Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.355
Filtrar
1.
Small ; : e2401056, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115137

RESUMEN

One-lung ventilation (OLV) during thoracic surgery often leads to post-operative complications, yet effective pharmacological interventions are lacking. This study reports a baicalin-based metal-coordination nanomedicine with disulfiram (DSF) co-loading to address one-lung ventilation-induced lung injury and reperfusion injury (OLV-LIRI). Baicalin, known for its robust antioxidant properties, suffers from poor water solubility and stability. Leveraging nanotechnology, baicalin's coordination is systematically explored with seven common metal ions, designing iron/copper-mediated binary coordination nanoparticles to overcome these limitations. The self-assembled nanoparticles, primarily formed through metal coordination and π-π stacking forces, encapsulated DSF, ensuring high colloidal stability in diverse physiological matrices. Upon a single-dose administration via endotracheal intubation, the nanoparticles efficiently accumulate in lung tissues and swiftly penetrate the pulmonary mucosa. Intracellularly, baicalin exhibits free radical scavenging activity to suppress inflammation. Concurrently, the release of Cu2+ and DSF enables the in situ generation of CuET, a potent inhibitor of cell pyroptosis. Harnessing these multifaceted mechanisms, the nanoparticles alleviate lung injury symptoms without notable toxic side effects, suggesting a promising preventive strategy for OLV-LIRI.

2.
ACS Appl Bio Mater ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115261

RESUMEN

Melanoma has gained considerable attention due to its high mortality and morbidity rate worldwide. The currently available treatment options are associated with several limitations such as nonspecificity, drug resistance, easy clearance, low efficacy, toxicity-related issues, etc. To this end, nanotechnology has garnered significant attention for the treatment of melanoma. In the present manuscript, we have demonstrated the in vitro and in vivo anticancer activity of silver nitroprusside nanoparticles (abbreviated as AgNNPs) against melanoma. The AgNNPs exhibit cytotoxicity against B16F10 cells, which has been investigated by several in vitro experiments including [methyl 3H]-thymidine incorporation assay, cell cycle and apoptosis analysis by flow cytometry, and ROS generation through DCFDA, DHE, and DAF2A reagents. Further, the internalization of nanoparticles was determined by ICPOES analysis, while their colocalization was analyzed by confocal microscopy. Additionally, JC-1 staining is performed to examine mitochondrial membrane potential (MMP). Cytoskeleton integrity was observed by phalloidin staining. Expression of different markers (Ki-67, cytochrome c, and E-cadherin) was checked using an immunofluorescence assay. The in vivo therapeutic efficacy of AgNNPs has been validated in the melanoma model established by inoculating B16F10 cells into the dorsal right abdomen of C57BL/6J mice. The intraperitoneal administration of AgNNPs reduced melanoma growth and increased the survivability of tumor-bearing mice. The in vivo immunofluorescence studies (Ki-67, CD31, and E-cadherin) and TUNEL assay support the inhibitory and apoptotic nature of AgNNPs toward melanoma, respectively. Furthermore, the various signaling pathways and molecular mechanisms involved in anticancer activity are evaluated by Western blot analysis. These findings altogether demonstrate the promising anticancer potential of AgNNPs toward melanoma.

3.
J Control Release ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39103056

RESUMEN

For medical emergencies, such as acute ischemic stroke, rapid drug delivery to the target site is essential. For many small molecule drugs, this goal is unachievable due to poor solubility that prevents intravenous administration, and less obviously, by extensive partitioning to plasma proteins and red blood cells (RBCs), which greatly slows delivery to the target. Here we study these effects and how they can be solved by loading into nanoscale drug carriers. We focus on fingolimod, a small molecule drug that is FDA-approved for treatment of multiple sclerosis, which has also shown promise in the treatment of stroke. Unfortunately, fingolimod has poor solubility and very extensive partitioning to plasma proteins and RBCs (in whole blood, 86% partitions to RBCs, 13.96% to plasma proteins, and 0.04% is free). We develop a liposomal formulation that slows the partitioning of fingolimod to RBCs and plasma proteins, enables intravenous delivery, and additionally prevents fingolimod toxicity to RBCs. The liposomal formulation nearly completely prevented fingolimod adsorption to plasma proteins (association with plasma proteins was 98.4 ±â€¯0.4% for the free drug vs. 5.6 ±â€¯0.4% for liposome-loaded drug). When incubated with whole blood in vitro, the liposomal formulation greatly slowed partitioning of fingolimod to RBCs and also eliminated deleterious effects of fingolimod on RBC rigidity, morphology, and hemolysis. In vivo, the liposomal formulation delayed fingolimod partitioning to RBCs for over 30 min, a critical time window for stroke. Fingolimod-loaded liposomes showed improved efficacy in a mouse model of post-stroke neuroinflammation, completely sealing the leaky blood-brain barrier (114 ±â€¯11.5% reduction in albumin leak into the brain for targeted liposomes vs. 38 ±â€¯16.5% reduction for free drug). This effect was only seen for liposomes modified with antibodies to enable targeted delivery to the site of action, and not in unmodified, long-circulating liposomes. Thus, loading fingolimod into liposomes prevented partitioning to RBCs and associated toxicities and enabled targeted delivery. This paradigm can be used for tuning the blood distribution of small molecule drugs for the treatment of acute illnesses requiring rapid pharmacologic intervention.

4.
Biomaterials ; 312: 122750, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39126779

RESUMEN

Infiltration of immunosuppressive cells into the breast tumor microenvironment (TME) is associated with suppressed effector T cell (Teff) responses, accelerated tumor growth, and poor clinical outcomes. Previous studies from our group and others identified infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) as critical contributors to immune dysfunction in the orthotopic claudin-low tumor model, limiting the efficacy of adoptive cellular therapy. However, approaches to target these cells in the TME are currently lacking. To overcome this barrier, polymeric micellular nanoparticles (PMNPs) were used for the co-delivery of small molecule drugs activating Toll-like receptors 7 and 8 (TLR7/8) and inhibiting PI3K delta (PI3Kδ). The immunomodulation of the TME by TLR7/8 agonist and PI3K inhibitor led to type 1 macrophage polarization, decreased MDSC accumulation and selectively decreased tissue-resident Tregs in the TME, while enhancing the T and B cell adaptive immune responses. PMNPs significantly enhanced the anti-tumor activity of local radiation therapy (RT) in mice bearing orthotopic claudin-low tumors compared to RT alone. Taken together, these data demonstrate that RT combined with a nanoformulated immunostimulant diminished the immunosuppressive TME resulting in tumor regression. These findings set the stage for clinical studies of this approach.

5.
Drug Des Devel Ther ; 18: 3499-3521, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39132625

RESUMEN

Objective: Nanomedicine represents a transformative approach in biomedical applications. This study aims to delineate the application of nanomedicine in the biomedical field through the strengths, weaknesses, opportunities, and threats (SWOT) analysis to evaluate its efficacy and potential in clinical applications. Methods: The SWOT analysis framework was employed to systematically review and assess the internal strengths and weaknesses, along with external opportunities and threats of nanomedicine. This method provides a balanced consideration of the potential benefits and challenges. Results: Findings from the SWOT analysis indicate that nanomedicine presents significant potential in drug delivery, diagnostic imaging, and tissue engineering. Nonetheless, it faces substantial hurdles such as safety issues, environmental concerns, and high development costs. Critical areas for development were identified, particularly concerning its therapeutic potential and the uncertainties surrounding long-term effects. Conclusion: Nanomedicine holds substantial promise in driving medical innovation. However, successful clinical translation requires addressing safety, cost, and regulatory challenges. Interdisciplinary collaboration and comprehensive strategic planning are crucial for the safe and effective application of nanomedicine.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanomedicina , Humanos , Ingeniería de Tejidos
6.
Front Nutr ; 11: 1408620, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135555

RESUMEN

Polyphenols are a group of naturally occurring compounds that possess a range of biological properties capable of potentially mitigating or preventing the progression of age-related cognitive decline and Alzheimer's disease (AD). AD is a chronic neurodegenerative disease known as one of the fast-growing diseases, especially in the elderly population. Moreover, as the primary etiology of dementia, it poses challenges for both familial and societal structures, while also imposing a significant economic strain. There is currently no pharmacological intervention that has demonstrated efficacy in treating AD. While polyphenols have exhibited potential in inhibiting the pathological hallmarks of AD, their limited bioavailability poses a significant challenge in their therapeutic application. Furthermore, in order to address the therapeutic constraints, several polymer nanoparticles are being explored as improved therapeutic delivery systems to optimize the pharmacokinetic characteristics of polyphenols. Polymer nanoparticles have demonstrated advantageous characteristics in facilitating the delivery of polyphenols across the blood-brain barrier, resulting in their efficient distribution within the brain. This review focuses on amyloid-related diseases and the role of polyphenols in them, in addition to discussing the anti-amyloid effects and applications of polyphenol-based polymer nanoparticles.

7.
Int J Biochem Cell Biol ; 174: 106636, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39089613

RESUMEN

Cellular senescence is a cellular state characterized by irreversible growth arrest, resistance to apoptosis and secretion of inflammatory molecules, which is causally linked to the pathogenesis of many age-related diseases. Besides, there is accumulating evidence that selective removal of senescent cells can benefit therapies for cancer and fibrosis by modulating the inflammatory microenvironment. While the field of so-called senolytics has spawned promising small molecules and peptides for the selective removal of senescent cells, there is still no effective means to detect senescent cells in vivo, a prerequisite for understanding the role of senescence in pathophysiology and to assess the effectiveness of treatments aimed at removing senescent cells. Here, we present a strategy based on an mRNA logic circuit, that yields mRNA-dependent protein expression only when a senescence-specific miRNA signature is present. Following a validation of radiation-induced senescence induction in primary human fibroblasts, we identify miRNAs up- and downregulated in association with cellular senescence using RT-qPCR. Incorporating binding sites to these miRNAs into the 3' untranslated regions of the mRNA logic circuit, we demonstrate the senescence-specific expression of EGFP for detection of senescent cells and of a constitutively active caspase-3 for selective removal. Altogether, our results pave the way for a novel approach to execute an mRNA-based programme specifically in senescent cells aimed at their detection or selective removal.

8.
Nano Lett ; 24(32): 9874-9881, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39096192

RESUMEN

We recently revealed significant variability in protein corona characterization across various proteomics facilities, indicating that data sets are not comparable between independent studies. This heterogeneity mainly arises from differences in sample preparation protocols, mass spectrometry workflows, and raw data processing. To address this issue, we developed standardized protocols and unified sample preparation workflows, distributing uniform protein corona digests to several top-performing proteomics centers from our previous study. We also examined the influence of using similar mass spectrometry instruments on data homogeneity and standardized database search parameters and data processing workflows. Our findings reveal a remarkable stepwise improvement in protein corona data uniformity, increasing overlaps in protein identification from 11% to 40% across facilities using similar instruments and through a uniform database search. We identify the key parameters behind data heterogeneity and provide recommendations for designing experiments. Our findings should significantly advance the robustness of protein corona analysis for diagnostic and therapeutics applications.


Asunto(s)
Nanomedicina , Corona de Proteínas , Proteómica , Corona de Proteínas/química , Corona de Proteínas/análisis , Humanos , Proteómica/métodos , Reproducibilidad de los Resultados , Espectrometría de Masas/métodos , Flujo de Trabajo
9.
Nanomedicine (Lond) ; 19(16): 1487-1506, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39121377

RESUMEN

Mortality from cardiovascular disease (CVD) accounts for over 30% of all deaths globally, necessitating reliable diagnostic tools. Prompt identification and precise diagnosis are critical for effective personalized treatment. Nanotechnology offers promising applications in diagnostics, biosensing and drug delivery for prevalent cardiovascular diseases. Its integration into cardiovascular care enhances diagnostic accuracy, enabling early intervention and tailored treatment plans. By leveraging nanoscale innovations, healthcare professionals can address the complexities of CVD progression and customize interventions based on individual patient needs. Ongoing advancements in nanotechnology continue to shape the landscape of cardiovascular medicine, offering potential for improved patient outcomes and reduced mortality rates from these pervasive diseases.


[Box: see text].


Asunto(s)
Biomarcadores , Enfermedades Cardiovasculares , Nanotecnología , Humanos , Enfermedades Cardiovasculares/diagnóstico , Nanotecnología/métodos , Biomarcadores/análisis , Nanomedicina/métodos , Técnicas Biosensibles/métodos , Sistemas de Liberación de Medicamentos/métodos
10.
Int J Pharm ; : 124571, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39128622

RESUMEN

Nanomedicines comprise multiple components, and particle density is considered an important property that regulates the biodistribution of administered nanomedicines. The density of nanoparticles is characterized by centrifugal methods, such as analytical ultracentrifugation. Particle size and distribution are key physicochemical and quality attributes of nanomedicines. In this study, we developed a novel profiling method applicable to liposomes and lipid nanoparticles (LNPs), based on particle size and density, using centrifugal field-flow fractionation (CF3). We evaluated the elution profiles of PEGylated liposomes of different sizes with various doxorubicin (DOX)-loading amounts using CF3. This method was applied to evaluate the drug release of DOX-loaded liposomes, intra- and inter-batch variability, reconstitution reproducibility of AmBisome®, and elution characteristics of LNPs in COVID-19 vaccines (Comirnaty® and SpikevaxTM). The data obtained in the present study underscore the significance of the proposed methodology and highlight the importance of profiling and characterizing liposomes and LNPs using CF3 fractograms and a multi-angle light-scattering detector.

11.
Artículo en Inglés | MEDLINE | ID: mdl-39129164

RESUMEN

Colorectal cancer is a common malignant tumor with high morbidity and mortality rates, imposing a huge burden on both patients and the healthcare system. Traditional treatments such as surgery, chemotherapy and radiotherapy have limitations, so finding more effective diagnostic and therapeutic tools is critical to improving the survival and quality of life of colorectal cancer patients. While current tumor targeting research mainly focuses on exploring the function and mechanism of molecular targets and screening for excellent drug targets, it is crucial to test the efficacy and mechanism of tumor cell therapy that targets these molecular targets. Selecting the appropriate drug carrier is a key step in effectively targeting tumor cells. In recent years, nanoparticles have gained significant interest as gene carriers in the field of colorectal cancer diagnosis and treatment due to their low toxicity and high protective properties. Nanoparticles, synthesized from natural or polymeric materials, are NM-sized particles that offer advantages such as low toxicity, slow release, and protection of target genes during delivery. By modifying nanoparticles, they can be targeted towards specific cells for efficient and safe targeting of tumor cells. Numerous studies have demonstrated the safety, efficiency, and specificity of nanoparticles in targeting tumor cells, making them a promising gene carrier for experimental and clinical studies. This paper aims to review the current application of nanoparticles in colorectal cancer diagnosis and treatment to provide insights for targeted therapy for colorectal cancer while also highlighting future prospects for nanoparticle development.

13.
J Nanobiotechnology ; 22(1): 471, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118143

RESUMEN

Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease, while there is a lack of pharmaceutical interventions to halt AAA progression presently. To address the multifaceted pathology of AAA, this work develops a novel multifunctional gene delivery system to simultaneously deliver two siRNAs targeting MMP-2 and MMP-9. The system (TPNs-siRNA), formed through the oxidative polymerization and self-assembly of epigallocatechin gallate (EGCG), efficiently encapsulates siRNAs during self-assembly. TPNs-siRNA safeguards siRNAs from biological degradation, facilitates intracellular siRNA transfection, promotes lysosomal escape, and releases siRNAs to silence MMP-2 and MMP-9. Additionally, TPNs, serving as a multi-bioactive material, mitigates oxidative stress and inflammation, fosters M1-to-M2 repolarization of macrophages, and inhibits cell calcification and apoptosis. In experiments with AAA mice, TPNs-siRNA accumulated and persisted in aneurysmal tissue after intravenous delivery, demonstrating that TPNs-siRNA can be significantly distributed in macrophages and VSMCs relevant to AAA pathogenesis. Leveraging the carrier's intrinsic multi-bioactive properties, the targeted siRNA delivery by TPNs exhibits a synergistic effect for enhanced AAA therapy. Furthermore, TPNs-siRNA is gradually metabolized and excreted from the body, resulting in excellent biocompatibility. Consequently, TPNs emerges as a promising multi-bioactive nanotherapy and a targeted delivery nanocarrier for effective AAA therapy.


Asunto(s)
Aneurisma de la Aorta Abdominal , Metaloproteinasa 9 de la Matriz , Ratones Endogámicos C57BL , Nanopartículas , ARN Interferente Pequeño , Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Animales , Ratones , Nanopartículas/química , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Polifenoles/química , Polifenoles/farmacología , Catequina/análogos & derivados , Catequina/química , Catequina/farmacología , Té/química , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Humanos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Técnicas de Transferencia de Gen , Estrés Oxidativo/efectos de los fármacos , Células RAW 264.7 , Apoptosis/efectos de los fármacos
14.
Nanomaterials (Basel) ; 14(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39120405

RESUMEN

In the context of advanced nanomaterials research, nanogels (NGs) have recently gained broad attention for their versatility and promising biomedical applications. To date, a significant number of NGs have been developed to meet the growing demands in various fields of biomedical research. Summarizing preparation methods, physicochemical and biological properties, and recent applications of NGs may be useful to help explore new directions for their development. This article presents a comprehensive overview of the latest NG synthesis methodologies, highlighting advances in formulation with different types of hydrophilic or amphiphilic polymers. It also underlines recent biomedical applications of NGs in drug delivery and imaging, with a short section dedicated to biosafety considerations of these innovative nanomaterials. In conclusion, this article summarizes recent innovations in NG synthesis and their numerous applications, highlighting their considerable potential in the biomedical field.

15.
Eur J Pharm Biopharm ; : 114446, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39122052

RESUMEN

Efficient tumour treatment is hampered by the poor selectivity of anticancer drugs, resulting in scarce tumour accumulation and undesired off-target effects. Nano-sized drug-delivery systems in the form of nanoparticles (NPs) have been proposed to improve drug distribution to solid tumours, by virtue of their ability of passive and active tumour targeting. Despite these advantages, literature studies indicated that less than 1% of the administered NPs can successfully reach the tumour mass, highlighting the necessity for more efficient drug transporters in cancer treatment. Living cells, such as blood cells, circulating immune cells, platelets, and stem cells, are often found as an infiltrating component in most solid tumours, because of their ability to naturally circumvent immune recognition, bypass biological barriers, and reach inaccessible tissues through innate tropism and active motility. Therefore, the tumour-homing ability of these cells can be harnessed to design living cell carriers able to improve the transport of drugs and NPs to tumours. Albeit promising, this approach is still in its beginnings and suffers from difficult scalability, high cost, and poor reproducibility. In this review, we present an overview of the most common cell transporters of drugs and NPs, and we discuss how different cell types interact with biological barriers to deliver cargoes of various natures to tumours. Finally, we analyse the different techniques used to load drugs or NPs in living cells and discuss their advantages and disadvantages.

16.
ACS Nano ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110092

RESUMEN

Two-dimension graphene oxide (GO) nanosheets with high and low serum protein binding profiles (high/low hard-bound protein corona/HChigh/low) are used in this study as model materials and screening tools to investigate the underlying roles of the protein corona on nanomaterial toxicities in vivo. We proposed that the in vivo biocompatibility/nanotoxicity of GO is protein corona-dependent and host immunity-dependent. The hypothesis was tested by injecting HChigh/low GO nanosheets in immunocompetent ICR/CD1 and immunodeficient NOD-scid II2rγnull mice and performed histopathological and hematological evaluation studies on days 1 and 14 post-injection. HClow GO induced more severe acute lung injury compared to HChigh GO in both immunocompetent and immunodeficient mice, with the effect being particularly pronounced in immunocompetent animals. Additionally, HClow GO caused more significant liver injury in both types of mice, with immunodeficient mice being more susceptible to its hepatotoxic effects. Moreover, administration of HClow GO resulted in increased hematological toxicity and elevated levels of serum pro-inflammatory cytokines in immunocompromised and immunocompetent mice, respectively. Correlation studies were conducted to explore the impact of distinct protein corona compositions on resulting toxicities in both immunocompetent and immunodeficient mice. This facilitated the identification of consistent patterns, aligning with those observed in vitro, thus indicating a robust in vitro-in vivo correlation. This research will advance our comprehension of how hard corona proteins interact with immune cells, leading to toxicity, and will facilitate the development of improved immune-modulating nanomaterials for therapeutic purposes.

17.
Mol Cancer ; 23(1): 156, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095771

RESUMEN

BACKGROUND: Elevated microRNA-155 (miR-155) expression in non-small-cell lung cancer (NSCLC) promotes cisplatin resistance and negatively impacts treatment outcomes. However, miR-155 can also boost anti-tumor immunity by suppressing PD-L1 expression. Therapeutic targeting of miR-155 through its antagonist, anti-miR-155, has proven challenging due to its dual molecular effects. METHODS: We developed a multiscale mechanistic model, calibrated with in vivo data and then extrapolated to humans, to investigate the therapeutic effects of nanoparticle-delivered anti-miR-155 in NSCLC, alone or in combination with standard-of-care drugs. RESULTS: Model simulations and analyses of the clinical scenario revealed that monotherapy with anti-miR-155 at a dose of 2.5 mg/kg administered once every three weeks has substantial anti-cancer activity. It led to a median progression-free survival (PFS) of 6.7 months, which compared favorably to cisplatin and immune checkpoint inhibitors. Further, we explored the combinations of anti-miR-155 with standard-of-care drugs, and found strongly synergistic two- and three-drug combinations. A three-drug combination of anti-miR-155, cisplatin, and pembrolizumab resulted in a median PFS of 13.1 months, while a two-drug combination of anti-miR-155 and cisplatin resulted in a median PFS of 11.3 months, which emerged as a more practical option due to its simple design and cost-effectiveness. Our analyses also provided valuable insights into unfavorable dose ratios for drug combinations, highlighting the need for optimizing dose regimens to prevent antagonistic effects. CONCLUSIONS: This work bridges the gap between preclinical development and clinical translation of anti-miR-155 and unravels the potential of anti-miR-155 combination therapies in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , MicroARNs/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/mortalidad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Nivel de Atención , Investigación Biomédica Traslacional
18.
Biomark Res ; 12(1): 77, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097732

RESUMEN

Cancer immunotherapy has sparked a wave of cancer research, driven by recent successful proof-of-concept clinical trials. However, barriers are emerging during its rapid development, including broad adverse effects, a lack of reliable biomarkers, tumor relapses, and drug resistance. Integration of nanomedicine may ameliorate current cancer immunotherapy. Ultra-large surface-to-volume ratio, extremely small size, and easy modification surface of nanoparticles enable them to selectively detect cells and kill cancer cells in vivo. Exciting synergistic applications of the two approaches have emerged in treating various cancers at the intersection of cancer immunotherapy and cancer nanomedicine, indicating the potential that the combination of these two therapeutic modalities can lead to new paradigms in the treatment of cancer. This review discusses the status of current immunotherapy and explores the possible opportunities that the nanomedicine platform can make cancer immunotherapy more powerful and precise by synergizing the two approaches.

19.
Artículo en Inglés | MEDLINE | ID: mdl-39109509

RESUMEN

Radiotherapy is an invaluable tool in the treatment of cancer. However, when used as a monotherapy, it fails to provide curative outcomes. Chemotherapy drugs are often included to boost the effects of radiation. Key classes of radiosensitizing drugs include platinum compounds, anthracyclines, antimetabolites, taxanes, topoisomerase inhibitors, alkylating agents, and DNA damage repair inhibitors. Chemoradiotherapy suffers from not only systemic toxicities from chemotherapy drugs but also synergistic radiation toxicity as well. It is critical to deliver radiosensitizing molecules to tumor cells while avoiding adjacent healthy tissues. Currently, nanomedicine provides an avenue for tumor specific delivery of radiosensitizers. Nanoscale delivery vehicles can be synthesized from lipids, polymers, or inorganic materials. Additionally, nanomedicine encompasses stimuli responsive particles including prodrug formulation for tumor specific activation. Clinically, nanomedicine and radiotherapy are intertwined with approved formulation including DOXIL and Abraxane. Though many challenges remain, the ongoing progress evidences a promising future for both nanomedicine and chemoradiotherapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Asunto(s)
Quimioradioterapia , Sistemas de Liberación de Medicamentos , Nanomedicina , Neoplasias , Humanos , Animales , Neoplasias/tratamiento farmacológico , Antineoplásicos/química , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Fármacos Sensibilizantes a Radiaciones/química
20.
Adv Drug Deliv Rev ; : 115419, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111358

RESUMEN

RNA medicines represent a paradigm shift in treatment and prevention of critical diseases of global significance, e.g., infectious diseases. The highly successful messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were developed at record speed during the coronavirus disease 2019 pandemic. A consequence of this is exceptionally shortened vaccine development times, which in combination with adaptability makes the RNA vaccine technology highly attractive against infectious diseases and for pandemic preparedness. Here, we review state of the art in the design and delivery of RNA vaccines for infectious diseases based on different RNA modalities, including linear mRNA, self-amplifying RNA, trans-amplifying RNA, and circular RNA. We provide an overview of the clinical pipeline of RNA vaccines for infectious diseases, and present analytical procedures, which are paramount for characterizing quality attributes and guaranteeing their quality, and we discuss future perspectives for using RNA vaccines to combat pathogens beyond SARS-CoV-2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA