Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 488, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143492

RESUMEN

Accurate fluorescence imaging of nanocarriers in vivo remains a challenge owing to interference derived mainly from biological tissues and free probes. To address both issues, the current study explored fluorophores in the near-infrared (NIR)-II window with aggregation-caused quenching (ACQ) properties to improve imaging accuracy. Candidate fluorophores with NIR-II emission, ACQ984 (λem = 984 nm) and IR-1060 (λem = 1060 nm), from the aza-BODIPY and cyanine families, respectively, were compared with the commercial fluorophore ICG with NIR-II tail emission and the NIR-I fluorophore P2 from the aza-BODIPY family. ACQ984 demonstrates high water sensitivity with complete fluorescence quenching at a water fraction greater than 50%. Physically embedding the fluorophores illuminates various nanocarriers, while free fluorophores cause negligible interference owing to the ACQ effect. Imaging based on ACQ984 revealed fine structures in the vascular system at high resolution. Moreover, good in vivo and ex vivo correlations in the monitoring of blood nanocarriers can be established, enabling real-time noninvasive in situ investigation of blood pharmacokinetics and dynamic distribution in various tissues. IR-1060 also has a good ACQ effect, but the lack of sufficient photostability and steady post-labeling fluorescence undermines its potential for nanocarrier bioimaging. P2 has an excellent ACQ effect, but its NIR-I emission only provides nondiscriminative ambiguous images. The failure of the non-ACQ probe ICG to display the biodistribution details serves as counterevidence for the improved imaging accuracy by NIR-II ACQ probes. Taken together, it is concluded that fluorescence imaging of nanocarriers based on NIR-II ACQ probes enables accurate in vivo bioimaging and real-time in situ pharmacokinetic analysis.


Asunto(s)
Colorantes Fluorescentes , Nanopartículas , Imagen Óptica , Animales , Colorantes Fluorescentes/química , Imagen Óptica/métodos , Ratones , Nanopartículas/química , Portadores de Fármacos/química , Distribución Tisular , Ratones Endogámicos BALB C , Compuestos de Boro/química , Compuestos de Boro/farmacocinética , Verde de Indocianina/química
2.
Angew Chem Int Ed Engl ; : e202412815, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117561

RESUMEN

Near-infrared (NIR) emitting phosphors draw much attention because they show great applicability and development prospects in many fields. Herein, a series of inverse spinel-type structured LiGa5O8 phosphors with a high concentration of Cr3+ activators is reported with a dual emission band covering NIR-I and II regions. Except for strong ionic exchange interactions such as Cr3+-Cr3+ and Cr3+ clusters, an intervalence charge transfer (IVCT) process between aggregated Cr ion pairs is proposed as the mechanism for the ~1210 nm NIR-II emission. Comprehensive structural and luminescence characterization points to IVCT between two Cr3+ being induced by structural distortion and further enhanced by irradiation. Construction of the configurational energy level diagram enabled elucidation of this transition within the IVCT process. Therefore, this work provides insight into the emission mechanism within the high Cr3+ concentration system, revealing a new design strategy for NIR-II emitting phosphors to promote its response.

3.
Acta Pharm Sin B ; 14(7): 3155-3168, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39027233

RESUMEN

The aggregation-caused quenching (ACQ) rationale has been employed to improve the fluorescence imaging accuracy of nanocarriers by precluding free probe-derived interferences. However, its usefulness is undermined by limited penetration and low spatiotemporal resolution of NIR-I (700-900 nm) bioimaging owing to absorption and diffraction by biological tissues and tissue-derived autofluorescence. This study aimed to develop ACQ-based NIR-II (1000-1700 nm) probes to further improve the imaging resolution and accuracy. The strategy employed is to install highly planar and electron-rich julolidine into the 3,5-position of aza-BODIPY based on the larger substituent effects. The newly developed probes displayed remarkable photophysical properties, with intense absorption centered at approximately 850 nm and bright emission in the 950-1300 nm region. Compared with the NIR-I counterpart P2, the NIR-II probes demonstrated superior water sensitivity and quenching stability. ACQ1 and ACQ6 exhibited more promising ACQ effects with absolute fluorescence quenching at water fractions above 40% and higher quenching stability with less than 2.0% fluorescence reillumination in plasma after 24 h of incubation. Theoretical calculations verified that molecular planarity is more important than hydrophobicity for ACQ properties. Additionally, in vivo and ex vivo reillumination studies revealed less than 2.5% signal interference from prequenched ACQ1, in contrast to 15% for P2.

4.
Angew Chem Int Ed Engl ; 63(34): e202406694, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38853141

RESUMEN

J-aggregation brings intriguing optical and electronic properties to molecular dyes and significantly expands their applicability across diverse domains, yet the challenge for rationally designing J-aggregating dyes persists. Herein, we developed a large number of J-aggregating dyes from scratch by progressively refining structure of a common heptamethine cyanine. J-aggregates with sharp spectral bands (full-width at half-maximum≤38 nm) are attained by introducing a branched structure featuring a benzyl and a trifluoroacetyl group at meso-position of dyes. Fine-tuning the benzyl group enables spectral regulation of J-aggregates. Analysis of single crystal data of nine dyes reveals a correlation between J-aggregation propensity and molecular arrangement within crystals. Some J-aggregates are successfully implemented in multiplexed optoacoustic and fluorescence imaging in animals. Notably, three-color multispectral optoacoustic tomography imaging with high spatiotemporal resolution is achieved, owing to the sharp and distinct absorption bands of the J-aggregates.


Asunto(s)
Carbocianinas , Colorantes Fluorescentes , Imagen Óptica , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Carbocianinas/química , Animales , Colorantes Fluorescentes/química , Ratones , Estructura Molecular
5.
J Colloid Interface Sci ; 669: 578-589, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38729006

RESUMEN

Stable organic radicals have emerged as a promising option to enhance fluorescence quantum yield (QY), gaining traction in medical treatment due to their unique electronic transitions from the ground state (D0) to the doublet excited state (D1). We synthesized a stable dicyanomethyl radical with a NIR-II fluorescence QY of 0.86 %, surpassing many NIR-II organic dyes. Subsequently, amphiphilic polymer-encapsulated nanoparticles (NPs) containing the radical were created, achieving a NIR-II fluorescence QY of 0.32 %, facilitating high-contrast bio-imaging. These CNPPs exhibit self-enhanced photothermal properties, elevating photothermal conversion efficiency (PCE) from 43.5 % to 57.5 % under 915 nm laser irradiation. This advancement enables more efficient photothermal therapy (PTT) with lower dye concentrations and reduced laser power, enhancing both feasibility and safety. Through regular fractionated mild photothermal therapy, we observed the release of damage-associated molecular patterns (DAMPs) and an increase in cytokine expression, culminating in combined mild phototherapy (m-PTT)-mediated immunogenic cell death (ICD). Consequently, we developed an immunostimulatory tumor vaccine, showcasing a novel approach for refining photothermal agents (PTA) and optimizing the PTT process.


Asunto(s)
Rayos Infrarrojos , Nanopartículas , Péptidos , Nanopartículas/química , Péptidos/química , Péptidos/farmacología , Animales , Humanos , Ratones , Nanomedicina Teranóstica , Tamaño de la Partícula , Terapia Fototérmica , Fototerapia , Radicales Libres/química , Propiedades de Superficie , Supervivencia Celular/efectos de los fármacos
6.
Chemistry ; 30(33): e202400816, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38613472

RESUMEN

Near-Infrared-II (NIR-II) spans wavelengths between 1,000 to 1,700 nanometers, featuring deep tissue penetration and reduced tissue scattering and absorption characteristics, providing robust support for cancer treatment and tumor imaging research. This review explores the utilization of activatable NIR-II photodiagnosis and phototherapy based on tumor microenvironments (e. g., reactive oxygen species, pH, glutathione, hypoxia) and external stimulation (e. g., laser, ultrasound, photothermal) for precise tumor treatment and imaging. Special emphasis is placed on the advancements and advantages of activatable NIR-II nanomedicines in novel therapeutic modalities like photodynamic therapy, photothermal therapy, and photoacoustic imaging. This encompasses achieving deep tumor penetration, real-time monitoring of the treatment process, and obtaining high-resolution, high signal-to-noise ratio images even at low material concentrations. Lastly, from a clinical perspective, the challenges faced by activatable NIR-II phototherapy are discussed, alongside potential strategies to overcome these hurdles.


Asunto(s)
Rayos Infrarrojos , Nanoestructuras , Neoplasias , Humanos , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Fototerapia/métodos , Animales , Microambiente Tumoral , Fotoquimioterapia , Técnicas Fotoacústicas/métodos , Especies Reactivas de Oxígeno/metabolismo , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico
7.
J Colloid Interface Sci ; 665: 855-862, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38564949

RESUMEN

Bacterial infections are the primary causes of infectious diseases in humans. In recent years, the abuse of antibiotics has led to the widespread enhancement of bacterial resistance. Concerns have been raised about the identification of a common treatment platform for bacterial infections. In this study, a composite nanomaterial was used for near-infrared II (NIR-II) photothermal antibacterial treatment. Red blood cell membrane was peeled and coated onto the surface of the Au/polydopamine nanoparticle-containing aptamer. The composite nanomaterials based on Au/polydopamine exhibit highest photothermal conversion capability. Moreover, these assembled nanoparticles can quickly enter the body's circular system with a specific capability to recognise bacteria. In vivo experiments demonstrated that the composites could kill bacteria from infected blood while significantly reducing the level of bacteria in various organs. Such assemblies offer a paradigm for the treatment of bacterial infections caused by the side effects of antibiotics.


Asunto(s)
Infecciones Bacterianas , Indoles , Nanopartículas , Polímeros , Humanos , Antibacterianos/farmacología , Infecciones Bacterianas/tratamiento farmacológico , Bacterias , Membrana Celular
8.
Adv Mater ; 36(25): e2400366, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38469896

RESUMEN

Given the challenge of multidrug resistance in antibiotics, non-antibiotic-dependent antibacterial strategies show promise for anti-infective therapy. V2C MXene-based nanomaterials have demonstrated strong biocompatibility and photothermal conversion efficiency (PCE) for photothermal therapy (PTT). However, the limitation of V2C MXene's laser irradiation to the near-infrared region I (NIR-I) restricts tissue penetration, making it difficult to achieve complete bacterial eradication with single-effect therapeutic strategies. To address this, Pt nanoparticles (Pt NPs) are attached to V2C, forming artificial nanoplatforms (Pt@V2C). Pt@V2C exhibits enhanced PCE (59.6%) and a longer irradiation laser (NIR-II) due to the surface plasmon resonance effect of Pt NPs and V2C. Notably, Pt@V2C displays dual enzyme-like activity with chemodynamic therapy (CDT) and NIR-II enhanced dual enzyme-like activity. The biocatalytic mechanism of Pt@V2C is elucidated using density functional theory. In an in vivo animal model, Pt@V2C effectively eliminates methicillin-resistant Staphylococcus aureus from deep-seated tissues in subcutaneous abscesses and bacterial keratitis environments, accelerating abscess resolution and promoting wound and cornea healing through the synergistic effects of PTT/CDT. Transcriptomic analysis reveals that Pt@V2C targets inflammatory pathways, providing insight into its therapeutic mechanism. This study presents a promising therapeutic approach involving hyperthermia-amplified biocatalysis with Pt NPs and MXene nanocomposites.


Asunto(s)
Antibacterianos , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Terapia Fototérmica , Platino (Metal) , Platino (Metal)/química , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Animales , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Antibacterianos/química , Antibacterianos/farmacología , Rayos Infrarrojos , Infecciones Estafilocócicas/tratamiento farmacológico
9.
Environ Sci Technol ; 58(10): 4558-4570, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38408313

RESUMEN

Calcium is a highly demanded metal, and its transport across the intestine of Daphnia magna remains a significant unresolved question. Due to technical constraints, the visualization of the kinetic process of Ca passage through D. magna has been challenging. Here, we developed the second near-infrared Ca sensor (NIR-II Ca) and conducted real-time in vivo imaging of Ca in daphnids with a high signal-to-noise ratio, deep tissue penetration, and minimal damage. Through the utilization of the NIR-II Ca sensor, we for the first time visualized and quantified the kinetic process of Ca passage in the intestine in real time. The results revealed that trophically available Ca passed through the intestines in 24 h, whereas waterborne Ca required only 35 min. This rapid "flushing through" mechanism established waterborne Ca as the primary source of Ca absorption. However, environmental stressors such as water acidification and cadmium significantly delayed the Ca passage and absorption. The development of NIR imaging and sensors allows for real-time dynamic visualization of contaminants/nutrients in organisms and holds great potential as a powerful tool for future studies into material kinetic processes in living animals.


Asunto(s)
Cadmio , Contaminantes Químicos del Agua , Animales , Calcio , Daphnia magna , Daphnia , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno
10.
ACS Sens ; 9(3): 1339-1348, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38382082

RESUMEN

Accurately determining the metastatic status of sentinel lymph nodes (SLNs) through noninvasive imaging with high imaging resolution and sensitivity is crucial for cancer therapy. Herein, we report a dual-tracer-based NIR-II ratiometric fluorescence nanoplatform combining targeted and nontargeted moieties to determine the metastatic status of SLNs through the recording of ratio signals. Ratiometric fluorescence imaging revealed approximately 2-fold increases in signals in tumor-draining SLNs compared to inflamed and normal SLNs. Additionally, inflamed SLNs were diagnosed by combining the ratio value with the enlarged size outputted by NIR-II fluorescence imaging. The metastatic status diagnostic results obtained through NIR-II ratiometric fluorescence signals were further confirmed by standard H&E staining, indicating that the ratiometric fluorescence strategy could achieve distant metastases detection. Furthermore, the superior imaging quality of ratiometric probes enables visualization of the detailed change in the lymphatic network accompanying tumor growth. Compared to clinically available and state-of-the-art NIR contrast agents, our dual-tracer-based NIR-II ratiometric fluorescence probes provide significantly improved performance, allowing for the quick assessment of lymphatic function and guiding the removal of tumor-infiltrating SLNs during cancer surgery.


Asunto(s)
Ganglio Linfático Centinela , Humanos , Ganglio Linfático Centinela/diagnóstico por imagen , Ganglio Linfático Centinela/patología , Ganglio Linfático Centinela/cirugía , Colorantes Fluorescentes , Metástasis Linfática/patología , Verde de Indocianina , Imagen Óptica
11.
Chemistry ; 30(19): e202304066, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38289154

RESUMEN

The immune regulation of the lymphatic system, especially the lymph node (LN), is of great significance for the treatment of diseases and the inhibition of pathogenic organisms spreading in the body. However, achieving precise spatiotemporal control of immune cell activation in LN in vivo remains a challenge due to tissue depth and off-target effects. Furthermore, minimally invasive and real-time feedback methods to monitor the regulation of the immune system in LN are lacking. Here, focused ultrasound responsive immunomodulator loaded nanoplatform (FURIN) with near-infrared II (NIR-II) luminescence is designed to achieve spatiotemporally controllable immune activation in LN in vivo. The NIR-II persistent luminescence of FURIN can track its delivery in LN through bioimaging. Under focused ultrasound (FUS) stimulation, the immunomodulator encapsulated in FURIN can be released locally in the LN to activate immune cells such as dendritic cells and the NIR-II mechanoluminescence of FURIN provides real-time optical feedback signals for immune activation. This work points to a FUS mediated, spatiotemporal selective immune activation strategy in vivo with the feedback control of luminescence signals via ultrasound responsive nanocomposite, which is of great significance in improving the efficacy and reducing the side effect of immune regulation for the development of potential immunotherapeutic methods in the future.


Asunto(s)
Furina , Ganglios Linfáticos , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Ganglios Linfáticos/cirugía , Luminiscencia , Adyuvantes Inmunológicos
12.
ACS Appl Mater Interfaces ; 16(4): 4420-4429, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38240719

RESUMEN

Near-infrared-II fluorescence imaging (NIR-II FI) has become a powerful imaging technique for disease diagnosis owing to its superiorities, including high sensitivity, high spatial resolution, deep imaging depth, and low background interference. Despite the widespread application of conjugated polymer nanoparticles (CPNs) for NIR-II FI, most of the developed CPNs have quite low NIR-II fluorescence quantum yields based on the energy gap law, which makes high-sensitivity and high-resolution imaging toward deep lesions still a huge challenge. This work proposes a nanoengineering strategy to modulate the size of CPNs aimed at optimizing their NIR-II fluorescence performance for improved NIR-II phototheranostics. By adjusting the initial concentration of the synthesized conjugated polymer, a series of CPNs with different particle sizes are successfully prepared via a nanoprecipitation approach. Results show that the NIR-II fluorescence brightness of CPNs gradually amplifies with decreasing particle size, and the optimal CPNs, NP0.2, demonstrate up to a 2.05-fold fluorescence enhancement compared with the counterpart nanoparticles. With the merits of reliable biocompatibility, high photostability, and efficient light-heat conversion, the optimal NP0.2 has been successfully employed for NIR-II FI-guided photothermal therapy both in vitro and in vivo. Our work highlights an effective strategy of nanoengineering to improve the NIR-II performance of CPNs, advancing the development of NIR-II FI in life sciences.


Asunto(s)
Nanopartículas , Terapia Fototérmica , Polímeros , Nanopartículas/uso terapéutico , Imagen Óptica/métodos , Fototerapia , Línea Celular Tumoral
13.
Carbohydr Polym ; 329: 121783, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38286553

RESUMEN

The skin, the primary barrier of the body, is inevitably broken. However, the development of materials that facilitate wound healing with sustained antimicrobial, hemostatic, and biocompatible properties remains a formidable challenge. In this article, we prepared a photopolymerizable composite hydrogel consisting of a hydrogel matrix, a hemostatic/antibacterial agent, and a photothermal therapy agent. The photopolymerizable hydrogel matrix was prepared by grafting the photoinitiator and polymerizable active monomer onto the chitosan chain segment, which exhibits excellent biocompatibility. Furthermore, linalool is adsorbed on the surface of halloysite nanotubes (HNTs) to form a hemostatic and antibacterial. Meanwhile, dopamine is employed as a coating material for hollow glass microsphere (HGM), which enables them to function as photothermal therapy agents. Upon exposure to near-infrared radiation, the PHA hydrogel releases linalool molecules from the surface of the HNTs, which diffuse into the hydrogel matrix, resulting in a sustained antimicrobial effect. At the same time, rapid curing of the photopolymerizable hydrogel under UV light forms a physical barrier that synergistically enhances the hemostatic properties of the HNTs. From the above, the results pave the way to develop a potential hemostatic antimicrobial dressing for clinical use in wound healing.


Asunto(s)
Monoterpenos Acíclicos , Quitosano , Hemostáticos , Hemostáticos/farmacología , Quitosano/farmacología , Hidrogeles/farmacología , Antibacterianos/farmacología , Cicatrización de Heridas
14.
Bioact Mater ; 33: 341-354, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38107603

RESUMEN

Nitric oxide (NO) enhanced photodynamic therapy (PDT) is a promising approach to overcome drug tolerance and resistance to biofilm but is limited by its short excitation wavelengths and low yield of reactive oxygen species (ROS). Herein, we develop a compelling degradable polymer-based near-infrared II (NIR-II, 1000-1700 nm) photosensitizer (PNIR-II), which can maintain 50 % PDT efficacy even under a 2.6 cm tissue barrier. Remarkably, PNIR-II is synthesized by alternately connecting the electron donor thiophene to the electron acceptors diketopyrrolopyrrole (DPP) and boron dipyrromethene (BODIPY), where the intramolecular charge transfer properties can be tuned to increase the intersystem crossover rate and decrease the internal conversion rate, thereby stabilizing the NIR-II photodynamic rather than photothermal effect. For exerting a combination therapy to eradicate multidrug-resistant biofilms, PNIR-II is further assembled into nanoparticles (NPs) with a synthetic glutathione-triggered NO donor polymer. Under 1064 nm laser radiation, NPs precisely release ROS and NO that triggered by over-expressed GSH in the biofilm microenvironment, thereby forming more bactericidal reactive nitrogen species (RNS) in vitro and in vivo in the mice model that orderly destroy biofilm of multidrug-resistant Staphylococcus aureus cultures from clinical patients. It thus provides a new outlook for destroy the biofilm of deep tissues.

15.
Adv Healthc Mater ; 13(20): e2303183, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38117062

RESUMEN

Due to the "Achilles' heels" of hypoxia, complicated location in solid tumor, small molecular photosensitizers with second near-infrared window (NIR-II) fluorescence, type-I photodynamic therapy (PDT), and photothermal therapy (PTT) have attracted great attention. However, these photosensitizers are still few but yet challenging. Herein, an "all in one" NIR-II acceptor-donor-acceptor fused-ring photosensitizer, Y6-Th, is presented for the in-depth diagnosis and efficient treatment of cancer. Benefiting from the strong intramolecular charge transfer, promoted highly efficient intersystem crossing, largely p-conjugated fused-ring structure, and reduced planarity, the fabricated nanoparticles (Y6-Th nanoparticles) can emit NIR-II fluorescence with the peak located at 1020 nm, exclusively generate O2•- for type-I PDT, and display excellent PTT performance under an 808 nm laser stimulation. These characteristics make Y6-Th a distinguished NIR-wavelength-triggered phototheranostic agent, which can effectively therapy the hypoxic tumor using NIR-II-fluorescence-guided type-I PDT/PTT. This work provides a valuable guideline for fabricating high-performing NIR-II emissive superoxide radical photogenerators.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Superóxidos , Fotoquimioterapia/métodos , Superóxidos/metabolismo , Superóxidos/química , Animales , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Ratones , Humanos , Nanopartículas/química , Terapia Fototérmica/métodos , Línea Celular Tumoral , Rayos Infrarrojos , Ratones Endogámicos BALB C , Femenino , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Hipoxia Tumoral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA