Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Planta ; 258(5): 95, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37814174

RESUMEN

MAIN CONCLUSION: By implementation of the iPOND technique for plant material, changes in posttranslational modifications of histones were identified in hydroxyurea-treated root meristem cells of Vicia. Replication stress (RS) disrupts or inhibits replication forks and by altering epigenetic information of the newly formed chromatin can affect gene regulation and/or spatial organisation of DNA. Experiments on Vicia faba root meristem cells exposed to short-term treatment with 3 mM hydroxyurea (HU, an inhibitor of DNA replication) were aimed to understand epigenetic changes related to RS. To achieve this, the following histone modifications were studied using isolation of proteins on nascent DNA (iPOND) technique (for the first time on plant material) combined with immunofluorescence labeling: (i) acetylation of histone H3 at lysine 56 (H3K56Ac), (ii) acetylation of histone H4 at Lys 5 (H4K5Ac), and (iii) phosphorylation of histone H3 at threonine 45 (H3T45Ph). Certainly, the implementation of the iPOND method for plants may prove to be a key step for a more in-depth understanding of the cell's response to RS at the chromatin level.


Asunto(s)
Hidroxiurea , Vicia faba , Hidroxiurea/farmacología , Hidroxiurea/metabolismo , Histonas/metabolismo , Vicia faba/genética , Vicia faba/metabolismo , Meristema/genética , Cromatina , Epigénesis Genética , Técnica del Anticuerpo Fluorescente , Acetilación , Replicación del ADN
2.
Mol Cell ; 82(19): 3553-3565.e5, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36070766

RESUMEN

RAD51 and the breast cancer suppressor BRCA2 have critical functions in DNA double-strand (dsDNA) break repair by homologous recombination and the protection of newly replicated DNA from nucleolytic degradation. The recombination function of RAD51 requires its binding to single-stranded DNA (ssDNA), whereas binding to dsDNA is inhibitory. Using reconstituted MRE11-, EXO1-, and DNA2-dependent nuclease reactions, we show that the protective function of RAD51 unexpectedly depends on its binding to dsDNA. The BRC4 repeat of BRCA2 abrogates RAD51 binding to dsDNA and accordingly impairs the function of RAD51 in protection. The BRCA2 C-terminal RAD51-binding segment (TR2) acts in a dominant manner to overcome the effect of BRC4. Mechanistically, TR2 stabilizes RAD51 binding to dsDNA, even in the presence of BRC4, promoting DNA protection. Our data suggest that RAD51's dsDNA-binding capacity may have evolved together with its function in replication fork protection and provide a mechanistic basis for the DNA-protection function of BRCA2.


Asunto(s)
ADN de Cadena Simple , Recombinasa Rad51 , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , ADN/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Replicación del ADN , ADN de Cadena Simple/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
3.
Methods Mol Biol ; 2522: 419-434, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36125768

RESUMEN

The labeling and specific detection of nascent DNA by the incorporation of thymidine analogs provide crucial information about DNA replication dynamics without requiring the intracellular expression of fluorescent proteins. After cell fixation and permeabilization, specific detection of thymidine analogs by antibodies can be performed using super-resolution imaging techniques. Here we describe a protocol to label nascent DNA using 5'-bromo-2'-deoxyuridine (BrdU) in Haloferax volcanii cells and generate super-resolved images of neo-synthesized DNA foci either by 3D Structured illumination microscopy (3D-SIM) or Stochastic Optical Reconstruction Microscopy (STORM).


Asunto(s)
Haloferax volcanii , Microscopía , Bromodesoxiuridina , ADN , Microscopía/métodos , Timidina
4.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36012767

RESUMEN

Eukaryotic chromosomes have not been visualized during the interphase. The fact that chromosomes cannot be seen during the interphase of the cell cycle does not mean that there are no means to make them visible. This work provides visual evidence that reversible permeabilization of the cell membrane followed by the regeneration of cell membranes allows getting a glimpse behind the nuclear curtain. Reversibly permeable eukaryotic cells have been used to synthesize nascent DNA, analyze the 5'-end of RNA primers, view individual replicons and visualize interphase chromosomes. Dextran T-150 in a slightly hypotonic buffer prevented cells from disruption. Upon reversal of permeabilization, the nucleus could be opened at any time during the interphase. A broad spectrum of a flexible chromatin folding pattern was revealed through a series of transient geometric forms of chromosomes. Linear attachment of chromosomes was visualized in several mammalian and lower eukaryotic cells. The linear connection of chromosomes is maintained throughout the cell cycle showing that rather than individual chromosomes, a linear array of chromosomes is the functional giant macromolecule. This study proves that not only the prokaryotic genome but also linearly attached eukaryotic chromosomes form a giant macromolecular unit.


Asunto(s)
Cromatina , Eucariontes , Animales , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromosomas/genética , Eucariontes/genética , Células Eucariotas , Interfase , Sustancias Macromoleculares/metabolismo , Mamíferos
5.
Front Mol Biosci ; 9: 1048726, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36710880

RESUMEN

Background: The cGAS/STING pathway, part of the innate immune response to foreign DNA, can be activated by cell's own DNA arising from the processing of the genome, including the degradation of nascent DNA at arrested replication forks, which can be upregulated in cancer cells. Recent evidence raises a possibility that the cGAS/STING pathway may also modulate the very processes that trigger it, e.g., DNA damage repair or processing of stalled forks. Methods: We manipulated STING levels in human cells by depleting or re-expressing it, and assessed the effects of STING on replication using microfluidics-assisted replication track analysis, or maRTA, a DNA fiber assay, as well as immuno-precipitation of nascent DNA, or iPOND. We also assessed STING subcellular distribution and its ability to activate. Results: Depletion of STING suppressed and its re-expression in STING-deficient cancer cells upregulated the degradation of nascent DNA at arrested replication forks. Replication fork arrest was accompanied by the STING pathway activation, and a STING mutant that does not activate the pathway failed to upregulate nascent DNA degradation. cGAS was required for STING's effect on degradation, but this requirement could be bypassed by treating cells with a STING agonist. Cells expressing inactive STING had a reduced level of RPA on parental and nascent DNA of arrested forks and a reduced CHK1 activation compared to cells with the wild type STING. STING also affected unperturbed fork progression in a subset of cell lines. STING fractionated to the nuclear fractions enriched for structural components of chromatin and nuclear envelope, and furthermore, it associated with the chromatin of arrested replication forks as well as post-replicative chromatin. Conclusion: Our data highlight STING as a determinant of stalled replication fork integrity, thus revealing a novel connection between the replication stress and innate immune responses.

6.
Dev Cell ; 56(4): 461-477.e7, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33621493

RESUMEN

Homology-directed repair (HDR) safeguards DNA integrity under various forms of stress, but how HDR protects replicating genomes under extensive metabolic alterations remains unclear. Here, we report that besides stalling replication forks, inhibition of ribonucleotide reductase (RNR) triggers metabolic imbalance manifested by the accumulation of increased reactive oxygen species (ROS) in cell nuclei. This leads to a redox-sensitive activation of the ATM kinase followed by phosphorylation of the MRE11 nuclease, which in HDR-deficient settings degrades stalled replication forks. Intriguingly, nascent DNA degradation by the ROS-ATM-MRE11 cascade is also triggered by hypoxia, which elevates signaling-competent ROS and attenuates functional HDR without arresting replication forks. Under these conditions, MRE11 degrades daughter-strand DNA gaps, which accumulate behind active replisomes and attract error-prone DNA polymerases to escalate mutation rates. Thus, HDR safeguards replicating genomes against metabolic assaults by restraining mutagenic repair at aberrantly processed nascent DNA. These findings have implications for cancer evolution and tumor therapy.


Asunto(s)
Replicación del ADN , Genoma Humano , Metabolismo , Reparación del ADN por Recombinación , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA2/deficiencia , Proteína BRCA2/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , ADN/metabolismo , Humanos , Proteína Homóloga de MRE11/metabolismo , Modelos Biológicos , Mutación/genética , Neoplasias/genética , Neoplasias/patología , Polimerizacion , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
7.
Bio Protoc ; 11(24): e4269, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-35087928

RESUMEN

DNA replication always encounters numerous endogenous and exogenous stresses during the cell cycle. Measuring the cell responses to stress has primarily relied on cell survival and incorporation of radioactive dNTPs, which is limited in resolution. A higher resolution is required to monitor how replication and repair respond to these stresses. This protocol describes a procedure to monitor the length of new synthesized DNA in a single molecular resolution called DNA fiber assay. The fiber assay relies on labeling of nascent DNA with the nucleoside analog 5-Chloro-2'-deoxyuridine (CldU) and 5-Iodo-2'-deoxyuridine (IdU). We can visualize the labeled nascent DNA in single molecular resolution by immunostaining. By measuring labeled DNA length, the assay permits interrogation of replication speed at given conditions, end processing at the reversed fork, and fork restart after repair.

8.
Bio Protoc ; 9(15): e3329, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-33654836

RESUMEN

Most bacterial genomes have biased nucleotide composition, and the asymmetry is considered to be caused by a single-stranded DNA (ssDNA) deamination arising from the bacterial replication machinery. In order to evaluate the relationship experimentally, the position and frequency of ssDNA formed during replication must be verified clearly. Although many ssDNA detection technologies exist, almost all methods have been developed for eukaryotic genomes. To apply these to bacterial genomes, which harbor a smaller amount of DNA than those of eukaryotes, more efficient, new methods are required. Therefore, we developed a novel strand-specific ssDNA sequencing method, called 4S-seq, for the bacterial genome. The 4S-seq method enriches ssDNA in the extracted genomic DNA by a dsDNA-specific nuclease and implements a strand-specific library using a biotin label with a customized tag. As a result, the 4S-seq is able to calculate the ssDNA content in each strand (Watson/Crick) at each position of the genome efficiently.

9.
EMBO Rep ; 19(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30104203

RESUMEN

Despite its evolutionarily conserved function in controlling DNA replication, the chromosomal binding sites of the budding yeast Rif1 protein are not well understood. Here, we analyse genome-wide binding of budding yeast Rif1 by chromatin immunoprecipitation, during G1 phase and in S phase with replication progressing normally or blocked by hydroxyurea. Rif1 associates strongly with telomeres through interaction with Rap1. By comparing genomic binding of wild-type Rif1 and truncated Rif1 lacking the Rap1-interaction domain, we identify hundreds of Rap1-dependent and Rap1-independent chromosome interaction sites. Rif1 binds to centromeres, highly transcribed genes and replication origins in a Rap1-independent manner, associating with both early and late-initiating origins. Interestingly, Rif1 also binds around activated origins when replication progression is blocked by hydroxyurea, suggesting association with blocked forks. Using nascent DNA labelling and DNA combing techniques, we find that in cells treated with hydroxyurea, yeast Rif1 stabilises recently synthesised DNA Our results indicate that, in addition to controlling DNA replication initiation, budding yeast Rif1 plays an ongoing role after initiation and controls events at blocked replication forks.


Asunto(s)
Replicación del ADN/fisiología , Origen de Réplica/fisiología , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Sitios de Unión/fisiología , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Cromosomas de las Plantas/química , ADN/metabolismo , Momento de Replicación del ADN/fisiología , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Mutación , Proteína Fosfatasa 1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Fase S/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Complejo Shelterina , Telómero/metabolismo , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/genética , Factores de Transcripción/metabolismo
10.
Mol Cell ; 66(2): 247-257.e5, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28410996

RESUMEN

Recruitment of transcription factors (TFs) to repressed genes in euchromatin is essential to activate new transcriptional programs during cell differentiation. However, recruitment of all TFs, including pioneer factors, is impeded by condensed H3K27me3-containing chromatin. Single-cell and gene-specific analyses revealed that, during the first hours of induction of differentiation of mammalian embryonic stem cells (ESCs), accumulation of the repressive histone mark H3K27me3 is delayed after DNA replication, indicative of a decondensed chromatin structure in all regions of the replicating genome. This delay provides a critical "window of opportunity" for recruitment of lineage-specific TFs to DNA. Increasing the levels of post-replicative H3K27me3 or preventing S phase entry inhibited recruitment of new TFs to DNA and significantly blocked cell differentiation. These findings suggest that recruitment of lineage-specifying TFs occurs soon after replication and is facilitated by a decondensed chromatin structure. This insight may explain the developmental plasticity of stem cells and facilitate their exploitation for therapeutic purposes.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Replicación del ADN , ADN/biosíntesis , Células Madre Embrionarias/metabolismo , Histonas/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Sitios de Unión , Plasticidad de la Célula , Cromatina/química , ADN/química , ADN/genética , Metilación de ADN , Regulación del Desarrollo de la Expresión Génica , Histona Demetilasas/metabolismo , Histonas/química , Humanos , Metilación , Ratones , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Relación Estructura-Actividad , Factores de Tiempo , Factores de Transcripción/genética
11.
Cell Rep ; 19(2): 295-306, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28402853

RESUMEN

The role of chromatin structure in lineage commitment of multipotent hematopoietic progenitors (HPCs) is presently unclear. We show here that CD34+ HPCs possess a post-replicative chromatin globally devoid of the repressive histone mark H3K27me3. This H3K27-unmodified chromatin is required for recruitment of lineage-determining transcription factors (TFs) C/EBPα, PU.1, and GATA-1 to DNA just after DNA replication upon cytokine-induced myeloid or erythroid commitment. Blocking DNA replication or increasing H3K27me3 levels prevents recruitment of these TFs to DNA and suppresses cytokine-induced erythroid or myeloid differentiation. However, H3K27me3 is rapidly associated with nascent DNA in more primitive human and murine HPCs. Treatment of these cells with instructive cytokines leads to a significant delay in accumulation of H3K27me3 in nascent chromatin due to activity of the H3K27me3 demethylase UTX. Thus, HPCs utilize special mechanisms of chromatin modification for recruitment of specific TFs to DNA during early stages of lineage specification.


Asunto(s)
Diferenciación Celular/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Histona Demetilasas con Dominio de Jumonji/genética , Animales , Antígenos CD34/biosíntesis , Proteína alfa Potenciadora de Unión a CCAAT/genética , Linaje de la Célula/genética , Cromatina/genética , Replicación del ADN/genética , Factor de Transcripción GATA1/genética , Humanos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones , Proteínas Proto-Oncogénicas/genética , Transactivadores/genética
12.
Proc Natl Acad Sci U S A ; 113(30): E4311-9, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27407148

RESUMEN

DNA damage tolerance facilitates the progression of replication forks that have encountered obstacles on the template strands. It involves either translesion DNA synthesis initiated by proliferating cell nuclear antigen monoubiquitination or less well-characterized fork reversal and template switch mechanisms. Herein, we characterize a novel tolerance pathway requiring the tumor suppressor p53, the translesion polymerase ι (POLι), the ubiquitin ligase Rad5-related helicase-like transcription factor (HLTF), and the SWI/SNF catalytic subunit (SNF2) translocase zinc finger ran-binding domain containing 3 (ZRANB3). This novel p53 activity is lost in the exonuclease-deficient but transcriptionally active p53(H115N) mutant. Wild-type p53, but not p53(H115N), associates with POLι in vivo. Strikingly, the concerted action of p53 and POLι decelerates nascent DNA elongation and promotes HLTF/ZRANB3-dependent recombination during unperturbed DNA replication. Particularly after cross-linker-induced replication stress, p53 and POLι also act together to promote meiotic recombination enzyme 11 (MRE11)-dependent accumulation of (phospho-)replication protein A (RPA)-coated ssDNA. These results implicate a direct role of p53 in the processing of replication forks encountering obstacles on the template strand. Our findings define an unprecedented function of p53 and POLι in the DNA damage response to endogenous or exogenous replication stress.


Asunto(s)
Daño del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Células Cultivadas , ADN/química , ADN/genética , ADN/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Recombinación Homóloga , Humanos , Células K562 , Conformación de Ácido Nucleico , Interferencia de ARN , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética , ADN Polimerasa iota
13.
Cell Cycle ; 13(19): 2999-3015, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25486561

RESUMEN

Fanconi anemia (FA) is a rare recessive genetic disease characterized by congenital abnormalities, bone marrow failure and heightened cancer susceptibility in early adulthood. FA is caused by biallelic germ-line mutation of any one of 16 genes. While several functions for the FA proteins have been ascribed, the prevailing hypothesis is that the FA proteins function cooperatively in the FA-BRCA pathway to repair damaged DNA. A pivotal step in the activation of the FA-BRCA pathway is the monoubiquitination of the FANCD2 and FANCI proteins. Despite their importance for DNA repair, the domain structure, regulation, and function of FANCD2 and FANCI remain poorly understood. In this review, we provide an overview of our current understanding of FANCD2 and FANCI, with an emphasis on their posttranslational modification and common and unique functions.


Asunto(s)
Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Anemia de Fanconi/patología , ADN/química , ADN/metabolismo , Reparación del ADN , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/química , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/química , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Humanos , Nucleosomas/metabolismo , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína
14.
Genetics ; 197(1): 107-19, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24583581

RESUMEN

In this study, we exploited a plasmid-based assay that detects the new DNA synthesis (3' extension) that accompanies Rad51-mediated homology searching and strand invasion steps of homologous recombination to investigate the interplay between Rad51 concentration and homology length. Mouse hybridoma cells that express endogenous levels of Rad51 display an approximate linear increase in the frequency of 3' extension for homology lengths of 500 bp to 2 kb. At values below ∼500 bp, the frequency of 3' extension declines markedly, suggesting that this might represent the minimal efficient processing segment for 3' extension. Overexpression of wild-type Rad51 stimulated the frequency of 3' extension by ∼3-fold for homology lengths <900 bp, but when homology was >2 kb, 3' extension frequency increased by as much as 10-fold. Excess wild-type Rad51 did not increase the average 3' extension tract length. Analysis of cell lines expressing N-terminally FLAG-tagged Rad51 polymerization mutants F86E, A89E, or F86E/A89E established that the 3' extension process requires Rad51 polymerization activity. Mouse hybridoma cells that have reduced Brca2 (Breast cancer susceptibility 2) due to stable expression of small interfering RNA show a significant reduction in 3' extension efficiency; expression of wild-type human BRCA2, but not a BRCA2 variant devoid of BRC repeats 1-8, rescues the 3' extension defect in these cells. Our results suggest that increased Rad51 concentration and homology length interact synergistically to promote 3' extension, presumably as a result of enhanced Brca2-mediated Rad51 polymerization.


Asunto(s)
ADN/biosíntesis , Recombinación Homóloga , Recombinasa Rad51/metabolismo , Homología de Secuencia de Ácido Nucleico , Animales , Proteína BRCA2/metabolismo , Línea Celular , ADN/química , ADN/genética , Daño del ADN , Humanos , Ratones , Mutación , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Transporte de Proteínas , Recombinasa Rad51/química , Recombinasa Rad51/genética
15.
J Cancer ; 4(5): 358-70, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23781282

RESUMEN

Human origins of DNA replication are specific sequences within the genome whereby DNA replication is initiated. A select group of proteins, known as the pre-replication (pre-RC) complex, in whose formation the Ku protein (Ku70/Ku86) was shown to play a role, bind to replication origins to initiate DNA replication. In this study, we have examined the involvement of Ku in breast tumorigenesis and tumor progression and found that the Ku protein expression levels in human breast metastatic (MCF10AC1a) cells were higher in the chromatin fraction compared to hyperplastic (MCF10AT) and normal (MCF10A) human breast cells, but remained constant in both the nuclear and cytoplasmic fractions. In contrast, in human intestinal cells, the Ku expression level was relatively constant for all cell fractions. Nascent DNA abundance and chromatin association of Ku70/86 revealed that the c-myc origin activity in MCF10AC1a is 2.5 to 5-fold higher than in MCF10AT and MCF10A, respectively, and Ku was bound to the c-myc origin more abundantly in MCF10AC1a, by approximately 1.5 to 4.2-fold higher than in MCF10AT and MCF10A, respectively. In contrast, similar nascent DNA abundance and chromatin association was found for all cell lines for the lamin B2 origin, associated with the constitutively active housekeeping lamin B2 gene. Electrophoretic mobility shift assays (EMSAs) performed on the nuclear extracts (NEs) of the three cell types revealed the presence of protein-DNA replication complexes on both the c-myc and lamin B2 origins, but an increase in binding activity was observed from normal, to transformed, to cancer cells for the c-myc origin, whereas no such difference was seen for the lamin B2 origin. Overall, the results suggest that increased Ku chromatin association, beyond wild type levels, alters cellular processes, which have been implicated in tumorigenesis.

16.
Genes Cancer ; 3(2): 152-76, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23050047

RESUMEN

This study examines the chromatin structure encompassing replication origins in transformed and normal cells. Analysis of the global levels of histone H3 acetylated at K9&14 (open chromatin) and histone H3 trimethylated at K9 (closed chromatin) revealed a higher ratio of open to closed chromatin in the transformed cells. Also, the trithorax and polycomb group proteins, Brg-1 and Bmi-1, respectively, were overexpressed and more abundantly bound to chromatin in the transformed cells. Quantitative comparative analyses of episomal and in situ chromosomal replication origin activity as well as chromatin immunoprecipitation (ChIP) assays, using specific antibodies targeting members of the pre-replication complex (pre-RC) as well as open/closed chromatin markers encompassing both episomal and chromosomal origins, revealed that episomal origins had similar levels of in vivo activity, nascent DNA abundance, pre-RC protein association, and elevated open chromatin structure at the origin in both cell types. In contrast, the chromosomal origins corresponding to 20mer1, 20mer2, and c-myc displayed a 2- to 3-fold higher activity and pre-RC protein abundance as well as higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in the transformed cells, whereas the origin associated with the housekeeping lamin B2 gene exhibited similar levels of activity, pre-RC protein abundance, and higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in both cell types. Nucleosomal positioning analysis, using an MNase-Southern blot assay, showed that all the origin regions examined were situated within regions of inconsistently positioned nucleosomes, with the nucleosomes being spaced farther apart from each other prior to the onset of S phase in both cell types. Overall, the results indicate that cellular transformation is associated with differential epigenetic regulation, whereby chromatin structure is more open, rendering replication origins more accessible to initiator proteins, thus allowing increased origin activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...