Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38954528

RESUMEN

OBJECTIVES: Musclin, recently identified as a myokine, has been recognized for its physiological significance in potentiating the functional properties of natrieutic peptides (NPs) through competitive inhibition of their clearance receptor, natrieutic peptide receptor C (NPR-C). This study, for the first time in the literature, investigated the dynamic response of musclin during and after aerobic exercise in humans, exploring its potential as a myokine and its interaction with NPs and NPR-C in the context of exercise-induced metabolic responses. METHODS: Twenty-one inactive young males participated, and we assessed changes in serum levels of musclin, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), epinephrine (Epi), and glycerol as an indicative of lipid mobilization, during and after moderate-intensity aerobic exercise. Furthermore, we evaluated the gene expression of NPR-C in subcutaneous fat biopsies. RESULTS: Serum musclin levels increased significantly during aerobic exercise, followed by a decline during recovery, remaining elevated compared to baseline. Significant correlations were found between musclin responses and lean body mass (LBM), indicating its regulation by skeletal muscle mass and exercise. Exercise-induced changes in musclin positively correlated with those of ANP, potentially preventing ANP degradation. Additionally, a potential interplay between NPR-C expression and musclin dynamics on ANP was suggested. However, musclin's influence on lipid mobilization was not predominant when considering other lipolytic factors during exercise. DISCUSSION: Musclin's classification as a myokine is supported by its response to aerobic exercise and its association with LBM. Additionally, its interactions with NPR-C and NPs suggest its physiological relevance and potential clinical implications.

2.
Exp Cell Res ; 431(1): 113738, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37572787

RESUMEN

Epithelial-mesenchymal transition (EMT) plays a critical role in hypertension-induced renal fibrosis, a final pathway that leads to end-stage renal failure. C-Atrial natriuretic peptide (ANP)4-23, a specific agonist of natriuretic peptide receptor-C (NPR-C), has been reported to have protective effects against hypertension. However, the role of C-ANP4-23 in hypertension-associated renal fibrosis has not yet been elucidated. In this study, mice were randomly divided into SHAM group, DOCA-salt group and DOCA-salt + C-ANP4-23 group. Renal morphology changes, renal function and fibrosis were detected. Human proximal tubular epithelial cells (HK2) stimulated by aldosterone were used for cell function and mechanism study. The DOCA-salt treated mice exhibited hypertension, kidney fibrosis and renal dysfunction, which were attenuated by C-ANP4-23. Moreover, C-ANP4-23 inhibited DOCA-salt treatment-induced renal EMT as evidenced by decrease of the mesenchymal marker alpha-smooth muscle actin (ACTA2) and vimentin and increase of epithelial cell marker E-cadherin. In HK2 cells, aldosterone induced EMT response, which was also suppressed by C-ANP4-23. The key transcription factors (twist, snail, slug and ZEB1) involved in EMT were increased in the kidney of DOCA-salt-treated mice, which were also suppressed by C-ANP4-23. Mechanistically, C-ANP4-23 inhibited the aldosterone-induced translocation of MR from cytosol to nucleus without change of MR expression. Furthermore, C-ANP4-23 rescued the enhanced expression of NADPH oxidase (NOX) 4 and oxidative stress after aldosterone stimulation. Aldosterone-induced Akt and Erk1/2 activation was also suppressed by C-ANP4-23. Our data suggest that C-ANP4-23 attenuates renal fibrosis, likely through inhibition of MR activation, enhanced oxidative stress and Akt and Erk1/2 signaling pathway.


Asunto(s)
Acetato de Desoxicorticosterona , Hipertensión , Enfermedades Renales , Ratones , Humanos , Animales , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Aldosterona/efectos adversos , Aldosterona/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Acetato de Desoxicorticosterona/efectos adversos , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Riñón/metabolismo , Enfermedades Renales/inducido químicamente , Enfermedades Renales/prevención & control , Acetatos/efectos adversos , Acetatos/metabolismo , Fibrosis
3.
Pulm Circ ; 13(3): e12270, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37528869

RESUMEN

Previous studies have shown that atrial natriuretic peptide (ANP) attenuates agonist-induced pulmonary edema and that this effect may be mediated in part by the ANP clearance receptor, natriuretic peptide receptor-C (NPR-C). Obesity has been associated with lower plasma ANP levels due to increased expression of NPR-C, and with decreased severity of acute lung injury (ALI). Therefore, we hypothesized that increased expression of NPR-C may attenuate ALI severity in obese populations. To test this, we examined ALI in Npr3 wild-type (WT) and knockout (KO) mice fed normal chow (NC) or high-fat diets (HFD). After 12 weeks, ALI was induced with intra-tracheal administration of Pseudomonas aeruginosa strain 103 (PA103) or saline. ALI severity was determined by lung wet-to-dry ratio (W/D) along with measurement of cell count, protein levels from bronchoalveolar lavage fluid (BALF), and quantitative polymerase chain reaction was performed on whole lung to measure cytokine/chemokine and Npr3 mRNA expression. ANP levels were measured from plasma. PA103 caused ALI as determined by significant increases in W/D, BALF protein concentration, and whole lung cytokine/chemokine expression. PA103 increased Npr3 expression in the lungs of wild-type (WT) mice regardless of diet. There was a nonsignificant trend toward increased Npr3 expression in the lungs of WT mice fed HFD versus NC. No differences in ALI were seen between Npr3 knockout (KO) mice and WT-fed NC, but Npr3 KO mice fed HFD had a significantly greater W/D and BALF protein concentration than WT mice fed HFD. These findings support the hypothesis that Npr3 may help protect against ALI in obesity.

4.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36430437

RESUMEN

The C-type natriuretic peptide receptor (NPRC) is expressed in many cell types and binds all natriuretic peptides with high affinity. Ligand binding results in the activation or inhibition of various intracellular signaling pathways. Although NPRC ligand binding has been shown to regulate various ion channels, the regulation of endothelial sodium channel (EnNaC) activity by NPRC activation has not been studied. The objective of this study was to investigate mechanisms of EnNaC regulation associated with NPRC activation in human aortic endothelial cells (hAoEC). EnNaC protein expression and activity was attenuated after treating hAoEC with the NPRC agonist cANF compared to vehicle, as demonstrated by Western blotting and patch clamping studies, respectively. NPRC knockdown studies using siRNA's corroborated the specificity of EnNaC regulation by NPRC activation mediated by ligand binding. The concentration of multiple diacylglycerols (DAG) and the activity of protein kinase C (PKC) was augmented after treating hAoEC with cANF compared to vehicle, suggesting EnNaC activity is down-regulated upon NPRC ligand binding in a DAG-PKC dependent manner. The reciprocal cross-talk between NPRC activation and EnNaC inhibition represents a feedback mechanism that presumably is involved in the regulation of endothelial function and aortic stiffness.


Asunto(s)
Células Endoteliales , Proteína Quinasa C , Humanos , Células Endoteliales/metabolismo , Proteína Quinasa C/metabolismo , Péptido Natriurético Tipo-C/metabolismo , Diglicéridos/farmacología , Diglicéridos/metabolismo , Ligandos , Péptidos Natriuréticos/metabolismo
5.
Front Mol Neurosci ; 15: 991112, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267701

RESUMEN

C-type natriuretic peptide (CNP) is highly expressed in the central nervous system (CNS) and key to neuronal development; however, a broader role for CNP in the CNS remains unclear. To address this deficit, we investigated behavioral, sensory and motor abnormalities and blood-brain barrier (BBB) integrity in a unique mouse model with inducible, global deletion of CNP (gbCNP-/-). gbCNP-/- mice and wild-type littermates at 12 (young adult) and 65 (aged) weeks of age were investigated for changes in gait and motor coordination (CatWalk™ and rotarod tests), anxiety-like behavior (open field and elevated zero maze tests), and motor and sensory function (modified neurological severity score [mNSS] and primary SHIRPA screen). Vascular permeability was assessed in vivo (Miles assay) with complementary in vitro studies conducted in primary murine brain endothelial cells. Young adult gbCNP-/- mice had normal gait but reduced motor coordination, increased locomotor activity in the open field and elevated zero maze, and had a higher mNSS score. Aged gbCNP-/- animals developed recurrent spontaneous seizures and had impaired gait and wide-ranging motor and sensory dysfunction. Young adult and aged gbCNP-/- mice exhibited increased BBB permeability, which was partially restored in vitro by CNP administration. Cultured brain endothelial cells from gbCNP-/- mice had an abnormal ZO-1 protein distribution. These data suggest that lack of CNP in the CNS impairs tight junction protein arrangement and increases BBB permeability, which is associated with changes in locomotor activity, motor coordination and late-onset seizures.

6.
Am J Physiol Lung Cell Mol Physiol ; 323(4): L438-L449, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35943160

RESUMEN

Atrial natriuretic peptide (ANP) protects against acute lung injury (ALI), but the receptor that mediates this effect is not known. Transgenic mice with 0 (knockout), 1 (heterozygote), or 2 (wild-type) functional copies of Npr3, the gene that encodes for natriuretic peptide receptor-C (NPR-C), were treated with intravenous infusion of ANP or saline vehicle before oropharyngeal aspiration of Pseudomonas aeruginosa (PA103) or saline vehicle. Lung injury was assessed 4 h following aspiration by measurement of lung wet/dry (W/D) weight, whole lung leukocyte and cytokine levels, and protein, leukocyte, and cytokine concentration in bronchoalveolar lavage fluid (BALF). PA103 induced acute lung injury as evidenced by increases in lung W/D ratio and protein concentration in BALF. The severity of PA103-induced lung injury did not differ between NPR-C genotypes. Treatment with intravenous ANP infusion reduced PA103-induced increases in lung W/D and BALF protein concentration in all three NPRC genotypes. PA103 increased the percentage of leukocytes that were neutrophils and cytokine levels in whole lung and BALF in NPR-C wild-type and knockout mice. This effect was blunted by ANP in wild-type mice but not in the NPR-C knockout mice. NPR-C does not mediate the protective effect of ANP on endothelial cell permeability in settings of PA103-induced injury but may mediate the effect of ANP on inhibition of the recruitment of neutrophils to the lung and thereby attenuate the release of inflammatory cytokines.


Asunto(s)
Lesión Pulmonar Aguda , Factor Natriurético Atrial , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Animales , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Factor Natriurético Atrial/farmacología , Citocinas/metabolismo , Pulmón/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Infiltración Neutrófila , Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/metabolismo
7.
J Endocr Soc ; 6(4): bvac019, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35233476

RESUMEN

CONTEXT: Natriuretic peptide receptor-C (NPR-C, encoded by NPR3) belongs to a family of cell membrane-integral proteins implicated in various physiological processes, including longitudinal bone growth. NPR-C acts as a clearance receptor of natriuretic peptides, including C-type natriuretic peptide (CNP), that stimulate the cGMP-forming guanylyl cyclase-coupled receptors NPR-A and NPR-B. Pathogenic variants in CNP, NPR2, and NPR3 may cause a tall stature phenotype associated with macrodactyly of the halluces and epiphyseal dysplasia. OBJECTIVE: Here we report on a boy with 2 novel biallelic inactivating variants of NPR3. METHODS: History and clinical characteristics were collected. Biochemical indices of natriuretic peptide clearance and in vitro cellular localization of NPR-C were studied to investigate causality of the identified variants. RESULTS: We identified 2 novel compound heterozygous NPR3 variants c.943G>A p.(Ala315Thr) and c.1294A>T p.(Ile432Phe) in a boy with tall stature and macrodactyly of the halluces. In silico analysis indicated decreased stability of NPR-C, presumably resulting in increased degradation or trafficking defects. Compared to other patients with NPR-C loss-of-function, the phenotype seemed to be milder: pseudo-epiphyses in hands and feet were absent, biochemical features were less severe, and there was some co-localization of p.(Ile432Phe) NPR-C with the cell membrane, as opposed to complete cytoplasmic retention. CONCLUSION: With this report on a boy with tall stature and macrodactyly of the halluces we further broaden the genotypic and phenotypic spectrum of NPR-C-related tall stature.

8.
Am J Physiol Lung Cell Mol Physiol ; 322(1): L13-L22, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34668435

RESUMEN

Atrial natriuretic peptide (ANP) and its receptors natriuretic peptide receptor (NPR)-A and NPR-C are all highly expressed in alveolar epithelial type II cells (AEC2s) in the late-gestation ovine fetal lung and are dramatically decreased postnatally. However, of all the components, NPR-C stimulation inhibits ANP-mediated surfactant secretion. Since alveolar oxygen increases dramatically after birth, and steroids are administered to mothers antenatally to enhance surfactant lung maturity, we investigated the effects of O2 concentration and steroids on NPR-C-mediated surfactant secretion in AEC2s. NPR-C expression was highest at 5% O2 while being suppressed by 21% O2, in cultured mouse lung epithelial cells (MLE-15s) and/or human primary AEC2s. Surfactant protein-B (SP-B) was significantly elevated in media from both in vitro and ex vivo culture at 13% O2 versus 21% O2 in the presence of ANP or terbutaline (TER). Both ANP and C-ANP (an NPR-C agonist) attenuated TER-induced SP-B secretion; this effect was reversed by dexamethasone (DEX) pretreatment in AEC2s and by transfection with NPR-C siRNA in MLE-15 cells. DEX markedly reduced AEC2 NPR-C expression, and pregnant ewes treated with betamethasone showed reduced ANP in fetal sheep lung fluid. These data suggest that elevated O2 downregulates AEC2 NPR-C and that steroid-mediated NPR-C downregulation in neonatal lungs may provide a novel mechanism for their effect on perinatal surfactant production.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Oxígeno/farmacología , Surfactantes Pulmonares/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Esteroides/farmacología , Adulto , Células Epiteliales Alveolares/efectos de los fármacos , Animales , Factor Natriurético Atrial/metabolismo , Betametasona/farmacología , Líquidos Corporales/metabolismo , Línea Celular , Dexametasona/farmacología , Glucocorticoides/farmacología , Humanos , Pulmón/embriología , Pulmón/metabolismo , Ratones , Modelos Biológicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Receptores del Factor Natriurético Atrial/genética , Ovinos , Terbutalina/farmacología
9.
J Cell Mol Med ; 25(20): 9837-9850, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34528389

RESUMEN

The inflammation of adipose tissue is one of the most common secondary pathological changes in atherosclerosis, which in turn influences the process of atherosclerosis. Natriuretic peptides have been revealed important effect in regulating adipose metabolism. However, the relationship between natriuretic peptide receptor C and inflammation of adipose tissue in atherosclerosis remains unknown. This study aims to explore the effect natriuretic peptide receptor C exerts on the regulation of the adipose inflammation in atherosclerotic mice induced by western-type diet and its overlying mechanisms. To clarify the importance of NPRC of adipose inflammation in atherosclerotic mice, NPRC expression was measured in mice fed with chow diet and western-type diet for 12 weeks and we found a considerable increase in adipose tissue of atherosclerotic mice. Global NPRC knockout in mice was bred onto ApoE-/- mice to generate NPRC-/- ApoE-/- mice, which displayed remarked increase in browning of white adipose tissue and lipolysis of adipose tissue and decrease in adipose inflammation manifested by decreased macrophage invasion to form less CLS (crown-like structure), reduced oxidative stress and alleviated expression of TNFα, IL-6, IL-1ß and MCP1, but increased expression of adiponectin in adipose tissue. Moreover, our study showed that white adipose tissue browning in NPRC-/- ApoE-/- atherosclerotic mice was associated with decreased inflammatory response through cAMP/PKA signalling activation. These results identify NPRC as a novel regulator for adipose inflammation in atherosclerotic mice by modulating white adipose tissue browning.


Asunto(s)
Apolipoproteínas E/deficiencia , Hipercolesterolemia/complicaciones , Paniculitis/etiología , Paniculitis/metabolismo , Receptores del Factor Natriurético Atrial/deficiencia , Animales , Biomarcadores , AMP Cíclico , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Inmunohistoquímica , Inflamasomas/metabolismo , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo , Paniculitis/patología , Transducción de Señal
10.
Front Physiol ; 12: 674254, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093235

RESUMEN

Heart failure (HF) with preserved ejection fraction (HFpEF) is a major public health problem with cases projected to double over the next two decades. There are currently no US Food and Drug Administration-approved therapies for the health-related outcomes of HFpEF. However, considering the high prevalence of this heterogeneous syndrome, a directed therapy for HFpEF is one the greatest unmet needs in cardiovascular medicine. Additionally, there is currently a lack of mechanistic understanding about the pathobiology of HFpEF. The phenotyping of HFpEF patients into pathobiological homogenous groups may not only be the first step in understanding the molecular mechanism but may also enable the development of novel targeted therapies. As obesity is one of the most common comorbidities found in HFpEF patients and is associated with many cardiovascular effects, it is a viable candidate for phenotyping. Large outcome trials and registries reveal that being obese is one of the strongest independent risk factors for developing HFpEF and that this excess risk may not be explained by traditional cardiovascular risk factors. Recently, there has been increased interest in the intertissue communication between adipose tissue and the heart. Evidence suggests that the natriuretic peptide clearance receptor (NPR-C) pathway may play a role in the development and pathobiology of obesity-related HFpEF. Therefore, therapeutic manipulations of the NPR-C pathway may represent a new pharmacological strategy in the context of underlying molecular mechanisms.

11.
Tetrahedron Lett ; 61(12)2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32153307

RESUMEN

The Natriuretic Peptide Receptors (NPRs) regulate vascular sodium levels and have been of significant interest for the potential treatment of hypertension and related cardiovascular complications. The peptidomimetic antagonist M372049 is a valuable probe for the study of NPR-C signaling, unfortunately it is presently not commercially available. Described is a detailed protocol for its synthesis that does not require specialized apparatus and builds upon a prior patent from Veale and colleagues. Key steps include a base-mediated lactam formation and a solid-supported peptide synthetic sequence. An X-ray crystal structure of a key lactam intermediate was obtained to confirm the structure and relative stereochemistry of the compound.

12.
Eur J Pharmacol ; 866: 172780, 2020 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-31734277

RESUMEN

NPCdc is a synthetic natriuretic peptide that was originally derived from another peptide, the NP2_Casca, isolated from Crotalus durissus cascavella venom. These molecules share 70% structural homology with natriuretic peptides obtained from different species, including humans. NP2_Casca induces vasorelaxation and increases nitric oxide levels independently of natriuretic peptide receptors A and B. This study aimed to investigate whether NPCdc-induced hypotension in control rats and rats with a reduced kidney mass is associated with effects on the glomerular filtration rate, NADPH oxidase activity and components downstream of natriuretic peptide receptor C (NPR-C). Anaesthetized Wistar rats that were subjected to a sham operation and 5/6 nephrectomy (5/6Nx) were infused with saline (vehicle) or NPCdc (7.5 µg/kg/min) for 70 min. The NPCdc treatment decreased the mean arterial pressure and NADPH oxidase activity while simultaneously increasing the glomerular filtration rate, fractional Na+ excretion and nitric oxide level. After 70 min, the levels of p-AKT Ser-473, p-eNOS Ser-1177, p-nNOS Ser-1417 and p-iNOSTyr-151 were not affected. However, p-ERK1/2 Thr-202/Tyr-204 levels were altered. Thus, nitric oxide and components of NPR-C signalling mediate the effects of NPCdc. The results suggest a potential therapeutic application of this peptide for cardiorenal syndrome.


Asunto(s)
Aorta/efectos de los fármacos , Riñón/efectos de los fármacos , Péptido Natriurético Tipo-C/farmacología , Nefrectomía , Óxido Nítrico/metabolismo , Animales , Aorta/citología , Aorta/metabolismo , Aorta/fisiología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Hemodinámica/efectos de los fármacos , Riñón/citología , Riñón/metabolismo , Riñón/fisiología , Masculino , NADPH Oxidasas/metabolismo , Péptido Natriurético Tipo-C/síntesis química , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
13.
J Mol Histol ; 51(1): 3-13, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31722080

RESUMEN

The natriuretic peptide (NP) system comprises of three ligands, the Atrial Natriuretic Peptide (ANP), Brain Natriuretic peptide (BNP) and C-type Natriuretic peptide (CNP), and three natriuretic peptide receptors, NPRA, NPRB and NPRC. Here we present a comprehensive study of the natriuretic peptide system in healthy murine and human submandibular salivary glands (SMGs). We show CNP is the dominant NP in mouse and human SMG and is expressed together with NP receptors in ducts, autonomic nerves and the microvasculature of the gland, suggesting CNP autocrine signalling may take place in some of these glandular structures. These data suggest the NP system may control salivary gland function during homeostasis through the regulation of electrolyte re-absorption, neural stimulation and/or blood vessel wall contraction/relaxation. We also show abnormal expression of NPRA in the stroma of a subset of human SMGs resected from patients diagnosed with oral squamous cell carcinoma (OSCC) of non-salivary gland origin. This finding warrants further research to investigate a possible correlation between early OSCC invasion and NPRA overexpression.


Asunto(s)
Factor Natriurético Atrial/biosíntesis , Carcinoma de Células Escamosas/metabolismo , Neoplasias de la Boca/metabolismo , Péptido Natriurético Encefálico/biosíntesis , Péptido Natriurético Tipo-C/biosíntesis , Proteínas de Neoplasias/biosíntesis , Receptores de Péptidos/biosíntesis , Glándula Submandibular/metabolismo , Animales , Carcinoma de Células Escamosas/irrigación sanguínea , Carcinoma de Células Escamosas/patología , Femenino , Humanos , Masculino , Ratones , Neoplasias de la Boca/sangre , Neoplasias de la Boca/patología , Glándula Submandibular/irrigación sanguínea , Glándula Submandibular/patología
14.
Am J Physiol Heart Circ Physiol ; 315(3): H590-H601, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29979625

RESUMEN

In the present study, the change in secretion of atrial natriuretic peptide (ANP) from the atria was defined in hypertension accompanied by ventricular hypertrophy and increased synthesis of ANP. To identify the change of the secretion and mechanisms involved, experiments were performed in isolated perfused beating atria from sham-operated normotensive and renovascular hypertensive rats. Expression of ANP, natriuretic peptide receptor (NPR)-C, components of the renin-angiotensin system, and muscarinic signaling pathway was measured in cardiac tissues. Basal levels of ANP secretion and acetylcholine (ACh)- and stretch-induced activation of ANP secretion were suppressed in the atria from hypertensive compared with normotensive rats. ACh increased ANP secretion via M2 muscarinic ACh receptor-ACh-sensitive K+ channel signaling. In hypertensive rats, ANP concentration increased in the left ventricle but decreased in the right ventricle. The atrial concentration of ANP was not changed in hypertensive compared with normotensive rats. ANP mRNA expression was accentuated in the left ventricle but suppressed in the other cardiac chambers in the hearts of hypertensive rats. NPR-C expression was inversely related to ANP mRNA levels. Angiotensin II type 1 receptor (AT1R) expression was accentuated in the cardiac chambers from hypertensive rats compared with normotensive rats, whereas angiotensin II type 2 receptor, M2 muscarinic receptor, and Kir3.4 channels were suppressed. AT1R blockade with losartan reversed the change observed in hypertensive rats. The present findings indicate that renovascular hypertension shifts the major site of ANP secretion and synthesis from the atria to the left ventricle through modulation of the expression of ANP, NPR-C, AT1R, and the M2 muscarinic signaling pathway. NEW & NOTEWORTHY Renovascular hypertension suppresses the atrial secretion of ANP and shifts the major site of the regulation of ANP secretion and synthesis from atria to the hypertrophied left ventricle possibly via modulation of the expression of ANP, natriuretic peptide receptor-C, angiotensin II subtype 1 receptor, and M2 muscarinic signaling pathway.


Asunto(s)
Factor Natriurético Atrial/metabolismo , Atrios Cardíacos/metabolismo , Ventrículos Cardíacos/metabolismo , Hipertensión Renovascular/metabolismo , Animales , Factor Natriurético Atrial/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Angiotensina/genética , Receptores de Angiotensina/metabolismo , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismo
15.
JACC Basic Transl Sci ; 3(6): 824-843, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30623142

RESUMEN

Sinoatrial node (SAN) disease mechanisms are poorly understood, and therapeutic options are limited. Natriuretic peptide(s) (NP) are cardioprotective hormones whose effects can be mediated partly by the NP receptor C (NPR-C). We investigated the role of NPR-C in angiotensin II (Ang II)-mediated SAN disease in mice. Ang II caused SAN disease due to impaired electrical activity in SAN myocytes and increased SAN fibrosis. Strikingly, Ang II treatment in NPR-C-/- mice worsened SAN disease, whereas co-treatment of wild-type mice with Ang II and a selective NPR-C agonist (cANF) prevented SAN dysfunction. NPR-C may represent a new target to protect against the development of Ang II-induced SAN disease.

16.
Environ Toxicol Pharmacol ; 49: 74-80, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27918957

RESUMEN

The study was aimed at evaluating the influence of selected polymorphisms of natriuretic peptide B precursor (NPPB) and natriuretic peptide receptor C (NPR3) genes on blood lead concentration (Pb-B) and blood zinc protoporphyrin concentration (ZnPP) in persons occupationally exposed to lead. Investigations were conducted on 360 persons (mean age: 44.49±9.62years), workers exposed to lead compounds. The analysis examined four polymorphisms of BNP gene, i.e.,: rs198388, rs198389, rs632793, and rs6676300; as well as one polymorphism of receptor C for natriuretic peptides, i.e., rs1421811. Heterozygosity in locus rs632793 of NPPB gene may result in higher concentrations of Pb-B, while allele A in locus rs632793 of NPPB gene seems to determine higher concentrations of ZnPP in persons occupationally exposed to lead. Workers exposed to lead and carrying allele C in locus rs198388 of NPPB gene, particularly in the heterozygotic setup, seem to be predisposed to present higher concentrations of ZnPP. Carriership of A allele in locus rs198389 of NPPB gene probably determines higher concentrations of ZnPP in study group. In summary, among persons occupationally exposed to lead, certain relationships were demonstrated between rs632793, rs198388 and rs198389 polymorphisms of NPPB gene and principal toxicological parameters characterizing exposure to lead.


Asunto(s)
Contaminantes Ocupacionales del Aire , Factor Natriurético Atrial/genética , Metales Pesados , Exposición Profesional/análisis , Adulto , Contaminantes Ocupacionales del Aire/sangre , Contaminantes Ocupacionales del Aire/toxicidad , Contaminantes Ocupacionales del Aire/orina , Arsénico/orina , Monitoreo del Ambiente , Femenino , Humanos , Masculino , Metales Pesados/sangre , Metales Pesados/toxicidad , Metales Pesados/orina , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Protoporfirinas/sangre , Receptores del Factor Natriurético Atrial/genética , Adulto Joven
17.
J Med Surg Pathol ; 1(3)2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27547837

RESUMEN

OBJECTIVE: Natriuretic peptide receptor-C (NPR-C/NPR-3) is a cell surface protein involved in vascular remodelling that is up-regulated in atherosclerosis. NPR-C expression has not been well characterized in human carotid artery occlusive lesions. We hypothesized that NPR-C expression correlates with intimal features of vulnerable atherosclerotic carotid artery plaque. METHODS: To test this hypothesis, we evaluated NPR-C expression by immunohistochemistry (IHC) in carotid endarterectomy (CEA) specimens isolated from 18 patients. The grade, location, and co-localization of NPR-C in CEA specimens were evaluated using two tissue analysis techniques. RESULTS: Relative to minimally diseased CEA specimens, we observed avid NPR-C tissue staining in the intima of maximally diseased CEA specimens (65%; p=0.06). Specifically, maximally diseased CEA specimens demonstrated increased NPR-C expression in the superficial intima (61%, p=0.17), and deep intima (138% increase; p=0.05). In the superficial intima, NPR-C expression significantly co-localized with vascular smooth muscle cells (VSMCs) and macrophages. The intensity of NPR-C expression was also higher in the superficial intima plaque shoulder and cap regions, and significantly correlated with atheroma and fibroatheroma vulnerable plaque regions (ß=1.04, 95% CI=0.46, 1.64). CONCLUSION: These findings demonstrate significant NPR-C expression in the intima of advanced carotid artery plaques. Furthermore, NPR-C expression was higher in vulnerable carotid plaque intimal regions, and correlate with features of advanced disease. Our findings suggest that NPR-C may serve as a potential biomarker for carotid plaque vulnerability and progression, in patients with advanced carotid artery occlusive disease.

18.
Oncotarget ; 7(23): 33662-74, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27191271

RESUMEN

To find a new locus that confers significant susceptibility to CAD in Chinese Han population, a genome-wide association study in 200 "extreme individuals" from a Shandong cohort and a pathway-based candidate gene study from a Shanghai cohort (293 CAD/293 controls) were simultaneously performed. Amongst them, 13 SNPs associated with CAD were selected to conduct validation and replication studies in additional 3363 CAD patients and 3148 controls. A novel locus rs700926 in natriuretic peptide receptor C (NPR-C) was identified in Shandong and Hubei cohorts. Then rs700926 and other nine tag SNPs were genotyped in four geographically different populations (Shandong, Shaanxi, Hubei and Sichuan cohorts), and 6 SNPs (rs700926, rs1833529, rs2270915, rs17541471, rs3792758 and rs696831) showed stronger association with CAD, regardless of single or combined analysis. We further genotyped rs2270915 and 10 additional tag SNPs in a central China cohort and identified rs12697273 and rs10066436 as the loci associated with CAD. All these positive associations remained significant after adjustment for traditional risk factors of CAD. NPR-C gene SNPs significantly contribute to CAD susceptibility in the Chinese Han population.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Predisposición Genética a la Enfermedad/genética , Receptores del Factor Natriurético Atrial/genética , Adulto , Anciano , Pueblo Asiatico/genética , China , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Factores de Riesgo
19.
Eur J Pharmacol ; 782: 44-58, 2016 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-27108789

RESUMEN

Natriuretic peptide receptor-C (NPR-C) is considered as a clearance receptor that maintains the circulatory levels of natriuretic peptides. It has been suggested that augmented expression of NPR-C as a cause for the diminished anti-hypertrophic action of natriuretic peptides in the failing heart. Hence, we sought to determine the level of Npr3 gene (coding for NPR-C) expression in the Isoproterenol (ISO) treated Wistar rats. In addition, we studied the effect of Npr3 gene silencing on the hypertrophic growth. A significant increase in heart weight-to-body weight ratio (HW/BW-24%,P<0.01), an indicator of cardiac hypertrophic growth was observed in the ISO (10mg/kg BW/day,i.p for 7 days) treated rats. As expected, the cardiac NPR-C protein expression was significantly increased by 4 fold as compared to control rats. In parallel, the circulatory atrial natriuretic peptide (ANP) level was significantly decreased (2 fold) in ISO treated rats. Upon treatment with siRNA-Npr3, a significant decrease in the cardiac NPR-C protein expression (70%,P<0.01), HW/BW ratio (70%,P<0.01) and hypertrophic marker genes (α-Sk, ß-MHC, c-fos, P<0.01, respectively) mRNA expression were observed. Interestingly, the circulatory ANP level was increased by 1.5 fold in the siRNA-Npr3 treated rats as compared to ISO treated rats. Moreover, the cardiac collagen content, matrixmetalloprotinases-2 (MMP-2) and enzymatic antioxidant status (P<0.01, respectively) were found to be restored back to near normal upon siRNA-Npr3 treatment. Taken together, the results of this study indicates that specific down-regulation of Npr3 gene improves the circulatory levels of ANP and antioxidant system and there by attenuates the ß-adrenoceptor over-activation mediated cardiac hypertrophic growth in experimental rats.


Asunto(s)
Factor Natriurético Atrial/sangre , Silenciador del Gen , Receptores Adrenérgicos beta/metabolismo , Receptores del Factor Natriurético Atrial/deficiencia , Receptores del Factor Natriurético Atrial/genética , Animales , Biomarcadores/sangre , Línea Celular , Colágeno/metabolismo , Regulación hacia Abajo/genética , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , ARN Interferente Pequeño/genética , Ratas , Especies Reactivas de Oxígeno/metabolismo
20.
Regul Pept ; 186: 108-15, 2013 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-23981445

RESUMEN

OBJECTIVE: To determine the effect of gestational hypertension on the developmental origins of blood pressure (BP), altered kidney gene expression, salt-sensitivity and cardiac hypertrophy (CH) in adult offspring. METHODS: Female mice lacking atrial natriuretic peptide (ANP-/-) were used as a model of gestational hypertension. Heterozygous ANP+/- offspring was bred from crossing either ANP+/+ females with ANP-/- males yielding ANP+/-(WT) offspring, or from ANP-/- females with ANP+/+ males yielding ANP+/-(KO) offspring. Maternal BP during pregnancy was measured using radiotelemetry. At 14weeks of age, offspring BP, gene and protein expression were measured in the kidney with real-time quantitative PCR, receptor binding assay and ELISA. RESULTS: ANP+/-(KO) offspring exhibited normal BP at 14weeks of age, but displayed significant CH (P<0.001) as compared to ANP+/-(WT) offspring. ANP+/-(KO) offspring exhibited significantly increased gene expression of natriuretic peptide receptor A (NPR-A) (P<0.001) and radioligand binding studies demonstrated significantly reduced NPR-C binding (P=0.01) in the kidney. Treatment with high salt diet increased BP (P<0.01) and caused LV hypertrophy (P<0.001) and interstitial myocardial fibrosis only in ANP+/-(WT) and not ANP+/-(KO) offspring, suggesting gestational hypertension programs the offspring to show resistance to salt-induced hypertension and LV remodeling. Our data demonstrate that altered maternal environments can determine the salt-sensitive phenotype of offspring.


Asunto(s)
Factor Natriurético Atrial/genética , Hipertensión Inducida en el Embarazo/genética , Hipertrofia Ventricular Izquierda/etiología , Efectos Tardíos de la Exposición Prenatal/etiología , Sodio en la Dieta/efectos adversos , Animales , Factor Natriurético Atrial/deficiencia , GMP Cíclico/metabolismo , Femenino , Desarrollo Fetal , Expresión Génica , Regulación de la Expresión Génica , Hipertensión Inducida en el Embarazo/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , Riñón/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Proteína Proto-Oncogénica c-ets-1/genética , Proteína Proto-Oncogénica c-ets-1/metabolismo , Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/metabolismo , Tolerancia a la Sal , Remodelación Ventricular , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA