubes. Most significantly, the new setup allows for the production of Ag nanocubes at gram quantities without sacrificing uniformity, corner/edge sharpness, controlled size, and high purity across different batches. The availability of high-quality Ag nanocubes in such a large quantity is anticipated to substantially boost their use in applications related to plasmonics, catalysis, and biomedicine.

11.
Talanta ; 277: 126321, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805945

RESUMEN

In this article, ferric ion-doped floral graphite carbon nitride (Fe-CN-3, energy donor) was used to construct the substrate of the immunosensor and copper oxide nanocubes (Cu2O, energy acceptor) were taken as an efficient ECL quenching probe. A sandwich quench electrochemiluminescence (ECL) immunosensor for soluble cytokeratin 19 fragment (Cyfra21-1) detection was preliminarily developed based on a novel resonant energy transfer donor-acceptor pair. Fe-CN-3, a carbon nitride that combines the advantages of metal ion doping as well as morphology modulation, is used in ECL luminophores to provide more excellent ECL performance, which makes a significant contribution to the application and development of carbon nitride in the field of ECL biosensors. The regular shape, high specific surface area and excellent biocompatibility of the quencher Cu2O nanocubes facilitate the labeling of secondary antibodies and the construction of sensors. Meanwhile, as an energy acceptor, the UV absorption spectrum of Cu2O can overlap efficiently with the energy donor's ECL emission spectrum, making it prone to the occurrence of ECL-RET and thus obtaining an excellent quenching effect. These merits of the donor-acceptor pair enable the sensor to have a wide detection range of 0.00005-100 ng/mL and a low detection limit of 17.4 fg/mL (S/N = 3), which provides a new approach and theoretical basis for the clinical detection of lung cancer.


Asunto(s)
Antígenos de Neoplasias , Técnicas Biosensibles , Cobre , Técnicas Electroquímicas , Grafito , Queratina-19 , Mediciones Luminiscentes , Cobre/química , Queratina-19/análisis , Queratina-19/inmunología , Técnicas Electroquímicas/métodos , Humanos , Grafito/química , Técnicas Biosensibles/métodos , Mediciones Luminiscentes/métodos , Inmunoensayo/métodos , Antígenos de Neoplasias/análisis , Antígenos de Neoplasias/inmunología , Límite de Detección , Compuestos de Nitrógeno/química , Nitrilos/química
12.
Talanta ; 276: 126209, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728802

RESUMEN

The rapid development of nanozymes has offered substantial opportunities for the fields of biomedicine, chemical sensing, and food safety. Among these applications, multichannel sensors, with the capability of simultaneously detecting multiple target analytes, hold promise for the practical application of nanozymes in chemical sensing with high detection efficiency. In this study, Rh-decorated Pd nanocubes (Pd-Rh nanocubes) with significantly enhanced peroxidase-like activity are synthesized through the mediation of underpotential deposition (UPD) and subsequently employed to develop a multichannel colorimetric sensor for discriminating tea polyphenols (TPs) and tea authentication. Based on a single reactive unit of efficient catalytic oxidation of 3,3',5,5'-tetramethylbenzidine dihydrochloride (TMB), the nanozyme-based multichannel colorimetric sensor responds to each analyte in as short as 1 min. With the aid of principal component analysis (PCA) and hierarchical cluster analysis (HCA), various TPs and types of tea can be accurately identified. This work not only provides a new type of simply structured and highly active nanozymes but also develops a concise and rapid multichannel sensor for practical application in tea authentication and quality inspection.


Asunto(s)
Colorimetría , Paladio , Polifenoles , , Té/química , Polifenoles/análisis , Polifenoles/química , Colorimetría/métodos , Paladio/química , Bencidinas/química , Nanopartículas del Metal/química , Análisis de Componente Principal , Peroxidasa/química , Catálisis , Oxidación-Reducción
13.
Anal Chim Acta ; 1304: 342579, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38637044

RESUMEN

Plasmon enhanced fluorescent (PEF) with more "hot spots" play a critical role in signal amplified technology to avoid the intrinsic limitation of fluorophore which ascribed to a strong electromagnetic field at the tip structure. However, application of PEF technique to obtain a highly sensitive analysis of medicine was still at a very early stage. Herein, a simple but versatile Ag nanocubes (Agcubes)-based PEF sensor combined with aptamer (Agcubes@SiO2-QDs-Apt) was proposed for highly sensitive detection of berberine hydrochloride (BH). The distance between the plasma Agcubes and the red-emitted CdTe quantum dots (QDs) were regulated by the thickness of silica spacer. The three-dimensional finite-difference time-domain (3D-FDTD) simulation further revealed that Agcubes have a higher electromagnetic field than Ag nanospheres. Compared with PEF sensor, signal QDs-modified aptamer without Agcubes (QDs-Apt) showed a 10-fold higher detection limit. The linear range and detection limit of the Agcubes@SiO2-QDs-Apt were 0.1-100 µM, 87.3 nM, respectively. Furthermore, the PEF sensor was applied to analysis BH in the berberine hydrochloride tablets, compound berberine tablet and urine with good recoveries of 98.25-102.05%. These results demonstrated that the prepared PEF sensor has great potential for drug quality control and clinical analysis.


Asunto(s)
Aptámeros de Nucleótidos , Berberina , Compuestos de Cadmio , Puntos Cuánticos , Fluorescencia , Puntos Cuánticos/química , Compuestos de Cadmio/química , Dióxido de Silicio , Telurio/química , Espectrometría de Fluorescencia/métodos , Aptámeros de Nucleótidos/química , Límite de Detección
14.
Mikrochim Acta ; 191(5): 284, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652331

RESUMEN

A dual-mode (colorimetric/fluorescence) nanoenzyme-linked immunosorbent assay (NLISA) was developed based on Au-Cu nanocubes generating Prussian blue nanoparticles (PBNPs). It is expected that this method can be used to detect the residues of sulfonamides in the field, and solve the problem of long analysis time and high cost of the traditional method. Sulfadimethoxine (SDM) was selected as the proof-of-concept target analyte. The Au-Cu nanocubes were linked to the aptamer by amide interaction, and the Au-Cu nanocubes, SDM and antibody were immobilized on a 96-well plate using the sandwich method. The assay generates PBNPs by oxidising the Cu shells on the Au-Cu nanocubes in the presence of hydrochloric acid, Fe3+ and K3[Fe (CN)6]. In this process, the copper shell undergoes oxidation to Cu2+ and subsequently Cu2 + further quenches the fluorescence of the carbon point. PBNPs exhibit peroxidase-like activity, oxidising 3,3',5,5'-tetramethylbenzidine (TMB) to OX-TMB in the presence of H2O2, which alters the colorimetric signal. The dual-mode signals are directly proportional to the sulfadimethoxine concentration within the range 10- 3~10- 7 mg/mL. The limit of detection (LOD) of the assay is 0.023 ng/mL and 0.071 ng/mL for the fluorescent signal and the colorimetric signal, respectively. Moreover, the assay was successfully applied to determine sulfadimethoxine in silver carp, shrimp, and lamb samples with satisfactory results.


Asunto(s)
Carbono , Colorimetría , Cobre , Ferrocianuros , Sulfadimetoxina , Ferrocianuros/química , Sulfadimetoxina/análisis , Sulfadimetoxina/química , Cobre/química , Colorimetría/métodos , Carbono/química , Límite de Detección , Oro/química , Puntos Cuánticos/química , Fluorometría/métodos , Nanopartículas del Metal/química , Aptámeros de Nucleótidos/química , Nanopartículas/química , Animales , Ensayo de Inmunoadsorción Enzimática/métodos
15.
J Colloid Interface Sci ; 665: 355-364, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38531280

RESUMEN

Transition metal selenides (TMSs) stand out as a promising anode material for sodium-ion batteries (SIBs) owing to their natural resources and exceptional sodium storage capacity. Despite these advantages, their practical application faces challenges, such as poor electronic conductivity, sluggish reaction kinetics and severe agglomeration during electrochemical reactions, hindering their effective utilization. Herein, the dual-carbon-confined CoSe2/FeSe2@NC@C nanocubes with heterogeneous structure are synthesized using ZIF-67 as the template by ion exchange, resorcin-formaldehyde (RF) coating, and subsequent in situ carbonization and selenidation. The N-doped porous carbon promotes rapid electrolyte penetration and minimizes the agglomeration of active materials during charging and discharging, while the RF-derived carbon framework reduces the cycling stress and keeps the integrity of the material structure. More importantly, the built-in electric field at the heterogeneous boundary layer drives electron redistribution, optimizing the electronic structure and enhancing the reaction kinetics of the anode material. Based on this, the nanocubes of CoSe2/FeSe2@NC@C exhibits superb sodium storage performance, delivering a high discharge capacity of 512.6 mA h g-1 at 0.5 A g-1 after 150 cycles and giving a discharge capacity of 298.2 mA h g-1 at 10 A g-1 with a CE close to 100.0 % even after 1000 cycles. This study proposes a viable method to synthesize advanced anodes for SIBs by a synergy effect of heterogeneous interfacial engineering and a carbon confinement strategy.

16.
Small ; 20(32): e2311840, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38470189

RESUMEN

With the recently-booming hydrogen (H2) economy by green H2 as the energy carriers and the newly-emerged exhaled diagnosis by human organ-metabolized H2 as a biomarker, H2 sensing is simultaneously required with fast response, low detection limit, and tolerant stability against humidity, switching, and poisoning. Here, reliable H2 sensing has been developed by utilizing indium oxide nanocubes decorated with palladium and gold nanodots (Pd-Au NDs/In2O3 NCBs), which have been synthesized by combined hydrothermal reaction, annealing, and chemical bath deposition. As-prepared Pd-Au NDs/In2O3 NCBs are observed with surface-enriched NDs and nanopores. Beneficially, Pd-Au NDs/In2O3 NCBs show 300 ppb-low detection limit, 5 s-fast response to 500 ppm H2, 75%RH-high humidity tolerance, and 56 days-long stability at 280 °C. Further, Pd-Au NDs/In2O3 NCBs show excellent stability against switching sensing response, and are tolerant to H2S poisoning even being exposed to 10 ppm H2S at 280 °C. Such excellent H2 sensing may be attributed to the synergistic effect of the boosted Pd-Au NDs' spillover effect and interfacial electron transfer, increased adsorption sites over the porous NCBs' surface, and utilized Pd NDs' affinity with H2 and H2S. Practically, Pd-Au NDs/In2O3 NCBs are integrated into the H2 sensing device, which can reliably communicate with a smartphone.

17.
Angew Chem Int Ed Engl ; 63(14): e202317978, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38357744

RESUMEN

Nanoparticle (NP) characterization is essential because diverse shapes, sizes, and morphologies inevitably occur in as-synthesized NP mixtures, profoundly impacting their properties and applications. Currently, the only technique to concurrently determine these structural parameters is electron microscopy, but it is time-intensive and tedious. Here, we create a three-dimensional (3D) NP structural space to concurrently determine the purity, size, and shape of 1000 sets of as-synthesized Ag nanocubes mixtures containing interfering nanospheres and nanowires from their extinction spectra, attaining low predictive errors at 2.7-7.9 %. We first use plasmonically-driven feature enrichment to extract localized surface plasmon resonance attributes from spectra and establish a lasso regressor (LR) model to predict purity, size, and shape. Leveraging the learned LR, we artificially generate 425,592 augmented extinction spectra to overcome data scarcity and create a comprehensive NP structural space to bidirectionally predict extinction spectra from structural parameters with <4 % error. Our interpretable NP structural space further elucidates the two higher-order combined electric dipole, quadrupole, and magnetic dipole as the critical structural parameter predictors. By incorporating other NP shapes and mixtures' extinction spectra, we anticipate our approach, especially the data augmentation, can create a fully generalizable NP structural space to drive on-demand, autonomous synthesis-characterization platforms.

18.
Small Methods ; : e2301541, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368269

RESUMEN

Environmental pollution is a complex problem that threatens the health and life of animal and plant ecosystems on the planet. In this respect, the scientific community faces increasingly challenging tasks in designing novel materials with beneficial properties to address this issue. This study describes a simple yet effective synthetic protocol to obtain nickel hexacyanoferrate (Ni-HCF) nanocubes as a suitable photocatalyst, which can enable an efficient photodegradation of hazardous anthropogenic organic contaminants in water, such as antibiotics. Ni-HCF nanocubes are fully characterized and their optical and electrochemical properties are investigated. Preliminary tests are also carried out to photocatalytically remove metronidazole (MDZ), an antibiotic that is difficult to degrade and has become a common contaminant as it is widely used to treat infections caused by anaerobic microorganisms. Under simulated solar light, Ni-HCF displays substantial photocatalytic activity, degrading 94.3% of MDZ in 6 h. The remarkable performance of Ni-HCF nanocubes is attributeto a higher ability to separate charge carriers and to a lower resistance toward charge transfer, as confirmed by the electrochemical characterization. These achievements highlight the possibility of combining the performance of earth-abundant catalysts with a renewable energy source for environmental remediation, thus meeting the requirements for sustainable development.

19.
Nanomedicine (Lond) ; 19(4): 303-323, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38270934

RESUMEN

Background: Superparamagnetic iron core iron oxide shell nanocubes have previously shown superior performance in magnetic resonance imaging T2 contrast enhancement compared with spherical nanoparticles. Methods: Iron core iron oxide shell nanocubes were synthesized, stabilized with dimercaptosuccinic acid (DMSA-NC) and physicochemically characterized. MRI contrast enhancement and biocompatibility were assessed in vitro. Results: DMSA-NC showed a transverse relaxivity of 122.59 mM-1·s-1 Fe. Treatment with DMSA-NC did not induce cytotoxicity or oxidative stress in U-251 cells, and electron microscopy demonstrated DMSA-NC localization within endosomes and lysosomes in cells following internalization. Global proteomics revealed dysregulation of iron storage, transport, transcription and mRNA processing proteins. Conclusion: DMSA-NC is a promising T2 MRI contrast agent which, in this preliminary investigation, demonstrates favorable biocompatibility with an astrocyte cell model.


MRI is a powerful tool used in the diagnosis of cancer, strokes and other injuries. An MRI scan can be improved with the use of iron oxide nanoparticles, which enhance the contrast of the image. In this study we have developed cube-shaped iron nanoparticles (nanocubes), which have been previously shown to be more effective at inducing contrast. We demonstrated that iron-based nanocubes do not damage or induce stress in cells and work effectively as an MRI contrast agent. We further analyzed how the nanocubes may affect cell functioning by investigating changes to protein levels in the cells. The results of this study are promising steps towards using iron-based nanocubes as a tool to improve the clarity of MRI scans for medical imaging and diagnosis. Future work must determine whether these nanocubes work effectively and safely in an animal model, which is a critical step in progressing to their use in clinical settings.


Asunto(s)
Glioblastoma , Nanopartículas de Magnetita , Humanos , Hierro , Nanopartículas de Magnetita/química , Glioblastoma/diagnóstico por imagen , Glioblastoma/tratamiento farmacológico , Proteómica , Compuestos Férricos/química , Línea Celular , Medios de Contraste/química , Imagen por Resonancia Magnética/métodos , Succímero/química
20.
Environ Res ; 249: 118093, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38237759

RESUMEN

Plastic pollution has become a major environmental problem because it does not break down and poses risks to ecosystems and human health. This study focuses on the environmentally friendly synthesis of ZnO nanocubes using an extract from Ceropegia omissa H. Huber plant leaves. The primary goal is to investigate the viability of these nanocubes as visible-light photocatalysts for the degradation of bisphenol A (BPA). The synthesized ZnO nanocubes have a highly crystalline structure and a bandgap of 3.1 eV, making them suitable for effective visible-light photocatalysis. FTIR analysis, which demonstrates that the pertinent functional groups are present, demonstrates the chemical bonding and reducing processes that take place in the plant extract. The XPS method also studies zinc metals, oxygen valencies, and binding energies. Under visible light irradiation, ZnO nanocubes degrade BPA by 86% in 30 min. This plant-extract-based green synthesis method provides a long-term replacement for traditional procedures, and visible light photocatalysis has advantages over ultraviolet light. The study's results show that ZnO nanocubes may be good for the environment and can work well as visible light photocatalysts to break down organic pollutants. This adds to what is known about using nanoparticles to clean up the environment. As a result, this study highlights the potential of using environmentally friendly ZnO nanocubes as a long-lasting and efficient method of reducing organic pollutant contamination in aquatic environments.


Asunto(s)
Compuestos de Bencidrilo , Luz , Fenoles , Extractos Vegetales , Contaminantes Químicos del Agua , Óxido de Zinc , Óxido de Zinc/química , Compuestos de Bencidrilo/química , Fenoles/química , Fenoles/análisis , Extractos Vegetales/química , Contaminantes Químicos del Agua/química , Catálisis , Tecnología Química Verde/métodos , Fotólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA