Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 33(10): e5174, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39276022

RESUMEN

Chemical protein synthesis (CPS), in which custom peptide segments of ~20-60 aa are produced by solid-phase peptide synthesis and then stitched together through sequential ligation reactions, is an increasingly popular technique. The workflow of CPS is often depicted with a "bracket" style diagram detailing the starting segments and the order of all ligation, desulfurization, and/or deprotection steps to obtain the product protein. Brackets are invaluable tools for comparing multiple possible synthetic approaches and serve as blueprints throughout a synthesis. Drawing CPS brackets by hand or in standard graphics software, however, is a painstaking and error-prone process. Furthermore, the CPS field lacks a standard bracket format, making side-by-side comparisons difficult. To address these problems, we developed BracketMaker, an open-source Python program with built-in graphic user interface (GUI) for the rapid creation and analysis of CPS brackets. BracketMaker contains a custom graphics engine which converts a text string (a protein sequence annotated with reaction steps, introduced herein as a standardized format for brackets) into a high-quality vector or PNG image. To aid with new syntheses, BracketMaker's "AutoBracket" tool automatically performs retrosynthetic analysis on a set of segments to draft and rank all possible ligation orders using standard native chemical ligation, protection, and desulfurization techniques. AutoBracket, in conjunction with an improved version of our previously reported Automated Ligator (Aligator) program, provides a pipeline to rapidly develop synthesis plans for a given protein sequence. We demonstrate the application of both programs to develop a blueprint for 65 proteins of the minimal Escherichia coli ribosome.


Asunto(s)
Programas Informáticos , Proteínas/química , Proteínas/síntesis química , Técnicas de Síntesis en Fase Sólida/métodos , Péptidos/química , Péptidos/síntesis química
2.
Angew Chem Int Ed Engl ; : e202413644, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198217

RESUMEN

Chemical protein synthesis enables access to proteins that would otherwise be difficult or impossible to obtain with traditional means such as recombinant expression. Chemoselective ligations provide the ability to join peptide segments prepared by solid-phase peptide synthesis. While native chemical ligation (NCL) is widely used, it is limited by the need for C-terminal thioesters with suitable reaction kinetics, properly placed native Cys or thiolated derivatives, and peptide segment solubility at low mM concentrations. Moreover, repetitive purifications to isolate ligated products are often yield-sapping, hampering efficiency and progress. In this work, we demonstrate the use of Controlled Activation of Peptides for Templated NCL (CAPTN). This traceless multi-segment templated NCL approach permits the one-pot synthesis of proteins by harnessing selective thioester activation and orthogonal conjugation chemistries to favor formation of full-length ligated product while minimizing side reactions. Importantly, CAPTN provides kinetic enhancements allowing ligations at sterically hindered junctions and low peptide concentrations. Additionally, this one-pot approach removes the need for intermediate purification. We report the synthesis of two E.coli ribosomal subunits S16 and S17 enabled by the chemical tools described herein. We anticipate that CAPTN will expedite the synthesis of valuable proteins and expand on templated approaches for chemical protein synthesis.

3.
Angew Chem Int Ed Engl ; : e202409440, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128879

RESUMEN

Antisense oligonucleotide (ASO) therapies hold significant promise in the realm of molecular medicine. By precisely targeting RNA molecules, ASOs offer an approach to modulate gene expression and protein production, making them valuable tools for treating a wide range of genetic and acquired diseases. As the precise intracellular targeting and delivery of ASOs is challenging, strategies for preparing ASO-ligand conjugates are in exceedingly high demand. This work leverages the utility of native chemical ligation to conjugate ASOs with therapeutically relevant chemical modifications including locked nucleic acids and phosphorothioate backbone modifications to peptides and sugars via a stable amide linkage. A suite of post-ligation functionalizations through modification of the cysteine ligation handle are highlighted, including chemoselective radical desulfurization, lipidation, and alkylation with a range of valuable handles (e.g. alkyne, biotin, and radionuclide chelating ligands), affording multifunctional constructs for further applications in biology and medicine. Application of the methodology to a clinically-relevant triantennary-GalNAc ASO conjugate and validation of its binding and functional activity underpins the applicability of the technique to oligonucleotide-based therapeutics.

4.
Angew Chem Int Ed Engl ; : e202414256, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215490

RESUMEN

Matrix metallopeptidase 7 (MMP7) plays a crucial role in cancer metastasis and progression, making it an attractive target for therapeutic development. However, the development of selective MMP7 inhibitors is challenging due to the conservation of active sites across various matrix metalloproteinases (MMPs). Here, we have developed mirror-image random nonstandard peptides integrated discovery (MI-RaPID) technology to discover innate protease-resistant macrocyclic peptides that specifically bind to and inhibit human MMP7. One identified macrocyclic peptide against D-MMP7, termed D20, was synthesized in its mirror-image form, D'20, consisting of 12 D-amino acids, one cyclic b-amino acid, and a thioether bond. Notably, it potently inhibited MMP7 with an IC50 value of 90 nM, and showed excellent selectivity over other MMPs with similar substrate specificity. Moreover, D'20 inhibited the migration of pancreatic cell line CFPAC-1, but had no effect on the cell proliferation and viability. D'20 exhibited excellent stability in human serum, as well as in simulated gastric and intestinal fluids. This study highlights that MI-RaPID technology can serve as a powerful tool to develop in vivo stable macrocyclic peptides for therapeutic applications.

5.
Chembiochem ; : e202400253, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965889

RESUMEN

The chemical rules governing protein folding have intrigued generations of researchers for decades. With the advent of artificial intelligence (AI), prediction of protein structure has improved tremendously. However, there is still a level of analysis that is only possible through wet laboratory experiments, especially in respect to the investigation of the pathological effect of mutations and posttranslational modifications (PTMs) on proteins of interest. This requires the availability of pure peptides and proteins in sufficient quantities for biophysical, biochemical, and functional studies. In this context, chemical protein synthesis and semi-synthesis are powerful tools in protein research, which help to enlighten the role of protein modification in the physiology and pathology of proteins. A protein of high interest in the field of biomedicine is alpha-synuclein (aSyn), a protein deeply associated with several devastating neurodegenerative disorders such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), or multiple systems atrophy (MSA). Here, we describe several methods and pathways to synthesize native or modified aSyn, and discuss how these approaches enable us to address pathological mechanisms that may open novel perspectives for therapeutic intervention.

6.
Methods Mol Biol ; 2819: 573-582, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028524

RESUMEN

Histones are proteins which help to organize DNA. The way in which they function is complex and is partially controlled by post-translational modifications (PTMs). Histone proteins from numerous organisms can be recombinantly produced in bacteria, but many bacterial strains are incapable of installing the variety of PTMs that histones possess. An alternative method of producing histones, which can be used to introduce PTMs, is native chemical ligation (NCL). This chapter provides a general NCL protocol which can be used to produce synthetic, post-translationally modified, histone proteins. The focus is on the NCL procedure itself and not on producing the modified histone protein fragments as there are many different ways in which these can be synthesized, depending on the modification(s) required. The same NCL protocol is also applicable for expressed protein ligation (EPL) with only small modifications to the purification procedure potentially required.


Asunto(s)
Histonas , Procesamiento Proteico-Postraduccional , Histonas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biosíntesis
7.
Chem Pharm Bull (Tokyo) ; 72(7): 700-710, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39069473

RESUMEN

We report two methods for the preparation of peptide thioesters containing Tyr(SO3H) residue(s), without use of a protecting group for the sulfate moiety. The first was based on direct thioesterification using carbodiimide on a fully protected peptide acid, prepared on a 2-chlorotrityl (Clt) resin with fluoren-9-ylmethoxycarbonyl (Fmoc)-based solid-phase peptide synthesis (Fmoc-SPPS). Subsequent deprotection of the protecting groups with trifluoroacetic acid (TFA) (0 °C, 4 h) yielded peptide thioesters containing Tyr(SO3H) residue(s). Peptide thioesters containing one to three Tyr(SO3H) residue(s), prepared by this method, were used as building blocks for the synthesis of the Nα-Fmoc-protected N-terminal part of P-selectin glycoprotein ligand 1 (PSGL-1) (Fmoc-PSGL-1(43-74)) via silver-ion mediated thioester segment condensation. The other method was based on the thioesterification of peptide azide, derived from a peptide hydrazide prepared on a NH2NH-Clt-resin with Fmoc-SPPS. Peptide thioester containing two Tyr(SO3H) residues, prepared via this alternative method, was used as a building block for the one-pot synthesis of the N-terminal extracellular portion of CC-chemokine receptor 5 (CCR5(9-26)) by native chemical ligation (NCL). The two methods for the preparation of peptide thioesters containing Tyr(SO3H) residue(s) described herein are applicable to the synthesis of various types of sulfopeptides.


Asunto(s)
Ésteres , Péptidos , Técnicas de Síntesis en Fase Sólida , Péptidos/química , Péptidos/síntesis química , Ésteres/química , Ésteres/síntesis química , Sulfatos/química , Tirosina/química , Tirosina/síntesis química , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/síntesis química , Estructura Molecular , Glicoproteínas de Membrana
8.
Front Chem ; 12: 1391678, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873405

RESUMEN

Cysteinyl RGD-peptidyl cysteinyl prolyl esters, which have different configurations at the cysteine and proline residues, were synthesized by the solid-phase method and cyclized by the native chemical ligation reaction. Cyclization efficiently proceeded to give cyclic peptides, regardless of the difference in the configuration. The peptides were further derivatized to the corresponding desulfurized or methylated cyclic peptides at the Cys residues. The inhibition activity to αvß6 integrin binding was then analyzed by ELISA. The results showed that the activity varied depending on the difference in the configuration and modification of the cysteinyl prolyl ester (CPC) moiety, demonstrating the usefulness of this method in the search for a good inhibitor of the protein-protein interaction.

9.
Methods Enzymol ; 698: 169-194, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38886031

RESUMEN

Peptide ligation chemistries have revolutionized the synthesis of proteins with site-specific modifications or proteomimetics through assembly of multiple peptide segments. In order to prepare polypeptide chains consisting of 100-150 amino acid residues or larger generally assembled from three or more peptide segments, iterative purification process that decreases the product yield is usually demanded. Accordingly, methodologies for one-pot peptide ligation that omit the purification steps of intermediate peptide segments have been vigorously developed so far to improve the efficiency of chemical protein synthesis. In this chapter, we first outline the concept and recent advances of one-pot peptide ligation strategies. Then, the practical guideline for the preparation of peptide segments for one-pot peptide ligation is described with an emphasis on diketopiperazine thioester synthesis. Finally, we disclose the explicit protocols for one-pot four segment ligation via repetitive deprotection of N-terminal thiazolidine by a 2-aminobenzamide type aldehyde scavenger.


Asunto(s)
Péptidos , Tiazolidinas , Tiazolidinas/química , Péptidos/química , Dicetopiperazinas/química
10.
ChemMedChem ; 19(13): e202300692, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38572578

RESUMEN

Glycosylation is one of the most ubiquitous post-translational modifications. It affects the structure and function of peptides/proteins and consequently has a significant impact on various biological events. However, the structural complexity and heterogeneity of glycopeptides/proteins caused by the diversity of glycan structures and glycosylation sites complicates the detailed elucidation of glycan function and hampers their clinical applications. To address these challenges, chemical and/or enzyme-assisted synthesis methods have been developed to realize glycopeptides/proteins with well-defined glycan morphologies. In particular, N-glycans are expected to be useful for improving the solubility, in vivo half-life and aggregation of bioactive peptides/proteins that have had limited clinical applications so far due to their short duration of action in the blood and unsuitable physicochemical properties. Chemical glycosylation performed in a post-synthetic procedure can be used to facilitate the development of glycopeptide/protein analogues or mimetics that are superior to the original molecules in terms of physicochemical and pharmacokinetic properties. N-glycans are used to modify targets because they are highly biodegradable and biocompatible and have structures that already exist in the human body. On the practical side, from a quality control perspective, close attention should be paid to their structural homogeneity when they are to be applied to pharmaceuticals.


Asunto(s)
Polisacáridos , Polisacáridos/química , Polisacáridos/síntesis química , Humanos , Glicosilación , Péptidos/química , Péptidos/síntesis química , Proteínas/química , Proteínas/síntesis química , Proteínas/metabolismo , Glicopéptidos/síntesis química , Glicopéptidos/química
11.
Angew Chem Weinheim Bergstr Ger ; 136(1): e202312104, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38516647

RESUMEN

S-adenosylmethionine-dependent methyltransferases are involved in countless biological processes, including signal transduction, epigenetics, natural product biosynthesis, and detoxification. Only a handful of carboxylate methyltransferases have evolved to participate in amide bond formation. In this report we show that enzyme-catalyzed F-methylation of carboxylate substrates produces F-methyl esters that readily react with N- or S-nucleophiles under physiological conditions. We demonstrate the applicability of this approach to the synthesis of small amides, hydroxamates, and thioesters, as well as to site-specific protein modification and native chemical ligation.

12.
Bioorg Med Chem ; 100: 117617, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38306881

RESUMEN

CD44, a ubiquitously expressed transmembrane receptor, plays a crucial role in cell growth, migration, and tumor progression. Dimerization of CD44 is a key event in signal transduction and has emerged as a potential target for anti-tumor therapies. Palmitoylation, a posttranslational modification, disrupts CD44 dimerization and promotes CD44 accumulation in ordered membrane domains. However, the effects of palmitoylation on the structure and dynamics of CD44 at atomic resolution remain poorly understood. Here, we present a semisynthetic approach combining solid-phase peptide synthesis, recombinant expression, and native chemical ligation to investigate the impact of palmitoylation on the cytoplasmic domain (residues 669-742) of CD44 (CD44ct) by NMR spectroscopy. A segmentally isotope-labeled and site-specifically palmitoylated CD44 variant enabled NMR studies, which revealed chemical shift perturbations and indicated local and long-range conformational changes induced by palmitoylation. The long-range effects suggest altered intramolecular interactions and potential modulation of membrane association patterns. Semisynthetic, palmitoylated CD44ct serves as the basis for studying CD44 clustering, conformational changes, and localization within lipid rafts, and could be used to investigate its role as a tumor suppressor and to explore its therapeutic potential.


Asunto(s)
Receptores de Hialuranos , Lipoilación , Transducción de Señal , Receptores de Hialuranos/química
13.
Angew Chem Int Ed Engl ; 63(1): e202312104, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37955592

RESUMEN

S-adenosylmethionine-dependent methyltransferases are involved in countless biological processes, including signal transduction, epigenetics, natural product biosynthesis, and detoxification. Only a handful of carboxylate methyltransferases have evolved to participate in amide bond formation. In this report we show that enzyme-catalyzed F-methylation of carboxylate substrates produces F-methyl esters that readily react with N- or S-nucleophiles under physiological conditions. We demonstrate the applicability of this approach to the synthesis of small amides, hydroxamates, and thioesters, as well as to site-specific protein modification and native chemical ligation.


Asunto(s)
Amidas , Metiltransferasas , Metiltransferasas/metabolismo , Metilación , Amidas/química , S-Adenosilmetionina/química , Ácidos Carboxílicos , Adenosina Trifosfato/metabolismo , Biocatálisis
14.
Chemistry ; 30(3): e202302969, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37815536

RESUMEN

SARS-CoV-2 and its global spread have created an unprecedented public health crisis. The spike protein of SARS-CoV-2 has gained significant attention due to its crucial role in viral entry into host cells and its potential as both a prophylactic and a target for therapeutic interventions. Herein, we report the first successful total synthesis of the SARS-CoV-2 spike protein receptor binding domain (RBD), highlighting the key challenges and the strategies employed to overcome them. Appropriate utilization of advanced solid phase peptide synthesis and cutting-edge native chemical ligation methods have facilitated the synthesis of this moderately large protein molecule. We discuss the problems encountered during the chemical synthesis and approaches taken to optimize the yield and the purity of the synthetic protein molecule. Furthermore, we demonstrate that the chemically synthesized homogeneous spike RBD efficiently binds to the known mini-protein binder LCB1. The successful chemical synthesis of the spike RBD presented here can be utilized to gain valuable insights into SARS-CoV-2 spike RBD biology, advancing our understanding and aiding the development of intervention strategies to combat future coronavirus outbreaks. The modular synthetic approach described in this study can be effectively implemented in the synthesis of other mutated variants or enantiomer of the spike RBD for mirror-image drug discovery.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Unión Proteica
15.
Cell Chem Biol ; 31(5): 1000-1010.e6, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38113885

RESUMEN

Acid-sensing ion channels (ASICs) are trimeric ion channels that open a cation-conducting pore in response to proton binding. Excessive ASIC activation during prolonged acidosis in conditions such as inflammation and ischemia is linked to pain and stroke. A conserved lysine in the extracellular domain (Lys211 in mASIC1a) is suggested to play a key role in ASIC function. However, the precise contributions are difficult to dissect with conventional mutagenesis, as replacement of Lys211 with naturally occurring amino acids invariably changes multiple physico-chemical parameters. Here, we study the contribution of Lys211 to mASIC1a function using tandem protein trans-splicing (tPTS) to incorporate non-canonical lysine analogs. We conduct optimization efforts to improve splicing and functionally interrogate semisynthetic mASIC1a. In combination with molecular modeling, we show that Lys211 charge and side-chain length are crucial to activation and desensitization, thus emphasizing that tPTS can enable atomic-scale interrogations of membrane proteins in live cells.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Lisina , Canales Iónicos Sensibles al Ácido/metabolismo , Canales Iónicos Sensibles al Ácido/química , Canales Iónicos Sensibles al Ácido/genética , Lisina/química , Lisina/metabolismo , Humanos , Animales , Modelos Moleculares , Empalme de Proteína
16.
Eur J Med Chem ; 260: 115747, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37657270

RESUMEN

Site-selective, dual-conjugation approaches for the incorporation of distinct payloads are key for the development of molecularly targeted biomolecules, such as antibody conjugates, endowed with better properties. Combinations of cytotoxic drugs, imaging probes, or pharmacokinetics modulators enabled for improved outcomes in both molecular imaging, and therapeutic settings. We have developed an efficacious dual-bioconjugation strategy to target the N-terminal cysteine of a chemically-synthesized, third-generation anti-HER2 affibody. Such two-step, one-purification approach can be carried out under mild conditions (without chaotropic agents, neutral pH) by means of a slight excess of commercially available N-hydroxysuccinimidyl esters and maleimido-functionalized payloads, to generate dual conjugates displaying drugs (DM1/MMAE) or probes (sulfo-Cy5/biotin) in high yields and purity. Remarkably, the double drug conjugate exhibited an exacerbated cytoxicity against HER2-expressing cell lines as compared to a combination of two monoconjugates, demonstrating a potent synergistic effect. Consistently, affibody-drug conjugates did not decrease the viability of HER2-negative cells, confirming their specificity for the target.


Asunto(s)
Cisteína , Inmunoconjugados , Biotina , Línea Celular , Ésteres , Inmunoconjugados/farmacología
17.
Molecules ; 28(9)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37175065

RESUMEN

Thiol catalysts are essential in native chemical ligation (NCL) to increase the reaction efficiency. In this paper, we report the use of thiocholine in chemical protein synthesis, including NCL-based peptide ligation and metal-free desulfurization. Evaluation of thiocholine peptide thioester in terms of NCL and hydrolysis kinetics revealed its practical utility, which was comparable to that of other alkyl thioesters. Importantly, thiocholine showed better reactivity as a thiol additive in desulfurization, which is often used in chemical protein synthesis to convert Cys residues to more abundant Ala residues. Finally, we achieved chemical synthesis of two differently methylated histone H3 proteins via one-pot NCL and desulfurization with thiocholine.


Asunto(s)
Péptidos , Tiocolina , Péptidos/química , Compuestos de Sulfhidrilo/química , Histonas , Ligadura
18.
ACS Chem Neurosci ; 14(11): 2243-2251, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37235776

RESUMEN

Mutations in a microglia-associated gene TREM2 increase the risk of Alzheimer's disease. Currently, structural and functional studies of TREM2 mainly rely on recombinant TREM2 proteins expressed from mammalian cells. However, using this method, it is difficult to achieve site-specific labeling. Here, we present the total chemical synthesis of the 116 amino acid TREM2 ectodomain. Rigorous structural analysis ensured correct structural fold after refolding. Treating microglial cells with refolded synthetic TREM2 enhanced microglial phagocytosis, proliferation, and survival. We also prepared TREM2 constructs with defined glycosylation patterns and found that glycosylation at N79 is critical to the thermal stability of TREM2. This method will provide access to TREM2 constructs with site-specific labeling, such as fluorescent labeling, reactive chemical handles, and enrichment handles, to further advance our understanding of TREM2 in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Enfermedad de Alzheimer/metabolismo , Glicosilación , Fagocitosis , Microglía/metabolismo , Mutación , Mamíferos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
19.
Molecules ; 28(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37049961

RESUMEN

In recent years, researchers have been exploring the potential of incorporating selenium into peptides, as this element possesses unique properties that can enhance the reactivity of these compounds. Selenium is a non-metallic element that has a similar electronic configuration to sulfur. However, due to its larger atomic size and lower electronegativity, it is more nucleophilic than sulfur. This property makes selenium more reactive toward electrophiles. One of the most significant differences between selenium and sulfur is the dissociation of the Se-H bond. The Se-H bond is more easily dissociated than the S-H bond, leading to higher acidity of selenocysteine (Sec) compared to cysteine (Cys). This difference in acidity can be exploited to selectively modify the reactivity of peptides containing Sec. Furthermore, Se-H bonds in selenium-containing peptides are more susceptible to oxidation than their sulfur analogs. This property can be used to selectively modify the peptides by introducing new functional groups, such as disulfide bonds, which are important for protein folding and stability. These unique properties of selenium-containing peptides have found numerous applications in the field of chemical biology. For instance, selenium-containing peptides have been used in native chemical ligation (NCL). In addition, the reactivity of Sec can be harnessed to create cyclic and stapled peptides. Other chemical modifications, such as oxidation, reduction, and photochemical reactions, have also been applied to selenium-containing peptides to create novel molecules with unique biological properties.


Asunto(s)
Selenio , Selenio/química , Péptidos , Azufre/química , Selenocisteína/química , Cisteína
20.
Methods Mol Biol ; 2620: 177-207, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37010763

RESUMEN

Solid-phase peptide synthesis and protein semi-synthesis are powerful methods for site-specific modification of peptides and proteins. We describe protocols using these techniques for the syntheses of peptides and proteins bearing glutamate arginylation (EArg) at specific sites. These methods overcome challenges posed by enzymatic arginylation methods and allow for a comprehensive study of the effects of EArg on protein folding and interactions. Potential applications include biophysical analyses, cell-based microscopic studies, and profiling of EArg levels and interactomes in human tissue samples.


Asunto(s)
Ácido Glutámico , Procesamiento Proteico-Postraduccional , Humanos , Ácido Glutámico/metabolismo , Proteínas/metabolismo , Péptidos/metabolismo , Arginina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA