RESUMEN
This study introduces an innovative approach for quantifying isomeric pollutants utilizing an amperometric sensor. The determination of the isomers hydroquinone and catechol is based on the use of a glassy carbon electrode modified with Cu@PtPd/C nanoparticles (Cu@PtPd/C/GCE) in core-shell form, showing significant electrocatalytic activity in the oxidation of the later compounds. The determination was carried out at two different potentials: one at which where only hydroquinone is oxidized, and another in which where both hydroquinone and catechol are oxidized. Using these potentials, two calibration curves were built, one for the quantification of hydroquinone and the other for both isomers. Subsequently, the quantification of catechol was performed using a strategy based on the calculation of a difference using the information collected in the first step. The experiments using hydrogen peroxide as a redox probe demonstrate a clear synergistic effect in the catalytic reduction of hydrogen peroxide at -0.100 V, when Pt, Pd and Cu are incorporated into the core-shell nanostructure. The best performance was achieved with Cu@PtPd/C/GCE 1.00 mg mL-1. For the selected sensor, the analytical parameters are very competitive compared to similar devices reported in recent years for hydroquinone and catechol, with comparable linearity ranges of 0.010-0.200 mmol L-1 (hydroquinone) and 0.005-0.500 mmol L-1 (catechol), low limits of detection (LODs) of 14.0 nmol L-1 (S/N = 3.3) and 1.75 nmol L-1 (S/N = 3.3) for hydroquinone and catechol. The resulting sensor platform has been successfully applied for the quantification of hydroquinone and catechol in river and tap water and could be a promising candidate for environmental monitoring and drinking water safety.
RESUMEN
This contribution describes the development of a simple, fast, cost-effective, and sensitive impedimetric immunosensor for quantifying bovine tuberculosis (TB) in bovine serum samples. The construction of the immunosensor involved immobilizing the purified protein derivative (PPD) of M. bovis onto a screen-printed electrode that was modified with gold nanoparticles (AuNPs) and a polypyrrole (pPy) film synthesized electrochemically. The immunosensor exhibited a linear range from 0.5 µg mL-1 to 100 µg mL-1 and achieved a limit of detection (LD) of 100 ng mL-1 for the detection of anti-M. bovis antibody. The recovery percentages obtained in bovine serum samples were excellent, ranging between 98 % and 103 %. This device presents several advantages over alternative methods for determining TB in bovine serum samples. These include direct, in situ measurement without the need for pre-treatment, utilization of small volumes, thus avoiding harmful solvents and expensive reagents, and portability. In addition, the immunosensor exhibits both physical and chemical stability, retaining effectiveness even after 30 days of modification. This allows simultaneous incubations and facilitates large-scale detection. Hence, this immunosensor presents itself as a promising diagnostic tool for detecting anti-M. bovis antibodies in bovine serum. It serves as a viable alternative to tuberculin and ELISA tests.
Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Oro , Nanopartículas del Metal , Tuberculosis Bovina , Animales , Bovinos , Tuberculosis Bovina/diagnóstico , Tuberculosis Bovina/sangre , Tuberculosis Bovina/inmunología , Oro/química , Técnicas Electroquímicas/métodos , Inmunoensayo/métodos , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Mycobacterium bovis/inmunología , Polímeros/química , Pirroles/química , Electrodos , Límite de Detección , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunologíaRESUMEN
In biological systems, nanoparticles interact with biomolecules, which may undergo protein corona formation that can result in noncontrolled aggregation. Therefore, comprehending the behavior and evolution of nanoparticles in the presence of biological fluids is paramount in nanomedicine. However, traditional lab-based colloid methods characterize diluted suspensions in low-complexity media, which hinders in-depth studies in complex biological environments. Here, we apply X-ray photon correlation spectroscopy (XPCS) to investigate silica nanoparticles (SiO2) in various environments, ranging from low to high complex biological media. Interestingly, SiO2 revealed Brownian motion behavior, irrespective of the complexity of the chosen media. Moreover, the SiO2 surface and media composition were tailored to underline the differences between a corona-free system from protein corona and aggregates formation. Our results highlighted XPCS potential for real-time nanoparticle analysis in biological media, surpassing the limitations of conventional techniques and offering deeper insights into colloidal behavior in complex environments.
Asunto(s)
Nanopartículas , Corona de Proteínas , Dióxido de Silicio , Dióxido de Silicio/química , Nanopartículas/química , Corona de Proteínas/química , Fotones , Coloides/química , Propiedades de SuperficieRESUMEN
Silver nanoparticles (AgNPs) synthesized through green synthesis routes are widely used as antimicrobial agents due to their advantages such as biocompatibility, stability, sustainability, speed and cost-effectiveness. Although AgNPs appear to be more potent than silver ions, the mechanisms related to their antibacterial activity are not yet fully understood. The most common proposed mechanism of AgNPs' toxicity so far is the release of silver ions and/or specific functions of the particles. In this context, the present study aimed to investigate the mechanisms of action of AgNPs synthesized using noni fruit peels (Morinda citrifolia) against the phytopathogen Xanthomonas campestris pv. campestris (Xcc) through proteomics. Xcc was treated with AgNPs (32 µM), AgNO3 (32 µM), or received no treatment (Ctrl - control condition), and its proteomic response was comprehensively characterized to elucidate the antimicrobial mechanisms of AgNPs in the phytopathogenic microorganism. A total of 352 differentially abundant proteins were identified. Most proteins were regulated in the AgNPs × Ctrl and AgNPs × AgNO3 comparisons/conditions. When Xcc treated with 32 µM AgNPs were compared to controls, the results showed 134 differentially abundant proteins, including 107 increased and 27 decreased proteins. In contrast, when Xcc treated with 32 µM AgNO3 were compared to Ctrl, the results showed only 14 differentially abundant proteins, including 10 increased proteins and 4 decreased proteins. Finally, when Xcc treated with 32 µM AgNPs were compared to Xcc treated with 32 µM AgNO3, the results showed 204 differentially abundant proteins, including 75 increased proteins and 129 decreased proteins. Gene ontology enrichment analysis revealed that most of the increased proteins were involved in important biological processes such as metal ion homeostasis, detoxification, membrane organization, metabolic processes related to amino acids and carbohydrates, lipid metabolic processes, proteolysis, transmembrane transport, and others. The AgNPs used in this study demonstrated effective antimicrobial activity against the phytopathogenic bacteria Xcc. Furthermore, the obtained results contribute to a better understanding of the mechanisms of action of AgNPs in Xcc and may aid in the development of strategies to control Xcc in brassica.
RESUMEN
Most commercial anticancer nanomedicines are administered intravenously. This route is fast and precise as the drug enters directly into the systemic circulation, without undergoing absorption processes. When nanoparticles come into direct contact with the blood, however, they interact with physiological components that can induce colloidal destabilization and/or changes in their original biochemical identity, compromising their ability to selectively accumulate at target sites. In this way, these systems usually lack active targeting, offering limited therapeutic effectiveness. In the literature, there is a paucity of in-depth studies in complex environments to evaluate nanoparticle stability, protein corona formation, hemolytic activity, and targeting capabilities. To address this issue, fluorescent silica nanoparticles (SiO2NPs) are here functionalized with zwitterionic (kinetic stabilizer) and folate groups (targeting agent) to provide selective interaction with tumor cell lines in biological media. The stability of these dually functionalized SiO2NPs is preserved in unprocessed human plasma while yielding a decrease in the number of adsorbed proteins. Experiments in murine blood further proved that these nanoparticles are not hemolytic. Remarkably, the functionalized SiO2NPs are more internalized by tumor cells than their healthy counterparts. Investigations of this nature play a crucial role in garnering results with greater reliability, allowing the development of nanoparticle-based pharmaceutical drugs that exhibit heightened efficacy and reduced toxicity for medical purposes.
RESUMEN
In this study, we achieved the biosynthesis of novel 7-8 nm iron-oxide nanoparticles in the presence of different concentrations (5 to 50% w/v) of commercial white quinoa extract. Initially, quinoa extract was prepared at various concentrations by a purification route. The biosynthesis optimization was systematically monitored by X-ray diffraction, and the Rietveld quantitative analysis showed the presence of goethite (5 to 10 wt.%) and maghemite phases. The first phase disappeared upon increasing the organic loading (40 and 50% w/v). The organic loading was corroborated by thermogravimetric measurements, and it increased with quinoa extract concentration. Its use reduces the amount of precipitation agent at high quinoa extract concentrations with the formation of magnetic nanoparticles with hard ferrimagnetic character (42 and 11 emu g-1). The enrichment of hydroxyl groups and the negative zeta potential above pH = 7 were corroborated by a reduction in the point of zero charge in all the samples. For alkaline values, the zeta potential values were above the stability range, indicating highly stable chemical species. The evidence of hydroxyl and amide functionalization was qualitatively observed using infrared analysis, which showed that the carboxyl (quercetin/kaempferol), amide I, and amide III chemical groups are retained after biosynthesis. The resultant biosynthesized samples can find applications in environmental remediation due to the affinity of the chemical agents present on the particle surfaces and easy-to-handle them magnetically.
RESUMEN
Water repellency has significant potential in applications like self-cleaning coatings, anti-staining textiles, and electronics. This study introduces a novel nanocomposite system incorporating functionalized Al2O3 and CeO2 nanoparticles within a polyurethane matrix to achieve hydrophobic and UV-blocking properties. The nanoparticles were functionalized using an octadecyl phosphonic acid solution and characterized by FTIR and XPS, confirming non-covalent functionalization. Spin-coated polyurethane coatings with functionalized and non-functionalized Al2O3, CeO2, and binary Al2O3-CeO2 nanoparticles were analyzed. The three-layered Al2O3-CeO2-ODPA binary system achieved a contact angle of 166.4° and 85% transmittance in the visible range. Incorporating this binary functionalized system into a 0.4% w/v polyurethane solution resulted in a nanocomposite with 75% visible transmittance, 60% at 365 nm UV, and a 147.7° contact angle after three layers. These findings suggest that ODPA-functionalized nanoparticles, when combined with a polymer matrix, offer a promising approach to developing advanced hydrophobic and UV-protective coatings with potential applications across various industrial sectors.
RESUMEN
Within the field of nanomedicine, which is revolutionizing cancer treatment, solid lipid nanoparticles (SLNs) have shown advantages over conventional chemotherapy when tested on cancer cells in preclinical studies. SLNs have proven to be an innovative strategy for the treatment of triple-negative breast cancer cells, providing greater efficiency than existing treatments in various studies. The encapsulation of antineoplastic drugs in SLNs has facilitated a sustained, controlled, and targeted release, which enhances therapeutic efficiency and reduces adverse effects. Moreover, the surface of SLNs can be modified to increase efficiency. For instance, the coating of these particles with polyethylene glycol (PEG) decreases their opsonization, resulting in a longer life in the circulatory system. The creation of positively charged cationic SLNs (cSLNs), achieved by the utilization of surfactants or ionic lipids with positively charged structural groups, increases their affinity for cell membranes and plasma proteins. Hyaluronic acid has been added to SLNs so that the distinct pH of tumor cells would stimulate the release of the drug and/or genetic material. The current review summarizes the recent research on SLNs, focusing on the encapsulation and transport of therapeutic agents with a cytotoxic effect on triple-negative breast cancer.
Asunto(s)
Antineoplásicos , Lípidos , Nanopartículas , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Humanos , Nanopartículas/química , Femenino , Lípidos/química , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/química , Portadores de Fármacos/química , Animales , Sistemas de Liberación de Medicamentos , Nanomedicina/métodos , LiposomasRESUMEN
The effluent generated by textile industries is among the most polluting to the environment. Dyes such as methylene blue (MB) and indigo blue (IB) are used in cotton dyeing. This work proposes to evaluate the potential of in natura (BIN) and nanomodified (BNP) bamboo (Phyllostachys aurea) biomass as biosorbents for the removal of MB and IB dyes in an aqueous medium under high salinity conditions. These materials were characterized by Fourier transform infrared (FTIR) and X-ray (XRD) spectroscopies and scanning electron microscopy (SEM) to investigate their morphology and interaction with the dyes and the nanoparticles. The FTIR spectra revealed the existence of hydroxyl and carbonyl groups, ethers, phenols, and aromatic compounds, indicating the presence of a lignocellulosic structure. XRD and SEM analyses confirmed the effectiveness of the nanocomposite synthesis process. The dyes were quantified by ultraviolet-visible spectroscopy (UV/Vis). The material's pH at the point of zero charge (pHPZC) was 5.52 (BIN) and 4.84 (BNP), and the best IB and MB sorption pH were 3.0 and 9.0 for BNP, respectively, employing 30 min of contact time. The material sorption capacity (Qexp) was assessed using batch procedures, in which 100-1000 mg/L dye concentrations were tested with a 0.5 g/L adsorbent dose. The dye's Qexp for BIN and BNP was 25.41 ± 0.58 and 23.42 ± 0.07 mg/g (MB) and 84.26 ± 1.1 and 130.81 ± 0.20 mg/g (IB), respectively. The kinetic model that best fit BNP experimental data was the pseudo-2nd-order with r2 = 0.99868 (MB) and r2 = 0.99873 (IB), and Freundlich, D-R, and Temkin isotherms best fit the dye sorption data. The bamboo nanomodification facilitates the biosorbent removal from the medium after sorption, enabling large-scale studies and industrial applications-the investigated materials provided promising adsorption features for removing contaminant dyes in saline water.
RESUMEN
OBJECTIVE: To develop a treatment that enhances recovery from envenomation-induced lesions caused by Bothrops jararaca venom by using ultrasound in combination with gold nanoparticles (GNPs). METHODS: A total of 108 Swiss mice were arranged into nine groups. The animals underwent necrotic induction with 250 µg B. jararaca venom (BjV) and were treated with ultrasound (U) at 1 MHz frequency at an intensity of 0.8 W/cm² for 5 min, 30 mg/L GNPs, and anti-bothropic serum (AS) in the following combinations: saline solution (SS); BjV; BjV + AS; BjV + AS + U; BjV + GNPs + AS; BjV + GNPs + AS + U; BjV + GNPs; BjV + GNPs + U; and BjV + U. The necrotic area, histology, oxidative stress, oxidative damage, and anti-oxidant system were assessed to evaluate the effects of the treatments. RESULTS: Treatments that included GNPs, U, and/or AS demonstrated reductions in necrotic area, increases in angiogenesis and fibroblast means, decreases in inflammatory infiltrates, and improvements in collagen synthesis. Additionally, there was an increase in oxidants and oxidant damage within the gastrocnemius muscle, along with an increase in anti-oxidants. Furthermore, systemic effects appear to have been achieved, improving the anti-oxidant system at the cardiovascular and renal levels. CONCLUSION: The use of GNPs and U may be effective at treating lesions caused by B. jararaca snake venom.
RESUMEN
Microalgae are susceptible to most pollutants in aquatic ecosystems and can be potentially damaged by silver nanoparticles (AgNPs). This study aims to clarify the potential consequences of Chlorella vulgaris internalizing AgNPs. The exposure of C. vulgaris to AgNPs stabilized with citrate led to the accumulation of NPs in the cell wall, increasing permeability, which allowed the entry of AgNPs and Ag + ions resulting from the dissolution of AgNPs. Ag + accumulated inside the cell could be converted into AgNPs (endogenous) due to the reducing potential of the cytoplasm. Both exogenous and endogenous AgNPs caused damage to all biological structures of the algae, as demonstrated by TEM images. This damage included the disorganization of chloroplasts, deposition of AgNPs on starch granules, and increased amounts of lipids, starch granules, exopolysaccharides, plastoglobuli, and cell diameters. These changes caused cell death by altering cell viability and interfering with organelle functions, possibly due to reactive oxygen species generated by nanoparticles, as shown in a lipid bilayer model. These findings highlight the importance of considering the exposure risks of AgNPs in a worldwide distributed chlorophyte.
Asunto(s)
Chlorella vulgaris , Nanopartículas del Metal , Microalgas , Especies Reactivas de Oxígeno , Plata , Plata/metabolismo , Plata/farmacología , Chlorella vulgaris/efectos de los fármacos , Chlorella vulgaris/metabolismo , Chlorella vulgaris/crecimiento & desarrollo , Nanopartículas del Metal/química , Microalgas/metabolismo , Microalgas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Microscopía Electrónica de Transmisión , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Cloroplastos/metabolismo , Cloroplastos/efectos de los fármacosRESUMEN
Ultrasmall nanoparticles (usNPs) have emerged as promising theranostic tools in cancer nanomedicine. With sizes comparable to globular proteins, usNPs exhibit unique physicochemical properties and physiological behavior distinct from larger particles, including lack of protein corona formation, efficient renal clearance, and reduced recognition and sequestration by the reticuloendothelial system. In cancer treatment, usNPs demonstrate favorable tumor penetration and intratumoral diffusion. Active targeting strategies, incorporating ligands for specific tumor receptor binding, serve to further enhance usNP tumor selectivity and therapeutic performance. Numerous preclinical studies have already demonstrated the potential of actively targeted usNPs, revealing increased tumor accumulation and retention compared to non-targeted counterparts. In this review, we explore actively targeted inorganic usNPs, highlighting their biological properties and behavior, along with applications in both preclinical and clinical settings.
RESUMEN
Cancer is the second most deadly disease worldwide, and the most traditional approaches such as chemotherapy still face limitations associated to drug dosage and off-target side effects. To address these issues, we propose the simultaneous administration of 4-Nitrochalcone (4NC) and Doxorubicin (DOX) using beeswax based nanostructured lipid carriers (NLCs). The co-encapsulation of 4NC and DOX in the beeswax based NLCs was performed using the water/oil/water double emulsion technique in association with the melt dispersion approach. The system composed by semi-spherical NLCs with an average diameter around 200 nm and narrow size distribution, displayed colloidal stability before and after redispersion, keeping the zeta potential below -30 mV. The antitumor activity of the nanoparticles was screened on different tumor cell lines, and the induced cellular death and internal ROS levels were analyzed on hepatocarcinoma cells, which were found to be more affected by the combination of 4NC and DOX. The results indicated that 4NC + DOX-NCLs could promote cytotoxicity and oxidative damage-mediated apoptosis in a HepG-2 cell line.
RESUMEN
Antibiotic resistance is an increasing threat, requiring novel therapeutic solutions. Metal nanoparticles e.g., zinc oxide nanoparticles (ZnO NPs) exhibited the potential against many bacterial pathogens. Strains of Salmonella enterica serovar Typhi resistant to ceftriaxone were reported first from Pakistan in 2016. Since then, S. Typhi is a pathogen of concern globally owing to its rapidly emerging resistance potential against many last resort antibiotics. In the present study, in vitro and in vivo antimicrobial activity of ZnO NPs against multidrug resistant (MDR) and extensively drug resistant (XDR) Salmonella Typhi strains from Pakistan was evaluated. Zinc oxide green nanoparticles (ZnO GNPs), synthesized from Aloe vera, were characterized by SEM, XRD, UV-vis and Raman spectroscopy. In vitro antibacterial activity of two different concentrations of ZnO GNPs (7 and 15%) was checked using agar well diffusion method. Further, broth microdilution and time kill assays were performed using the ZnO GNPs. In vivo assays were conducted in BALB/c mice sepsis models. In all the three methods, agar well diffusion assay broth microdilution and time kill assay, different zinc oxide dihydrate precursor concentrations had shown the antibacterial activity. The minimum inhibitory concentration (MIC) of ZnO GNPs nanoparticles against MDR and XDR S. Typhi strains was found as 16 to 64 µg/ml. In vivo experiment has shown a significant decrease in CFU/ml in the mice treated with ZnO GNPs as compared to the control group. Our findings have revealed that ZnO GNPs have significant antibacterial activity against MDR and XDR S. Typhi, both in vitro and in vivo.
RESUMEN
This study explored the migration of follicular fluid (FF)-derived extracellular vesicles (EVs) of the uterine environment to the bloodstream and their interaction with neutrophils in vivo and in vitro. For the in vivo experiment, six Nellore heifers (Bos indicus) received an intrauterine infusion seven days after ovulation with 1X PBS only (sham group; n=1), 1X PBS stained with lipophilic dye PKH26 (control group; n=2), or FF-derived EVs stained with PKH26 (treated group; n=3). Plasma was collected at 0, 10, 30, 60-, 180-, 360-, 720-, and 1440-min post-infusion to obtained EVs for analysis by nano flow cytometry. Labeled EVs were present in the bloodstream at 30- and 60-min post-infusion in the treatment group. Additionally, plasma derived-EVs from all groups were positive for Calcein-AM, Alix, Syntenin, and Calnexin, which confirm the presence of EVs. The second experiment utilized the plasma-derived EVs from the heifers from 30 and 60 min timepoints to evaluate if neutrophils can uptake EVs in vitro. As results, it was possible to observe the presence of labeled EVs in neutrophils treated with plasma derived-EVs from the treatment group. In summary, our results suggest that labeled EVs can migrate from the uterine environment rapidly and interact with circulating immune cells in bovine.
RESUMEN
In this work, bismuth ferrites (BFO) nanoparticles were produced in the form of using sol-gel technique, followed by annealing in a tube furnace in temperatures from 400 °C to 650 ºC. X-ray diffraction (XRD) results showed the formation of small sizes nanoparticles (NPs) with high purity. Structural analysis displayed that annealing at 600 ºC could make BFO NPs be fitted to rhombohedral space group (R3c), with small quantity of spurious phases. The sizes of the BFO nanoparticles determined by transmission electron microscopy (HRTEM) are between 50 to 100 nm. To evaluate the efficiency of BFO in antimicrobial susceptibility tests, the nanoparticles were dispersed through nanoemulsion and tested agar diffusion method and dilution in a 96 well plate using a Gram positive strains (Staphylococcus aureus) and Gram negative strain (Escherichia coli). The antibacterial activity of the BFO NPs was partially tested at concentrations of 2 mg/mL with MIC greater than 60 µg/mL for both bacteria.
RESUMEN
Due to the increasing occurrence of drug resistant urinary tract infections (UTI) among children, there is a need to investigate alternative effective treatment protocols such as nanoparticles. Flagella and fimbriae are primary factors contributing the virulence of urinary tract infecting bacteria. The aim of this study was to assess the antibacterial effects of zinc oxide nanoparticles which have been synthesized using both chemical and green methods on multi-drug resistant (MDR) uropathogenic bacteria encoding fli and fim genes and investigating their binding ability to bacterial appendage proteins. A total of 30 urine culture samples were collected from children under 2 years old diagnosed with urinary tract infection. The isolates underwent antibiotic suseptibility assessment and the isolates demonstrating MDR were subjected to molecular amplification of fimG (fimbrial) and fliD and fliT (flagellal) genes. The confirmation of cellular appendages was achieved through silver nitrate staining. The antibacterial efficacy of the synthetized nanoparticles was assessed using the micro and macrodilution methods. The successful binding of nanoparticles to bacterial appendage proteins was confirmed through mobility shift and membrane filter assays. The dimensions of chemically synthesized ZnO nanoparticles and green nanoparticles were measured at 30 nm and 85 nm, respectively, with the exhibition of hexagonal geometries. The nanoparticles synthesized through chemical and green methods exhibited minimum inhibitory concentrations (MIC) of 0.0062-0.025 g/L and 0.3 g/L, respectively. The ability of ZnO nanoparticles to bind bacterial appendage proteins and to combat MDR uropathogenic bacteria are promising for new treatment protocols against UTI in children in future.
Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Flagelos , Infecciones Urinarias , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Óxido de Zinc/metabolismo , Antibacterianos/farmacología , Humanos , Infecciones Urinarias/microbiología , Infecciones Urinarias/tratamiento farmacológico , Flagelos/efectos de los fármacos , Flagelos/genética , Flagelos/metabolismo , Pruebas de Sensibilidad Microbiana , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/efectos de los fármacos , Nanopartículas/química , Lactante , Nanopartículas del Metal/químicaRESUMEN
Advanced oxidation processes (AOP) stood out as an efficient alternative for the treatment of organic contaminants. In this work, there were proposed syntheses of mixed catalysts of pyrite and graphene oxide and pyrite and zinc oxide to treat a mixture of the drugs atenolol and propranolol in aqueous solution through the photo-Fenton process with ultraviolet radiation. The efficiency of the methodologies used in the syntheses was confirmed through different characterization analyses. It was verified that the pyrite and zinc oxide catalyst led to the best contaminant degradation percentages with values equal to 88 and 84% for the groups monitored at the wavelengths (λ) of 217 and 281 nm. The degradation kinetics presented a good fit to the kinetic model proposed by Chan and Chu (2003) with R2 equal to 0.99, indicating a pseudo-first-order degradation profile. Finally, toxicity tests were carried out with two types of seeds, watercress and cabbage, for the solution before and after treatment. The cabbage seeds showed a reduction in germination percentages for the samples after treatments, while no toxicity was observed for watercress ones. This highlights the importance of evaluating the implications caused by products in relation to different organisms representing the biota.
Asunto(s)
Grafito , Oxidación-Reducción , Óxido de Zinc , Grafito/química , Catálisis , Óxido de Zinc/química , Sulfuros/química , Contaminantes Químicos del Agua/química , Hierro/química , CinéticaRESUMEN
The magnetic properties of Ni nanoparticles (NPs) with diameter D are investigated using spin-lattice dynamics (SLD) simulations. Using exchange interactions fitted to ab-initio results we obtain a Curie temperature, T c , similar, but lower, than experiments. In order to reproduce quantitatively the bulk Curie temperature and the experimental results, the exchange energy has to be increased by 25% compared to the ab-initio value. During the simulated time, Ni NPs remain ferromagnetic down to the smallest sizes investigated here, containing around 500 atoms. The average magnetic moment of the NPs is slightly smaller than that determined experimentally. By considering a core-shell model for NPs, in which the shell atoms are assigned a larger magnetic moment, this discrepancy can be removed. T c is lower for a moving lattice than for a frozen lattice, as expected, but this difference decreases with NP size because smaller NPs include higher surface disorder which dominates the transition. For NPs, T c decreases with the NP diameter D by at most 10% at D = 2 nm, in agreement with several experiments, and unlike some modeling or theoretical scaling results which predict a considerably larger decrease. The decrease of T c is well described by finite-size scaling models, with a critical exponent that depends on the SLD settings for a frozen or moving lattice, and also depends on the procedure for determining T c . Extrapolating the inverse of the magnetization as function of temperature near T c gives a lower T c than the maximum of the susceptibility.
RESUMEN
The introduction of optimized nanoheaters, which function as theranostic agents integrating both diagnostic and therapeutic processes, holds significant promise in the medical field. Therefore, developing strategies for selecting and utilizing optimized plasmonic nanoheaters is crucial for the effective use of nanostructured biomedical agents. This work elucidates the use of the Joule number (Jo) as a figure of merit to identify high-performance plasmonic theranostic agents. A framework for optimizing metallic nanoparticles for heat generation was established, uncovering the size dependence of plasmonic nanoparticles optical heating. Gold nanospheres (AuNSs) with a diameter of 50 nm and gold nanorods (AuNRs) with dimensions of 41×10 nm were identified as effective nanoheaters for visible (530 nm) and infrared (808 nm) excitation. Notably, AuNRs achieve higher Jo values than AuNSs, even when accounting for the possible orientations of the nanorods. Theoretical results estimate that 41×10 nm gold nanorods have an average Joule number of 80, which is significantly higher compared to larger rods. The photothermal performance of optimal and suboptimal nanostructures was evaluated using photoacoustic imaging and photothermal therapy procedures. The photoacoustic images indicate that, despite having larger absorption cross-sections, the large nanoparticle volume of bigger particles leads to less efficient conversion of light into heat, which suggests that the use of optimized nanoparticles promotes higher contrast, benefiting photoacoustic-based procedures in diagnostic applications. The photothermal therapy procedure was performed on S180-bearing mice inoculated with 41×10 nm and 90×25 nm PEGylated AuNRs. Five minutes of laser irradiation of tumor tissue with 41×10 nm produced an approximately 9.5% greater temperature rise than using 90×25 AuNRs in the therapy trials. Optimizing metallic nanoparticles for heat generation may reduce the concentration of the nanoheaters used or decrease the light fluence for bioscience applications, paving the way for the development of more economical theranostic agents.